Carotenoids in Potatoes – a Short Overview

Total Page:16

File Type:pdf, Size:1020Kb

Carotenoids in Potatoes – a Short Overview Vol. 62, 2016, No. 10: 474–481 Plant Soil Environ. doi: 10.17221/459/2016-PSE Carotenoids in potatoes – a short overview J. Lachman1, K. Hamouz2, M. Orsák1, Z. Kotíková1 1Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic 2Department of Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic ABSTRACT Carotenoids are one of major lipophilic constituents contributing to total antioxidant activity and provitamin con- tent of potato, a major non-cereal staple food. The review briefly discusses health promoting properties of carot- enoids and especially their contents and composition in different potato cultivars affected by flesh colour (white-, yellow-, purple- and red-fleshed) and the effect of selected factors on carotenoid total and individual levels, such as genotype, breeding, tuber development, heat processing – cooking, storage, effect of year, locality, etc. The aim of the recent research is obtaining potatoes with higher levels of beneficial carotenoids to improve one the most popu- lar vegetables in the world. Keywords: phytonutrients; Solanum tuberosum; xanthophylls; thermal processing and storage Carotenoids are effective antioxidants with 2007, Fernandez-Orozco et al. 2013). The colour of important health-promoting functions such as potato tubers of conventional cultivars depends on provitamin A activity, enhancement of the im- carotenoid content and composition (Hejtmánková mune system and reduction of cardiovascular et al. 2013) and tuber yellow intensity is positively disease or cancer and help in the prevention of correlated with total carotenoid content. In the atherosclerosis (Bonierbale et al. 2009). The higher review main factors affecting carotenoid levels, consumption of carotenoids can protect consum- such as genotype, climate and growing conditions, ers and therefore considerable interest is currently storage and cooking processes, are discussed. being shown in the screening and development of Characteristics of carotenoids by their chemi- food crops with increased concentrations of total cal composition. Carotenoids are an important and individual carotenoids (Stahl and Sies 2005). group of natural organic pigments synthesized Potato is the fourth most important staple food from plants that are naturally occurring in the crop after rice, wheat and maize, and it contains a chloroplasts and chromoplasts of photosynthetic wide range of phytochemicals, including phenolic organisms, such as plants and algae, and some compounds such as chlorogenic acid, anthocyanins fungi and bacteria (Valcarel et al. 2015). All share in purple and red-coloured potatoes and carot- a tetraterpenoid structure of 40 carbon atoms, a enoids (Tierno et al. 2015, Lachman et al. 2016). long conjugated chain of double bonds in the centre Hence, potato tubers are considered an important of the molecule (chromophore) and near symme- source of bioactive compounds, which are highly try around the central double bond. They may be desirable in diet (Ezekiel et al. 2013), although the split into two classes, xanthophylls (which contain concentrations of different phytochemicals are af- oxygen) and carotenes (which are purely hydrocar- fected by cooking and other processes (Lachman bons and contain no oxygen) (Rao and Rao 2007). et al. 2013). In particular, native potato germplasm Carotenoids serve two key roles in plants and algae: can be considered a great source of variability for they absorb light energy for use in photosynthesis, increased tuber nutritional value (Burgos et al. and they protect chlorophyll from photodamage. 474 Plant Soil Environ. Vol. 62, 2016, No. 10: 474–481 doi: 10.17221/459/2016-PSE Role and significance of carotenoids in human be used as a tool to differentiate between white- or nutrition and their health benefits. Higher ani- yellow-fleshed cultivars. Fernandez-Orozco et al. mals are incapable of biosynthesizing carotenoid, so (2013) claimed that the total carotenoid contents these pigments are essentially indigested through for all cultivars ranged from 0.50–15.5 mg/kg the diet as precursors for retinol (vitamin A) DW, although most of the samples had less than biosynthesis. Provitamin A activity is the ability 10.0 mg/kg DW, with an average value of about of carotenoids to form vitamin A (retinol and 4.35 mg/kg DW; however 50% of the RDA of vita- retinal) by the action of carotene dioxygenase. min A can be met by consuming 250 g of enriched Any carotenoid containing at least one unmodified genetically engineered potatoes. β-ionone ring may be cleaved to provide provitamin The different types of xanthophylls show vari- A activity. Thus, provitamin