Characterization of the Role of the Neoxanthin Synthase Gene Boanxs in Carotenoid Biosynthesis in Chinese Kale

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of the Role of the Neoxanthin Synthase Gene Boanxs in Carotenoid Biosynthesis in Chinese Kale G C A T T A C G G C A T genes Article Characterization of the Role of the Neoxanthin Synthase Gene BoaNXS in Carotenoid Biosynthesis in Chinese Kale Yue Jian 1,2,†, Chenlu Zhang 1,†, Yating Wang 1,†, Zhiqing Li 1, Jing Chen 1, Wenting Zhou 1, Wenli Huang 1, Min Jiang 1, Hao Zheng 1, Mengyao Li 1 , Huiying Miao 2, Fen Zhang 1, Huanxiu Li 1, Qiaomei Wang 2,* and Bo Sun 1,* 1 College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; [email protected] (Y.J.); [email protected] (C.Z.); [email protected] (Y.W.); [email protected] (Z.L.); [email protected] (J.C.); [email protected] (W.Z.); [email protected] (W.H.); [email protected] (M.J.); [email protected] (H.Z.); [email protected] (M.L.); [email protected] (F.Z.); [email protected] (H.L.) 2 Department of Horticulture, Zhejiang University, Hangzhou 310058, China; [email protected] * Correspondence: [email protected] (Q.W.); [email protected] (B.S.); Tel.: +86-571-85909333 (Q.W.); +86-28-86291840 (B.S.) † These authors contributed equally to this work. Abstract: Chinese kale (Brassica oleracea var. alboglabra) is rich in carotenoids, and neoxanthin is one of the most important carotenoids in Chinese kale. In this study, the function of the neoxanthin synthase gene (BoaNXS) in Chinese kale was investigated. BoaNXS, which had a 699-bp coding sequence, was cloned from the white flower cultivar of Chinese kale and was expressed in all developmental stages and organs of Chinese kale; its expression was highest in young seeds. The subcellular local- ization indicated that BoaNXS was localized in the chloroplast. BoaNXS-overexpressed plants were Citation: Jian, Y.; Zhang, C.; Wang, obtained via Agrobacterium-mediated transient overexpression methodology, and the gene overex- Y.; Li, Z.; Chen, J.; Zhou, W.; Huang, BoaNXS W.; Jiang, M.; Zheng, H.; Li, M.; et al. pression efficiencies ranged from 2.10- to 4.24-fold. The color in the leaves of -overexpressed Characterization of the Role of the plants changed from green to yellow-green; the content of total and individual carotenoids, such as Neoxanthin Synthase Gene BoaNXS neoxanthin, violaxanthin, and lutein, was significantly increased, and the expression levels of most in Carotenoid Biosynthesis in Chinese carotenoid biosynthetic genes were notably increased. These findings indicated that BoaNXS is of Kale. Genes 2021, 12, 1122. vital importance in carotenoid biosynthesis in Chinese kale and could be used as a candidate gene https://doi.org/10.3390/genes12081122 for enriching the carotenoid accumulation and color of Chinese kale and other Brassica vegetables. Academic Editors: Tomas Laursen Keywords: Chinese kale; BoaNXS; carotenoid biosynthesis; subcellular localization; gene tran- and Bruna Marques dos Santos sient overexpression Received: 7 June 2021 Accepted: 23 July 2021 Published: 24 July 2021 1. Introduction Publisher’s Note: MDPI stays neutral Carotenoids are a major group of pigments that are distributed abundantly in a with regard to jurisdictional claims in variety of plants [1]. They typically contain 40 carbons in their polyene backbones with published maps and institutional affil- conjugated double bonds and rings at the ends [2]. They play significant roles in plant iations. development, including light harvesting, photoprotection against excess light, and the synthesis of plant hormones [3]. Most animals obtain necessary carotenoids through their diet [4]. The accumulation of carotenoids enhances both the sensory and nutritional quality of fruits, flowers, and vegetables; carotenoids are also beneficial to human health [5]. Furthermore, they are essential precursors