(NZ) and SAWBAR

Total Page:16

File Type:pdf, Size:1020Kb

(NZ) and SAWBAR Journal of Cereal Research Homepage: http://epubs.icar.org.in/ejournal/index.php/JWR Proceedings of National Symposium on Plant disease management for food security under climate change scenario and Annual meeting of Indian Phytopathological Society (North Zone) organised on January 9-10, 2020 at ICAR-Indian Institute of Wheat and Barley Research, Karnal National Symposium on “Plant disease management for food security under climate change scenario” and annual meeting of Indian Phytopathological Society (North Zone chapter) were jointly organized by Indian Phytopathological Society (IPS), New Delhi, Society for Advancement of Wheat and Barley Research (SAWBAR), Karnal and CCS Haryana Agricultural University, Hisar at ICAR-Indian Institute of Wheat and Barley research (IIWBR), Karnal on January 9-10, 2020. Dr. P.C. Sharma, Director, ICAR-CSSRI, Karnal was the guest of honour in the inogural season of symposium. He stressed on the soil health aspects in relation to the influence of soil microbes on plant health. He also emphasized on the development of holistic approaches for the plant diseases management along with the need of tracking transboundary movement of pathogens. The chairman of the session, Dr. G.P. Singh, Director, ICAR- IIWBR, Karnal stressed on the integrations of efforts made by all the disciplines to make diseases management effective and profitable under changing climate scenario. He also appreciated the efforts made by organising committee for including very pertinent technical sessions on microbial diversity, pathogen variability, epidemiology, plant microbial interaction, resistance breeding and integrated plant diseases management under changing climate. At the outset, Dr. Rakesh Mehra, President, IPS (North Zone) welcomed the delegates and highlighted the relevance of the symposium and gave an overview of the programme and various deliberations made in different sessions of the symposium. Dr. Robin Gogoi, Joint Secretary, IPS, appraised the house about the activities of IPS. This session was attended by the IPS delegates, University and State Department personnel, invited scientists, teachers, students, and the corporate representatives and a total of 92 delegates across the country including North India participated in the symposium. The senior dignitaries gave the strong message for making collaborative efforts for channelizing the output of research conducted by scientists in the field of Plant Pathology to devise technology for sustainable agriculture, in view of drastic and unpredictable climate change scenario. The inaugural session was followed by nomination for Prof MJ Narishamn Academic Merit Award. In this contest, out of four contestants two students namely, Preeti Sharma and Annie Khanna were nominated to represent the zone for Prof. M.J. Narasimhan Academic Merit award competition at national level. A total three technical sessions were organised during the two day symposium. In these session, several lectures highlighting the plant disese problems of the North Zone under climate change scenario along with probable solutions were delivered by Drs. Naresh Mehta, Dr. Ashwani Basandrai, Dr. H.R. Gautam, Dr. Robin Gogoi, Dr. Kalyan K. Mondol, Dr. Sunita Chandel, Dr. Jasapl Kaur, Dr. Kushal Raj, Dr. Renu Munjal, Dr. OP Chaudhary, Dr. Rakesh Kumar, Dr. Puja Srivastava, Dr Gyandendra Singh and Dr. Vimla Singh. This two days symposium was concluded with plenary session followed by valedictory function. The function was presided by Dr. G.P. Singh, Director, ICAR-IIWBR, Karnal. Certificates to the award winners were distributed with the auspicious hands of the dignitaries on the Dias. The brief reports of each technical session were presented by Dr. Prem Lal Kashyap, organising secretary and Zonal Councillor, IPS (NZ) and following recommendations were evolved from the deliberations and discussion: • With the changing climate, some of the diseases earlier known as of minor importance are now emerging as potential threat to the field and vegetable crops. The group recommended to work on epidemiological parameters and forewarning systems to redefine management strategies and innovate new technologies. • For the integrated crop health management, cutting edge technologies (genomic, proteomics and nanotechnology) were recommended for accurate diagnosis and to monitor the changing trends in pathogenesis and the virulence spectrum in plant pathogens in climate change scenario. • It was emphasised that the emergence of new races of lentil rust, chickpea Fusarium wilt and post flowering stalk rot disease of maize are becoming serious threat for successful crop cultivation and there is an acute need for developing strategies for their successful management. • Research on the application of nanotechnology and biotechnological approaches such as gene silencing and genome editing techniques for the management of plant viruses should be intensified. • Targeting spot blotch and yellow rust diseases of wheat and barley crops by identification of durable resistance was emphasized. • To reduce the load of agrochemicals and related residue problems in field and vegetables crops, the emphasis was given on the field translation of various eco-friendly technologies based on microbial antagonists, botanicals and nanoproducts etc. • Need was felt to motivate the younger generation to take up innovative research especially in the area of deciphering plant pathogen interactions under climate change. The function concluded with the vote of thanks by Dr. Sudheer Kumar, co-organising secretary of the symposium. PROF. M.J. NARASIMHAN ACADEMIC MERIT query cover. Further, analysis