A active carotenoids able concentrations in various potato genotypes include β-carotene, α-carotene, γ-carotene and with lutein predominating and varying amounts β-cryptoxanthin. Although provitamin A activity is of zeaxanthin, violaxanthin, and others reported. the major function of carotenoids, potent antioxi- The main carotenoid was lutein in all cultivars dant activity of carotenoids through singlet oxygen (54–93%); furthermore violaxanthin, neoxan- quenching and deactivation of free radicals play thin, zeaxanthin and β-carotene were identified in important roles in the prevention of certain types most of the analysed samples (Hejtmánková et al. of cancer, cardiovascular diseases, and macular 2013). The carotenoid analysis showed a similar degeneration (Müller et al. 2015). Apart from this, qualitative composition for all potato cultivars, carotenoids play important roles in cellular and with the following substances being identified: organelle function. β-Carotene inhibits inflam- all-trans-neoxanthin, 9’-cis-neoxanthin, all-trans- matory gene expression in lipopolysaccharide- violaxanthin, 9-cis-violaxanthin, antheraxanthin, stimulated macrophages with possible anti-obesity lutein-5,6-epoxide, all-trans-lutein, 9-cis-lutein, positive role (Williams et al. 2013). Generally, ca- 13-cis-lutein, all-trans-β-cryptoxanthin and all- rotenoids are involved in embryonic development, trans-β-carotene (Fernandez-Orozco et al. 2013). gap junction communication, immune modula- Two groups of pigments were assigned to par- tion, cell differentiation, anti-inflammation, bone tially (monoesters for dihydroxy-xanthophylls) metabolism, anti-angiogenesis, anti-proliferation, and totally esterified carotenoids (monoesters hematopoiesis, antioxidant activity, skin health, of monohydroxy-xanthophylls and diesters for apoptosis and good vision (Saini et al. 2015). dihydroxy-xanthophylls). The lack of zeaxanthin Content of total and individual carotenoids in all samples should be remarked, in contrast to in potato tubers. Recent findings suggest that other studies which have reported that zeaxanthin carotenoid pool size is determined, at least in part, is a major carotenoid in many potato cultivars by the activity of carotenoid cleavage dioxygenases (André et al. 2007a,b). Kotíková et al. (2016) re- (Campbell et al. 2010). Higher levels of total ca- ported that yellow cultivars showed a much higher rotenoids were found in the skin of tubers, with average total carotenoid content (26.2 mg/kg DW) maxima values of 28 and 9 mg/kg dry weight (DW) when compared to red/purple-fleshed potatoes in skin and flesh, respectively. Yellow-skinned or (5.69 mg/kg DW). Yellow cultivars were dominated fleshed tetraploid cultivars also had higher con- by antheraxanthin, whereas neoxanthin was the tents than those with paler or white tissues, with main carotenoid in red/purple cultivars. no relationship found for other colours (Valcarel Potato, which usually accumulates lutein and vio- et al. 2015). Carotenoid concentrations in some laxanthin, was modified to accumulate zeaxanthin diploid potatoes were reported up to 22 times (Römer et al. 2002) in yellow-fleshed potato by higher than in white-fleshed potatoes (Haynes et transformation of neoxanthin epoxidase and it may al. 2011). The content of carotenoids is affected by also result in an increase in transcript for protein cultivar and locality. Hamouz et al. (2016) reported fibrillin evolved in carotenoid storage (DellaPenna that the content of total carotenoids in analysed and Pogson 2006). Metabolic engineering was cultivars ranged in 1.10–12.2 mg/kg DW and was recently applied to potato in order to increase the influenced by genotype cultivar, locality and year. provitamin A content (Diretto et al. 2007), with a Breithaupt and Bamedi (2002) suggested that the resulting increase of 20-fold and 3600-fold for total total concentration of carotenoids in potatoes could carotenoid and β-carotene content, respectively, 475 Vol. 62, 2016, No. 10: 474–481 Plant Soil Environ. doi: 10.17221/459/2016-PSE in the biofortified ‘golden potato’. Broad-sense orange flesh. Total carotenoids content was re- heritability estimates were high for total carot- ported in the range of 0.50–3.50 mg/kg FW and enoid (0.81), lutein (0.77), zeaxanthin (0.73), and 8.00–20.0 mg/kg FW, respectively, in white- and the lycopene beta-cyclase pathway carotenoids yellow-fleshed potato cultivars (Brown et al. 2008). (0.73); moderate for neoxanthin (0.42); and low Researchers have been able to increase carotenoids for violaxanthin (0.21) and antheraxanthin (0.13) content considerably using transgenic approaches. (Haynes et al. 2011). Carotenoids and their contents Ducreux et al. (2005) were able to increase tuber reported