to several phytohormones, such as abscisic acid Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. and strigolactones [6]. In humans, carotenoids can help prevent several major diseases, This article is an open access article including certain cancers and eye diseases [7]. The carotenoid biosynthesis pathway distributed under the terms and in higher plants consists of the condensation of small molecular substances into C40 conditions of the Creative Commons compounds and a series of reactions, including dehydrogenation, isomerization, cyclization, Attribution (CC BY) license (https:// hydroxylation, and epoxidation, to produce different carotenoids [8]. creativecommons.org/licenses/by/ Neoxanthin, which is present in light-harvesting complexes, is a precursor of ab- 4.0/). scisic acid and a xanthophyll that is the last product of carotenoid biosynthesis in green Genes 2021, 12, 1122. https://doi.org/10.3390/genes12081122 https://www.mdpi.com/journal/genes Genes 2021, 12, 1122 2 of 13 plants [9,10]. The neoxanthin synthase gene (NXS) encodes a 56-kDa plastid-targeted protein that, when expressed in Escherichia coli, catalyzes the conversion of violaxanthin to neoxanthin [9]. In plants, one of the possible pathways that is thought to underlie this conversion is as follows: violaxanthin ! neoxanthin ! abscisic acid [11]. Previous studies have identified NXS from Arabidopsis thaliana [12], tomato (Solanum lycopersicum)[9], and potato (Solanum tuberosum)[13]. However, little research has been conducted on NXS compared with other carotenoid biosynthetic genes. Chinese kale (Brassica oleracea var. alboglabra) is a vegetable within the Cruciferae family native to South China, where it is distributed widely [14]. The tender leaves and bolting stems are the most commonly used edible parts because of their high content of nutrients, such as glucosinolates, vitamin C, and carotenoids [15,16]. In our previous study, four carotenoids (lutein, neoxanthin, violaxanthin, and β-carotene) were observed in Chinese kale, among which the content of neoxanthin is second only to lutein [16]. However, the synthesis of the xanthophyll neoxanthin in Chinese kale remains unclear. In this study, the full-length coding sequence (CDS) of BoaNXS was cloned. Sequence analysis and subcellular location were performed. The role of BoaNXS in carotenoid biosynthesis was characterized by phenotypic analysis, gene expression, pigment composition, and content analysis in BoaNXS overexpression plants. 2. Materials and Methods 2.1. Plant Materials The cultivar ‘Sijicutiao’ of white flower Chinese kale was used in this study. The plants were grown in trays containing a mixture of peat, perlite, and vermiculite (3:1:1) in an artificial climate chamber with a light intensity of 160 µmol m−2 s−1, a temperature of 25/20 ◦C (day/night), a 12/12 h (day/night) light cycle, and relative humidity maintained at approximately 70%. Fertilizer and water were applied as needed. Chinese kale materials were sampled at different developmental stages (germinating seeds, cotyledons, fifth to sixth true leaves, and mature leaves), various organs were sampled at the maturity stage (roots, bolting stems, leaves, petioles, inflorescences, seed pods, and young seeds), and floral organs were sampled at the flower bud stage and the opening flower stage (sepals, petals, stamens, and pistils) [17]. The samples were then quickly frozen in liquid nitrogen and were stored in a refrigerator at −80 ◦C for subsequent studies. 