Recommended publications
  • Altered Xanthophyll Compositions Adversely Affect Chlorophyll Accumulation and Nonphotochemical Quenching in Arabidopsis Mutants
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13324–13329, October 1998 Plant Biology Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants BARRY J. POGSON*, KRISHNA K. NIYOGI†,OLLE BJO¨RKMAN‡, AND DEAN DELLAPENNA§¶ *Department of Plant Biology, Arizona State University, Tempe, AZ 85287-1601; †Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102; ‡Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305-4101; and §Department of Biochemistry, University of Nevada, Reno, NV 89557-0014 Contributed by Olle Bjo¨rkman, September 4, 1998 ABSTRACT Collectively, the xanthophyll class of carote- thin, are enriched in the LHCs, where they contribute to noids perform a variety of critical roles in light harvesting assembly, light harvesting, and photoprotection (2–8). antenna assembly and function. The xanthophyll composition A summary of the carotenoid biosynthetic pathway of higher of higher plant photosystems (lutein, violaxanthin, and neox- plants and relevant chemical structures is shown in Fig. 1. anthin) is remarkably conserved, suggesting important func- Lycopene is cyclized twice by the enzyme lycopene b-cyclase tional roles for each. We have taken a molecular genetic to form b-carotene. The two beta rings of b-carotene are approach in Arabidopsis toward defining the respective roles of subjected to identical hydroxylation reactions to yield zeaxan- individual xanthophylls in vivo by using a series of mutant thin, which in turn is epoxidated once to form antheraxanthin lines that selectively eliminate and substitute a range of and twice to form violaxanthin. Neoxanthin is derived from xanthophylls. The mutations, lut1 and lut2 (lut 5 lutein violaxanthin by an additional rearrangement (9).
    [Show full text]
  • Carotenoid Composition of Strawberry Tree (Arbutus Unedo L.) Fruits
    Accepted Manuscript Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez PII: S0308-8146(15)30273-9 DOI: http://dx.doi.org/10.1016/j.foodchem.2015.11.135 Reference: FOCH 18476 To appear in: Food Chemistry Received Date: 25 May 2015 Revised Date: 21 November 2015 Accepted Date: 28 November 2015 Please cite this article as: Delgado-Pelayo, R., Gallardo-Guerrero, L., Hornero-Méndez, D., Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits, Food Chemistry (2015), doi: http://dx.doi.org/10.1016/j.foodchem. 2015.11.135 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez* Group of Chemistry and Biochemistry of Pigments. Food Phytochemistry Department. Instituto de la Grasa (CSIC). Campus Universidad Pablo de Olavide, Ctra. de Utrera km. 1. 41013 - Sevilla (Spain). * Corresponding author. Telephone: +34 954611550; Fax: +34 954616790; e-mail: [email protected] 1 Abstract The carotenoid composition of strawberry tree (A. unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 µg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (> 20 µg/g dw).
    [Show full text]
  • Pigment Palette by Dr
    Tree Leaf Color Series WSFNR08-34 Sept. 2008 Pigment Palette by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Autumn tree colors grace our landscapes. The palette of potential colors is as diverse as the natural world. The climate-induced senescence process that trees use to pass into their Winter rest period can present many colors to the eye. The colored pigments produced by trees can be generally divided into the green drapes of tree life, bright oil paints, subtle water colors, and sullen earth tones. Unveiling Overpowering greens of summer foliage come from chlorophyll pigments. Green colors can hide and dilute other colors. As chlorophyll contents decline in fall, other pigments are revealed or produced in tree leaves. As different pigments are fading, being produced, or changing inside leaves, a host of dynamic color changes result. Taken altogether, the various coloring agents can yield an almost infinite combination of leaf colors. The primary colorants of fall tree leaves are carotenoid and flavonoid pigments mixed over a variable brown background. There are many tree colors. The bright, long lasting oil paints-like colors are carotene pigments produc- ing intense red, orange, and yellow. A chemical associate of the carotenes are xanthophylls which produce yellow and tan colors. The short-lived, highly variable watercolor-like colors are anthocyanin pigments produc- ing soft red, pink, purple and blue. Tannins are common water soluble colorants that produce medium and dark browns. The base color of tree leaf components are light brown. In some tree leaves there are pale cream colors and blueing agents which impact color expression.
    [Show full text]
  • Paprika Extract (Tentative)
    PAPRIKA EXTRACT (TENTATIVE) New tentative specifications prepared at the 69th JECFA (2008), published in FAO JECFA Monographs 5 (2008). No ADI was allocated at the 69th JECFA (2008). Information required on batches of commercially available products: • analytical data on composition • levels of capsaicinoids • levels of arsenic SYNONYMS INS No. 160c, Capsanthin, Capsorubin DEFINITION Paprika extract is obtained by solvent extraction of the dried ground fruit pods of Capsicum annuum. The major colouring compounds are capsanthin and capsorubin. Other coloured compounds, such as other carotenoids are also present. The balance of the extracted material is lipidic in nature and varies depending on the primary extraction solvent. Commercial preparations may be diluted and standardised with respect to colour content using refined vegetable oil. Only methanol, ethanol, 2-propanol, acetone, hexane, ethyl acetate and supercritical carbon dioxide may be used as solvents in the extraction. Chemical names Capsanthin: (3R, 3’S, 5’R)-3,3’-dihydroxy-β,κ-carotene-6-one Capsorubin: (3S, 3’S, 5R, 5’R)-3,3’-dihydroxy-κ,κ-carotene-6,6’- dione C.A.S number Capsanthin: 465-42-9 Capsorubin: 470-38-2 Chemical formula Capsanthin: C40H56O3 Capsorubin: C40H56O4 Structural formula Capsanthin Capsorubin Formula weight Capsanthin: 584.85 Capsorubin: 600.85 Assay Total carotenoids: not less than declared. Capsanthin/capsorubin: Not less than 30% of total carotenoids. DESCRIPTION Dark-red viscous liquid FUNCTIONAL USE Colour CHARACTERISTICS IDENTIFICATION Solubility Practically insoluble in water, soluble in acetone Spectrophotometry Maximum absorption in acetone at about 462 nm and in hexane at about 470 nm. Colour reaction To one drop of sample add 2-3 drops of chloroform and one drop of sulfuric acid.
    [Show full text]
  • Organic Chemistry LD Synthesis and Purification of Organic Chemistry Compounds Column Chromatography As a Purification Process Leaflets C2.4.4.1
    Organic Chemistry LD Synthesis and purification of organic Chemistry compounds Column chromatography as a purification process Leaflets C2.4.4.1 Separation of a leaf extract by column chromatography Aims of the experiment To produce a leaf extract. To demonstrate column chromatography as a method for separating substances according to their adsorption properties. To understand the separation principle of column chromatography using silica gel as the stationary phase. To explain the order of elution of various leaf pigments based on their molecular structure. To understand the structural associations between various classes of leaf pigments. Principles sorbed (they adhere to it) or desorbed (they return to the solution). Substances with a high affinity to the stationary Column chromatography is a frequently used method for phase spend on average a longer period of time in the ad- separating mixtures of substances in the laboratory. The sorbed state and less time in the solution. Therefore they substances are isolated based on their adhesion properties. It pass more slowly through the column than substances with a functions according to the same principle as other chromato- lower affinity to the stationary phase. graphic methods, but in contrast to these, it is used less for With column chromatography, the stationary phase is located identification and more for the separation and purification of in a cylindrical tube with a discharge tap on the underside. substances. The mobile phase trickles through the stationary phase by The substances to be separated are transported on a mobile gravitational force or is pumped through the stationary phase phase (solvent mixture) through a stationary phase (in this using compressed air (Flash chromatography).