2.2. Molecular Cloning and Sequence Analysis Specific primers for the BoaNXS gene were designed according to the sequences of NXS of homologous species such as cabbage and Chinese cabbage obtained from Brassica database (BRAD) (http://brassicadb.org accessed on 1 May 2019) (Supplementary Table S1). The primers were synthesized by Sangon Biotech Co. Ltd. (Sangon, Shanghai, China). The cDNA of fifth to sixth true leaves was used as the template, and PCR amplification was performed using TransStart FastPfu fly DNA polymerase Taq (TransGene, Beijing, China). The method of gene cloning refers to Sun et al. [18]. The NXS amino acid sequences of other species were downloaded from NCBI (https://www.ncbi.nlm.nih.gov/ accessed on 31 July 2019) and Brassica database (BRAD) (http://brassicadb.org accessed on 31 July 2019) and then subjected to multiple sequence alignment using DNAMAN software (Lynnon Biosoft, Foster City, CA, USA). Subcellular localization was predicted by WoLF PSORT (http://www.genscript.com/wolf-psort.html accessed on 1 June 2019). 2.3. Subcellular Localization The complete CDS of BoaNXS was amplified by primers NXS-GFP-F and NXS-GFP-R (Table S1) containing BamH I and Sal I restriction sites. Then, BoaNXS and pC2300-35S-eGFP plasmid digested with BamH I and Sal I were mixed to construct the pC2300-35S-NXS-eGFP plasmid. The recombinant plasmid pC2300-35S-NXS-eGFP and empty vector pC2300- 35S-eGFP were transformed into Chinese kale mesophyll protoplasts, respectively. After Genes 2021, 12, 1122 3 of 13 being cultured in the dark at 23 ◦C for 24 h, the protoplasts were observed using a BX51 fluorescence microscope equipped with a DP70 camera (Olympus, Tokyo, Japan) [19]. 2.4. Transient Overexpression of BoaNXS Transient overexpression assay was conducted using the methods of a previous study [20]. The complete CDS of BoaNXS was amplified by primers NXS-pCAM-F and NXS-pCAM-R (Supplementary Table S1) containing BamH I and Sal I restriction sites. Then, BoaNXS and pCAMBIA1301-35S-Nos overexpression vector (kindly supplied by Associate Professor Chen Qing, Sichuan Agricultural University, China) digested with BamH I and Sal I were mixed to construct the pCAMBIA1301-BoaNXS plasmid. The recombinant plasmid pCAMBIA1301-BoaNXS and empty vector pCAMBIA3101 were transferred into Agrobacterium GV3101 by freeze-thaw
Recommended publications
  • Altered Xanthophyll Compositions Adversely Affect Chlorophyll Accumulation and Nonphotochemical Quenching in Arabidopsis Mutants
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13324–13329, October 1998 Plant Biology Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants BARRY J. POGSON*, KRISHNA K. NIYOGI†,OLLE BJO¨RKMAN‡, AND DEAN DELLAPENNA§¶ *Department of Plant Biology, Arizona State University, Tempe, AZ 85287-1601; †Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102; ‡Department of Plant Biology, Carnegie Institution of Washington, Stanford, CA 94305-4101; and §Department of Biochemistry, University of Nevada, Reno, NV 89557-0014 Contributed by Olle Bjo¨rkman, September 4, 1998 ABSTRACT Collectively, the xanthophyll class of carote- thin, are enriched in the LHCs, where they contribute to noids perform a variety of critical roles in light harvesting assembly, light harvesting, and photoprotection (2–8). antenna assembly and function. The xanthophyll composition A summary of the carotenoid biosynthetic pathway of higher of higher plant photosystems (lutein, violaxanthin, and neox- plants and relevant chemical structures is shown in Fig. 1. anthin) is remarkably conserved, suggesting important func- Lycopene is cyclized twice by the enzyme lycopene b-cyclase tional roles for each. We have taken a molecular genetic to form b-carotene. The two beta rings of b-carotene are approach in Arabidopsis toward defining the respective roles of subjected to identical hydroxylation reactions to yield zeaxan- individual xanthophylls in vivo by using a series of mutant thin, which in turn is epoxidated once to form antheraxanthin lines that selectively eliminate and substitute a range of and twice to form violaxanthin. Neoxanthin is derived from xanthophylls. The mutations, lut1 and lut2 (lut 5 lutein violaxanthin by an additional rearrangement (9).