    [Show full text]
  • Paprika Extract
    PAPRIKA EXTRACT Prepared at the 77th JECFA, published in FAO JECFA Monographs 14 (2013), superseding tentative specifications prepared at the 69th JECFA (2008). An ADI of 0 - 1.5 mg/kg bw was allocated at the 79th JECFA (2014). SYNONYMS INS No. 160c(ii), Capsanthin DEFINITION Paprika extract is obtained by solvent extraction of the dried ground fruit pods of Capsicum annuum. The major colouring compound is capsanthin. Other coloured compounds, such as capsorubin, canthaxanthin, cryptoxanthin, zeaxanthin and lutein, as well as other carotenoids are also present. The balance of the extracted material is lipidic in nature and varies depending on the primary extraction solvent. Commercial preparations may be diluted and standardised with respect to colour content using refined vegetable oil. Only methanol, ethanol, isopropanol, acetone, hexane, ethyl acetate and supercritical carbon dioxide may be used as solvents in the extraction. Chemical names Capsanthin: (3R, 3’S, 5’R)-3,3’-dihydroxy-β,κ-carotene-6-one C.A.S number Capsanthin: 465-42-9 Chemical formula Capsanthin: C40H56O3 Structural formula Capsanthin Formula weight Capsanthin: 584.85 Assay Total carotenoids: not less than 7% Capsanthin: Not less than 30% of total carotenoids. DESCRIPTION Dark-red viscous liquid FUNCTIONAL USES Colour CHARACTERISTICS IDENTIFICATION Solubility Practically insoluble in water, soluble in acetone Spectrophotometry Maximum absorption in acetone at about 462 nm and in hexane at about 470 nm. Colour reaction To one drop of sample add 2-3 drops of chloroform and one drop of sulfuric acid. A deep blue colour is produced. High performance liquid Passes test. chromatography (HPLC) See Method of assay, Capsanthin PURITY Residua l solvents Acetone Ethanol Ethyl acetate Not more than 50 mg/kg, singly or in Hexane combination Isopropanol Methanol See description under TESTS Capsaicinoids Not more than 200 mg/kg See description under TESTS Arsenic (Vol.
    [Show full text]
  • Characterization of the Role of the Neoxanthin Synthase Gene Boanxs in Carotenoid Biosynthesis in Chinese Kale
    G C A T T A C G G C A T genes Article Characterization of the Role of the Neoxanthin Synthase Gene BoaNXS in Carotenoid Biosynthesis in Chinese Kale Yue Jian 1,2,†, Chenlu Zhang 1,†, Yating Wang 1,†, Zhiqing Li 1, Jing Chen 1, Wenting Zhou 1, Wenli Huang 1, Min Jiang 1, Hao Zheng 1, Mengyao Li 1 , Huiying Miao 2, Fen Zhang 1, Huanxiu Li 1, Qiaomei Wang 2,* and Bo Sun 1,* 1 College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (Y.J.); [email protected] (C.Z.); [email protected] (Y.W.); [email protected] (Z.L.); [email protected] (J.C.); [email protected] (W.Z.); [email protected] (W.H.); [email protected] (M.J.); [email protected] (H.Z.); [email protected] (M.L.); [email protected] (F.Z.); [email protected] (H.L.) 2 Department of Horticulture, Zhejiang University, Hangzhou 310058, China; [email protected] * Correspondence: [email protected] (Q.W.); [email protected] (B.S.); Tel.: +86-571-85909333 (Q.W.); +86-28-86291840 (B.S.) † These authors contributed equally to this work. Abstract: Chinese kale (Brassica oleracea var. alboglabra) is rich in carotenoids, and neoxanthin is one of the most important carotenoids in Chinese kale. In this study, the function of the neoxanthin synthase gene (BoaNXS) in Chinese kale was investigated. BoaNXS, which had a 699-bp coding sequence, was cloned from the white flower cultivar of Chinese kale and was expressed in all developmental stages and organs of Chinese kale; its expression was highest in young seeds.
    [Show full text]
  • Petition to Include Synthetic Crystalline LYCOPENE at 7 CFR 205.605
    Petition to Include Synthetic Crystalline LYCOPENE at 7 CFR 205.605 Item A This petition seeks inclusion of Synthetic Crystalline LYCOPENE on the National List as a non-agricultural (non-organic) substance allowed in or on processed products labeled as “organic” or “made with organic (specified ingredients),” at §205.605(b). Item B 1. The substance‟s chemical or material common name. Lycopene is a naturally occurring aliphatic hydrocarbon of the carotenoid class. Lycopene is the most abundant carotenoid in ripe tomatoes and comprises 80-90% of the total pigment. Lycopene contains thirteen double bonds. The all-trans isomer is predominant in tomatoes and other natural sources. Storage, cooking, food processing, and exposure to light may result in some isomerization of the all-trans form to various cis forms including the 5-cis, 9-cis, 13-cis, and 15- cis forms. Synthetic crystalline lycopene is predominantly the all trans-lycopene (>70%) with some 5-cis- lycopene and other cis isomers. Other chemical names for lycopene are ψ,ψ-carotene and (all-E)-all-trans-lycopene. It is commonly known as all-trans-lycopene. The systematic name for the all-trans-lycopene is (all- E)-2, 6, 10, 14, 19, 23, 27, 31-octamethyl-2,6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30- dotricaconta-tridecaene. 2a. The name and address of the manufacturer/producer of the substance. Synthetic crystalline lycopene is produced by: BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen/Germany 2b. The name, address and telephone number and other contact information of the petitioner. International Formula Council 1100 Johnson Ferry Road NE, Suite 300 Atlanta, GA 30342 Contact: Mardi Mountford, Executive Vice President Phone: (678) 303-3027 Email: [email protected] Petition to Include Synthetic Crystalline LYCOPENE at 7 CFR 205.605 3.
    [Show full text]
  • Engineering Astaxanthin Biosynthesis by Intragenic Pseudogene Revival in Chlamydomonas Reinhardtii
    bioRxiv preprint doi: https://doi.org/10.1101/535989; this version posted January 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Turning a green alga red: engineering astaxanthin biosynthesis by intragenic pseudogene revival in Chlamydomonas reinhardtii. Federico Perozeni1, Stefano Cazzaniga1, Thomas Baier2, Francesca Zanoni1, Gianni Zoccatelli1, Kyle J. Lauersen2, Lutz Wobbe2, Matteo Ballottari1*. 1 Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy 2Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615, Bielefeld, Germany. *Address for correspondence: Matteo Ballottari, Dipartimento di Biotecnologie, Università di Verona, Strada le Grazie 15, 37134 Verona Italy; Tel: +390458027807; E-mail: [email protected] Summary The green alga Chlamydomonas reinhardtii does not synthesize high-value ketocarotenoids like canthaxanthin and astaxanthin, however, a β-carotene ketolase (CrBKT) can be found in its genome. CrBKT is poorly expressed, contains a long C-terminal extension not found in homologues and likely represents a pseudogene in this alga. Here, we used synthetic re-design of this gene to enable its constitutive overexpression from the nuclear genome of C. reinhardtii. Overexpression of the optimized CrBKT extended native carotenoid biosynthesis to generate ketocarotenoids in the algal host causing noticeable changes the green algal colour to a reddish-brown. We found that up to 50% of native carotenoids could be converted into astaxanthin and more than 70% into other ketocarotenoids by robust CrBKT overexpression. Modification of the carotenoid metabolism did not impair growth or biomass productivity of C.
    [Show full text]
  • The Genes Crucial to Carotenoid Metabolism Under Elevated CO2
    www.nature.com/scientificreports OPEN The genes crucial to carotenoid metabolism under elevated CO2 levels in carrot (Daucus carota L.) Hongxia Song1,2, Qiang Lu1,2, Leiping Hou1 & Meilan Li1* −1 The CO2 saturation point can reach as high as 1819 μmol· mol in carrot (Daucus carota L.). In recent years, carrot has been cultivated in out-of-season greenhouses, but the molecular mechanism of CO2 enrichment has been ignored, and this is a missed opportunity to gain a comprehensive understanding of this important process. In this study, it was found that CO2 enrichment increased the aboveground and belowground biomasses and greatly increased the carotenoid contents. Twenty genes related to carotenoids were discovered in 482 diferentially expressed genes (DEGs) through RNA sequencing (RNA-Seq.). These genes were involved in either carotenoid biosynthesis or the composition of the photosystem membrane proteins, most of which were upregulated. We suspected that these genes were directly related to quality improvement and increases in biomass under CO2 enrichment in carrot. As such, β-carotene hydroxylase activity in carotenoid metabolism and the expression levels of coded genes were determined and analysed, and the results were consistent with the observed change in carotenoid content. These results illustrate the molecular mechanism by which the increase in carotenoid content after CO2 enrichment leads to the improvement of quality and biological yield. Our fndings have important theoretical and practical signifcance. Carrot (Daucus carota L. var. sativa D C.) belongs to the Umbelliferae family, is widely cultivated worldwide and is listed as one of the top ten produced vegetables in the world.