    [Show full text]
  • Identification of Distinct Ph- and Zeaxanthin-Dependent Quenching
    RESEARCH ARTICLE Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii Julianne M Troiano1†, Federico Perozeni2†, Raymundo Moya1, Luca Zuliani2, Kwangyrul Baek3, EonSeon Jin3, Stefano Cazzaniga2, Matteo Ballottari2*, Gabriela S Schlau-Cohen1* 1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States; 2Department of Biotechnology, University of Verona, Verona, Italy; 3Department of Life Science, Hanyang University, Seoul, Republic of Korea Abstract Under high light, oxygenic photosynthetic organisms avoid photodamage by thermally dissipating absorbed energy, which is called nonphotochemical quenching. In green algae, a chlorophyll and carotenoid-binding protein, light-harvesting complex stress-related (LHCSR3), detects excess energy via a pH drop and serves as a quenching site. Using a combined in vivo and in vitro approach, we investigated quenching within LHCSR3 from Chlamydomonas reinhardtii. In vitro two distinct quenching processes, individually controlled by pH and zeaxanthin, were identified within LHCSR3. The pH-dependent quenching was removed within a mutant LHCSR3 that lacks the residues that are protonated to sense the pH drop. Observation of quenching in zeaxanthin-enriched LHCSR3 even at neutral pH demonstrated zeaxanthin-dependent quenching, which also occurs in other light-harvesting complexes. Either pH- or zeaxanthin-dependent quenching prevented the formation of damaging reactive oxygen species, and thus the two *For correspondence: quenching processes may together provide different induction and recovery kinetics for [email protected] (MB); photoprotection in a changing environment. [email protected] (GSS-C) †These authors contributed equally to this work Competing interests: The Introduction authors declare that no Sunlight is the essential source of energy for most photosynthetic organisms, yet sunlight in excess competing interests exist.
    [Show full text]
  • Identification of 1 Distinct Ph- and Zeaxanthin-Dependent Quenching in LHCSR3 from Chlamydomonas Reinhardtii
    Identification of 1 distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from chlamydomonas reinhardtii The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Troiano, Julianne M. et al. “Identification of 1 distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from chlamydomonas reinhardtii.” eLife, 10 (January 2021): e60383 © 2021 The Author(s) As Published 10.7554/eLife.60383 Publisher eLife Sciences Publications, Ltd Version Final published version Citable link https://hdl.handle.net/1721.1/130449 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii Julianne M Troiano1†, Federico Perozeni2†, Raymundo Moya1, Luca Zuliani2, Kwangyrul Baek3, EonSeon Jin3, Stefano Cazzaniga2, Matteo Ballottari2*, Gabriela S Schlau-Cohen1* 1Department of Chemistry, Massachusetts Institute of Technology, Cambridge, United States; 2Department of Biotechnology, University of Verona, Verona, Italy; 3Department of Life Science, Hanyang University, Seoul, Republic of Korea Abstract Under high light, oxygenic photosynthetic organisms avoid photodamage by thermally dissipating absorbed energy, which is called nonphotochemical quenching. In green algae, a chlorophyll and carotenoid-binding protein, light-harvesting complex stress-related (LHCSR3), detects excess energy via a pH drop and serves as a quenching site. Using a combined in vivo and in vitro approach, we investigated quenching within LHCSR3 from Chlamydomonas reinhardtii. In vitro two distinct quenching processes, individually controlled by pH and zeaxanthin, were identified within LHCSR3. The pH-dependent quenching was removed within a mutant LHCSR3 that lacks the residues that are protonated to sense the pH drop.
    [Show full text]
  • Genetic Modification of Tomato with the Tobacco Lycopene Β-Cyclase Gene Produces High Β-Carotene and Lycopene Fruit
    Z. Naturforsch. 2016; 71(9-10)c: 295–301 Louise Ralley, Wolfgang Schucha, Paul D. Fraser and Peter M. Bramley* Genetic modification of tomato with the tobacco lycopene β-cyclase gene produces high β-carotene and lycopene fruit DOI 10.1515/znc-2016-0102 and alleviation of vitamin A deficiency by β-carotene, Received May 18, 2016; revised July 4, 2016; accepted July 6, 2016 which is pro-vitamin A [4]. Deficiency of vitamin A causes xerophthalmia, blindness and premature death, espe- Abstract: Transgenic Solanum lycopersicum plants cially in children aged 1–4 [5]. Since humans cannot expressing an additional copy of the lycopene β-cyclase synthesise carotenoids de novo, these health-promoting gene (LCYB) from Nicotiana tabacum, under the control compounds must be taken in sufficient quantities in the of the Arabidopsis polyubiquitin promoter (UBQ3), have diet. Consequently, increasing their levels in fruit and been generated. Expression of LCYB was increased some vegetables is beneficial to health. Tomato products are 10-fold in ripening fruit compared to vegetative tissues. the most common source of dietary lycopene. Although The ripe fruit showed an orange pigmentation, due to ripe tomato fruit contains β-carotene, the amount is rela- increased levels (up to 5-fold) of β-carotene, with negli- tively low [1]. Therefore, approaches to elevate β-carotene gible changes to other carotenoids, including lycopene. levels, with no reduction in lycopene, are a goal of Phenotypic changes in carotenoids were found in vegeta- plant breeders. One strategy that has been employed to tive tissues, but levels of biosynthetically related isopre- increase levels of health promoting carotenoids in fruits noids such as tocopherols, ubiquinone and plastoquinone and vegetables for human and animal consumption is were barely altered.
    [Show full text]
  • Carotenoid Composition of Strawberry Tree (Arbutus Unedo L.) Fruits
    Accepted Manuscript Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez PII: S0308-8146(15)30273-9 DOI: http://dx.doi.org/10.1016/j.foodchem.2015.11.135 Reference: FOCH 18476 To appear in: Food Chemistry Received Date: 25 May 2015 Revised Date: 21 November 2015 Accepted Date: 28 November 2015 Please cite this article as: Delgado-Pelayo, R., Gallardo-Guerrero, L., Hornero-Méndez, D., Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits, Food Chemistry (2015), doi: http://dx.doi.org/10.1016/j.foodchem. 2015.11.135 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Carotenoid composition of strawberry tree (Arbutus unedo L.) fruits. Raúl Delgado-Pelayo, Lourdes Gallardo-Guerrero, Dámaso Hornero-Méndez* Group of Chemistry and Biochemistry of Pigments. Food Phytochemistry Department. Instituto de la Grasa (CSIC). Campus Universidad Pablo de Olavide, Ctra. de Utrera km. 1. 41013 - Sevilla (Spain). * Corresponding author. Telephone: +34 954611550; Fax: +34 954616790; e-mail: [email protected] 1 Abstract The carotenoid composition of strawberry tree (A. unedo) fruits has been characterised in detail and quantified for the first time. According to the total carotenoid content (over 340 µg/g dw), mature strawberry tree berries can be classified as fruits with very high carotenoid content (> 20 µg/g dw).
    [Show full text]
  • Pigment Palette by Dr
    Tree Leaf Color Series WSFNR08-34 Sept. 2008 Pigment Palette by Dr. Kim D. Coder, Warnell School of Forestry & Natural Resources, University of Georgia Autumn tree colors grace our landscapes. The palette of potential colors is as diverse as the natural world. The climate-induced senescence process that trees use to pass into their Winter rest period can present many colors to the eye. The colored pigments produced by trees can be generally divided into the green drapes of tree life, bright oil paints, subtle water colors, and sullen earth tones. Unveiling Overpowering greens of summer foliage come from chlorophyll pigments. Green colors can hide and dilute other colors. As chlorophyll contents decline in fall, other pigments are revealed or produced in tree leaves. As different pigments are fading, being produced, or changing inside leaves, a host of dynamic color changes result. Taken altogether, the various coloring agents can yield an almost infinite combination of leaf colors. The primary colorants of fall tree leaves are carotenoid and flavonoid pigments mixed over a variable brown background. There are many tree colors. The bright, long lasting oil paints-like colors are carotene pigments produc- ing intense red, orange, and yellow. A chemical associate of the carotenes are xanthophylls which produce yellow and tan colors. The short-lived, highly variable watercolor-like colors are anthocyanin pigments produc- ing soft red, pink, purple and blue. Tannins are common water soluble colorants that produce medium and dark browns. The base color of tree leaf components are light brown. In some tree leaves there are pale cream colors and blueing agents which impact color expression.