    [Show full text]
  • Diversity of Carotenoid Composition in Flower Petals
    JARQ 45 (2), 163 – 171 (2011) http://www.jircas.affrc.go.jp Diversity of Carotenoid Composition in Flower Petals REVIEW Diversity of Carotenoid Composition in Flower Petals Akemi OHMIYA* National Institute of Floricultural Science, National Agriculture and Food Research Organization (Tsukuba, Ibaraki 305–8519, Japan) Abstract Carotenoids are yellow, orange, and red pigments that are widely distributed in nature. In plants, car- otenoids play important roles in photosynthesis and furnishing flowers and fruits with distinct colors. While most plant leaves show similar carotenoid profiles, containing carotenoids essential for photo- synthesis, the carotenoid composition of flower petals varies from species to species. In this review, I present a list of carotenoid composition in the flower petals of various plants and discuss the possi- ble causes of qualitative diversity. Discipline: Horticulture Additional key words: flower color is a branch point in the pathway, leading to the synthesis Introduction of α-carotene and its derivatives with 1 ε- and 1 β-ring (β,ε-carotenoids) or β-carotene and its derivatives with Carotenoids are C40 isoprenoid pigments with or two β-rings (β,β-carotenoids) (Fig. 2). Subsequently, α- without epoxy, hydroxyl, and keto groups. More than and β-carotenes are modified by hydroxylation, epoxida- 700 naturally occurring carotenoids, widely distributed tion, or isomerization to form a variety of structures. The in plants, animals, and micro-organisms, have been iden- oxygenated derivatives of carotenes are called xan- tified4. Carotenoids are essential structural components thophylls. of the photosynthetic antenna and reaction center com- plexes36. Carotenoids protect against potentially harmful Carotenoid composition in flower petals photooxidative processes and furnish flowers and fruits with distinct colors (e.g., yellow, orange, and red) that at- Tables 1 and 2 show the carotenoids contained in tract pollinators and seed dispersers.
    [Show full text]
  • Genetics and Molecular Biology of Carotenoid Pigment Biosynthesis.Pdf
    SERIAL REVIEW CAROTENOIDS 2 Genetics and molecular biology of carotenoid pigment biosynthesis GREGORY A. ARMSTRONG,’1 AND JOHN E. HEARSTt 5frtitute for Plant Sciences, Plant Genetics, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland; and tDePai.tment of Chemistry, University of California, and Structural Biology Division, Lawrence Berkeley Laboratory, Berkeley, California 94720, USA The two major functions of carotenoids in photosyn- carotenoid biosynthesis from a molecular genetic thetic microorganisms and plants are the absorption of standpoint.-Armstrong, G. A., Hearst, J. E. Genet- energy for use in photosynthesis and the protection of ics and molecular biology of carotenoid pigment chlorophyll from photodamage. The synthesis of vari- biosynthesis. F14SEBJ. 10, 228-237 (1996) ous carotenoids, therefore, is a crucial metabolic proc- ess underlying these functions. In this second review, Key Words: phytoene lycopene cyclization cyclic xanthophylLs the nature of these biosynthetic pathways is discussed xanlhophyll glycosides’ 3-carotene provitamin A in detail. In their elucidation, molecular biological techniques as well as conventional enzymology have CAROTENOIDS REPRESENT ONE OF THE most fascinating, played key roles. The reasons for some of the ci.s-t Tans abundant, and widely distributed classes of natural pig- isomerizations in the pathway are obscure, however, ments. Photosynthetic organisms from anoxygenic photo- and much still needs to be learned about the regula- synthetic bacteria through cyanobacteria, algae, and tion of carotenoid biosynthesis. Recent important find- higher plants, as well as numerous nonphotosynthetic ings, as summarized in this review, have laid the bacteria and fungi, produce carotenoids (1). Among groundwork for such studies. higher plants, these pigments advertise themselves in flowers, fruits, and storage roots exemplified by the yel- -James Olson, Coordinating Editor low, orange, and red pigments of daffodils, carrots and to- matoes, respectively.
    [Show full text]