    [Show full text]
  • Technical Paper Quantitation of Carotenoids in Raw and Processed
    Food Sci. Technol. Res., ++ (+), +-ῌ+2, ,**/ Technical paper Quantitation of Carotenoids in Raw and Processed Fruits in Japan +ῌ + + + + Masamichi YANO , Masaya KATO , Yoshinori IKOMA , Akemi KAWASAKI , Yoshino FUKAZAWA , + + , - . Minoru SUGIURA , Hikaru MATSUMOTO , Yumiko OOHARA , Akihiko NAGAO and Kazunori OGAWA + Department of Citrus Research Okitsu, National Institute of Fruit Tree Science, .2/ῌ0 Okitsunakacho, Shimizu-ku, Shizuoka-shi, Shizuoka .,.ῌ*,3,, Japan , Saga Prefectural Fruit Tree Research Station, 3+ Teraura, Ogi-cho, Ogi-gun, Saga 2./ῌ**.+, Japan - National Food Research Institute, ,ῌ+ῌ+, Kannondai, Tsukuba-shi, Ibaraki -*/ῌ20.,, Japan . Okinawa Subtropical Station, Japan International Research Center for Agricultural Sciences, +*3+ῌ+ Maezato, Kawarabaru, Ishigaki-shi, Okinawa 3*1ῌ***,, Japan. (Present address, Department of Citrus Research Okitsu, National Institute of Fruit Tree Science, .2/ῌ0 Okitsunakacho, Shimizu-ku, Shizuoka-shi, Shizuoka .,.ῌ*,3,, Japan) Received June ,+, ,**.; Accepted October ,1, ,**. To obtain the quantitative and qualitative data available for estimating the intake of carotenoids from fruits in Japan, carotenoids were analyzed with reversed phase high-performance liquid chromatography (HPLC). Ten carotenoids were examined in 1/ raw fruits and +/ processed fruits, all of which were harvested or purchased in Japan. Phytoene was detected in /2 of 3* fruit samples; z-carotene, in /* of 3* ; lycopene, in +- of 3*; a-carotene, in +2 of 3*;lutein,in/0 of 3*; b-carotene, in 2* of 3*; b-cryptoxanthin,
    [Show full text]
  • Paprika Extract (Tentative)
    PAPRIKA EXTRACT (TENTATIVE) New tentative specifications prepared at the 69th JECFA (2008), published in FAO JECFA Monographs 5 (2008). No ADI was allocated at the 69th JECFA (2008). Information required on batches of commercially available products: • analytical data on composition • levels of capsaicinoids • levels of arsenic SYNONYMS INS No. 160c, Capsanthin, Capsorubin DEFINITION Paprika extract is obtained by solvent extraction of the dried ground fruit pods of Capsicum annuum. The major colouring compounds are capsanthin and capsorubin. Other coloured compounds, such as other carotenoids are also present. The balance of the extracted material is lipidic in nature and varies depending on the primary extraction solvent. Commercial preparations may be diluted and standardised with respect to colour content using refined vegetable oil. Only methanol, ethanol, 2-propanol, acetone, hexane, ethyl acetate and supercritical carbon dioxide may be used as solvents in the extraction. Chemical names Capsanthin: (3R, 3’S, 5’R)-3,3’-dihydroxy-β,κ-carotene-6-one Capsorubin: (3S, 3’S, 5R, 5’R)-3,3’-dihydroxy-κ,κ-carotene-6,6’- dione C.A.S number Capsanthin: 465-42-9 Capsorubin: 470-38-2 Chemical formula Capsanthin: C40H56O3 Capsorubin: C40H56O4 Structural formula Capsanthin Capsorubin Formula weight Capsanthin: 584.85 Capsorubin: 600.85 Assay Total carotenoids: not less than declared. Capsanthin/capsorubin: Not less than 30% of total carotenoids. DESCRIPTION Dark-red viscous liquid FUNCTIONAL USE Colour CHARACTERISTICS IDENTIFICATION Solubility Practically insoluble in water, soluble in acetone Spectrophotometry Maximum absorption in acetone at about 462 nm and in hexane at about 470 nm. Colour reaction To one drop of sample add 2-3 drops of chloroform and one drop of sulfuric acid.
    [Show full text]
  • OXIDATIVE STRESS in ALGAE: METHOD DEVELOPMENT and EFFECTS of TEMPERATURE on ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations Spring 2014 OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS Md Noman Siddiqui Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Part of the Fresh Water Studies Commons Recommended Citation Siddiqui, Md Noman, "OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIDANT NUCLEAR SIGNALING COMPOUNDS" (2014). Open Access Theses. 256. https://docs.lib.purdue.edu/open_access_theses/256 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School ETD Form 9 (Revised/) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By MD NOMAN SIDDIQUI Entitled OXIDATIVE STRESS IN ALGAE: METHOD DEVELOPMENT AND EFFECTS OF TEMPERATURE ON ANTIOXIADANT NUCLEAR SIGNALING COMPOUNDS Master of Science For the degree of Is approved by the final examining committee: PAUL BROWN REUBEN GOFORTH THOMAS HOOK To the best of my knowledge and as understood by the student in the 7KHVLV'LVVHUWDWLRQ$JUHHPHQW 3XEOLFDWLRQ'HOD\DQGCHUWLILFDWLRQDisclaimer (Graduate School Form ), this thesis/dissertation DGKHUHVWRWKHSURYLVLRQVRIPurdue University’s “Policy on Integrity in Research” and the use of copyrighted material. PAUL BROWN Approved by Major Professor(s): ____________________________________
    [Show full text]
  • Organic Chemistry LD Synthesis and Purification of Organic Chemistry Compounds Column Chromatography As a Purification Process Leaflets C2.4.4.1
    Organic Chemistry LD Synthesis and purification of organic Chemistry compounds Column chromatography as a purification process Leaflets C2.4.4.1 Separation of a leaf extract by column chromatography Aims of the experiment To produce a leaf extract. To demonstrate column chromatography as a method for separating substances according to their adsorption properties. To understand the separation principle of column chromatography using silica gel as the stationary phase. To explain the order of elution of various leaf pigments based on their molecular structure. To understand the structural associations between various classes of leaf pigments. Principles sorbed (they adhere to it) or desorbed (they return to the solution). Substances with a high affinity to the stationary Column chromatography is a frequently used method for phase spend on average a longer period of time in the ad- separating mixtures of substances in the laboratory. The sorbed state and less time in the solution. Therefore they substances are isolated based on their adhesion properties. It pass more slowly through the column than substances with a functions according to the same principle as other chromato- lower affinity to the stationary phase. graphic methods, but in contrast to these, it is used less for With column chromatography, the stationary phase is located identification and more for the separation and purification of in a cylindrical tube with a discharge tap on the underside. substances. The mobile phase trickles through the stationary phase by The substances to be separated are transported on a mobile gravitational force or is pumped through the stationary phase phase (solvent mixture) through a stationary phase (in this using compressed air (Flash chromatography).
    [Show full text]
  • Paprika Extract
    PAPRIKA EXTRACT Prepared at the 77th JECFA, published in FAO JECFA Monographs 14 (2013), superseding tentative specifications prepared at the 69th JECFA (2008). An ADI of 0 - 1.5 mg/kg bw was allocated at the 79th JECFA (2014). SYNONYMS INS No. 160c(ii), Capsanthin DEFINITION Paprika extract is obtained by solvent extraction of the dried ground fruit pods of Capsicum annuum. The major colouring compound is capsanthin. Other coloured compounds, such as capsorubin, canthaxanthin, cryptoxanthin, zeaxanthin and lutein, as well as other carotenoids are also present. The balance of the extracted material is lipidic in nature and varies depending on the primary extraction solvent. Commercial preparations may be diluted and standardised with respect to colour content using refined vegetable oil. Only methanol, ethanol, isopropanol, acetone, hexane, ethyl acetate and supercritical carbon dioxide may be used as solvents in the extraction. Chemical names Capsanthin: (3R, 3’S, 5’R)-3,3’-dihydroxy-β,κ-carotene-6-one C.A.S number Capsanthin: 465-42-9 Chemical formula Capsanthin: C40H56O3 Structural formula Capsanthin Formula weight Capsanthin: 584.85 Assay Total carotenoids: not less than 7% Capsanthin: Not less than 30% of total carotenoids. DESCRIPTION Dark-red viscous liquid FUNCTIONAL USES Colour CHARACTERISTICS IDENTIFICATION Solubility Practically insoluble in water, soluble in acetone Spectrophotometry Maximum absorption in acetone at about 462 nm and in hexane at about 470 nm. Colour reaction To one drop of sample add 2-3 drops of chloroform and one drop of sulfuric acid. A deep blue colour is produced. High performance liquid Passes test. chromatography (HPLC) See Method of assay, Capsanthin PURITY Residua l solvents Acetone Ethanol Ethyl acetate Not more than 50 mg/kg, singly or in Hexane combination Isopropanol Methanol See description under TESTS Capsaicinoids Not more than 200 mg/kg See description under TESTS Arsenic (Vol.
    [Show full text]
  • Petition to Include Synthetic Crystalline LYCOPENE at 7 CFR 205.605
    Petition to Include Synthetic Crystalline LYCOPENE at 7 CFR 205.605 Item A This petition seeks inclusion of Synthetic Crystalline LYCOPENE on the National List as a non-agricultural (non-organic) substance allowed in or on processed products labeled as “organic” or “made with organic (specified ingredients),” at §205.605(b). Item B 1. The substance‟s chemical or material common name. Lycopene is a naturally occurring aliphatic hydrocarbon of the carotenoid class. Lycopene is the most abundant carotenoid in ripe tomatoes and comprises 80-90% of the total pigment. Lycopene contains thirteen double bonds. The all-trans isomer is predominant in tomatoes and other natural sources. Storage, cooking, food processing, and exposure to light may result in some isomerization of the all-trans form to various cis forms including the 5-cis, 9-cis, 13-cis, and 15- cis forms. Synthetic crystalline lycopene is predominantly the all trans-lycopene (>70%) with some 5-cis- lycopene and other cis isomers. Other chemical names for lycopene are ψ,ψ-carotene and (all-E)-all-trans-lycopene. It is commonly known as all-trans-lycopene. The systematic name for the all-trans-lycopene is (all- E)-2, 6, 10, 14, 19, 23, 27, 31-octamethyl-2,6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 30- dotricaconta-tridecaene. 2a. The name and address of the manufacturer/producer of the substance. Synthetic crystalline lycopene is produced by: BASF SE Carl-Bosch-Straße 38 67056 Ludwigshafen/Germany 2b. The name, address and telephone number and other contact information of the petitioner. International Formula Council 1100 Johnson Ferry Road NE, Suite 300 Atlanta, GA 30342 Contact: Mardi Mountford, Executive Vice President Phone: (678) 303-3027 Email: [email protected] Petition to Include Synthetic Crystalline LYCOPENE at 7 CFR 205.605 3.
    [Show full text]