showed less genetic variation AWARD CONTEST among these isolates compared to the isolates from other geographical regions. Genetically diverse microsperma and MJN-ABS1: Development of indigenous rhizobacterial macrosperma lentil lines could not differentiate the lentil rust based biofilm to promote growth and induction of populations prevalent at Gurdaspur and Ludhiana. Further, defense against bacterial wilt of Chilli recombinant inbred lines (RILs) developed from cross Abhijeet S Kashyap and Dinesh Singh between rust resistant (FLIP-2004-7L) and susceptible (L-9- 12) cultivars were phenotyped against lentil rust for genetic Division of Plant Pathology, Indian Agricultural Research analysis and molecular mapping. Genetic analysis indicated Institute, New Delhi-110012, India the role of major gene in resistance. The phenotypic data was also used to identify molecular markers associated with rust resistance. Out of 389 SSR markers, available in public Biofilm is well organized, cooperating community of domain, two markers, namely, LcSSR 440 and LcSSR 606 microorganisms. Microbial cells affix to the surfaces and were found to be linked with rust resistance at 8.3 and 8.1cM, develop a biofilm that represent commixed group of respectively. Availability of high-density linkage maps and microorganisms in which cells stick to each other within a genome sequence information in lentil can be helpful to self-engendered matrix of extracellular polymeric substances extend the present study in identifying candidate resistance (EPS); however, their utility as biofertilizers- cum-biocontrol genes against U.viciae-fabae. agent has not been plenarily explored. The present MJN- ABS3: Impact assessment of Arbuscular investigation was geared towards in vitro development of Mycorrhiza on chilli wilt caused by Fusarium oxysporum biofilms utilizing fungal mycelia Trichoderma( harzianum) as f.sp. capsici matrices and Bacillus subtilis as partners. The Indigenous rhizobacterial isolates from different geographical regions Sarita and Rakesh Kumar Chugh were evaluated for the growth promotion and protection of Department of Plant pathology, CCS Haryana Agricultural Capsicum annuum L. (Chilli) against wilt disease caused by University Hisar- 125004, India Ralstonia solanacearum. The total number of 56 rizobacterial strains were assessed of which 13 isolates were exhibited strong inhibition to R.solanacearum. The maximum The present study was conducted to evaluate the impact antagonism was recorded upto 79% and GC-MS analysis of arbuscular mycorrhiza on chilli wilt caused by Fusarium reveled series of chemical compound involved in antagonistic oxysporum f. sp. capsici. Surveys in different district of behavior of these isolates. Growth promotion activities Haryana were conducted during 2017- 2018 for mycorrhizal were assessed by screening siderophore (49% were found colonization (per cent), sporocarp number in soil and wilt positive), HCN, ammonia, IAA and P solublization and it intensity in the chilli and found that mycorrhizal colonization was recorded that eight isolates were able to produce IAA, ranged from 1 - 17.3 per cent and sporocarp number in soil ten isolates produces siderophore and able to solubilize ranged from 9 - 130. Wilt intensity ranged from 0.5-7.9. The phosphate. Few isolates were found to produce ammonia and mycorrhizal per cent colonization and sporocarp number HCN production. Out of the 56 isolates, 2 selected isolates in soil were highest in Mahendragarh district (Ateli 17.3 per were chosen to develop biofilm and is confirmed by using cent and 130, respectively), followed by Fatehabad district confocal microscopy. Rhizobacteria based biofilm treated (Dani Binja Lamba 13.1 % and 91, respectively) and lowest seeds showed enhanced germination, shoot length, root in Hisar district (11.5 per cent and 69, respectively). The length, dry weight, total chlorophyll,
Recommended publications
  • Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection
    plants Article Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection Mohamed A. M. Atia 1,* , Eman A. El-Khateeb 2, Reem M. Abd El-Maksoud 3 , Mohamed A. Abou-Zeid 4 , Arwa Salah 1 and Amal M. E. Abdel-Hamid 5 1 Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 2 Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt; [email protected] 3 Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 4 Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 5 Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-1000164922 Abstract: Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust Citation: Atia, M.A.M.; El-Khateeb, resistance in wheat mainly depends on the availability of deep mining of resistance genes within the E.A.; Abd El-Maksoud, R.M.; germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian Abou-Zeid, M.A.; Salah, A.; wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence Abdel-Hamid, A.M.E.
    [Show full text]
  • Diagnosing Maize Diseases in Latin America
    Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Published by: The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: (1998) International Service for the Acquisition of Agri-biotech Applications (ISAAA). Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission from the copyright holder, provided the source is properly acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission from the copyright holder. Citation: Diagnosing Maize Diseases in Latin America. C.Casela, R.Renfro and A.F. Krattiger (eds). 1998. ISAAA Briefs No. 9. ISAAA: Ithaca, NY and EMBRAPA, Brasilia. pp. 57. Cover pictures: Pictures taken during the field visits and the diagnostics training workshop in Brazil by ISAAA (K.V. Raman). Available from: The ISAAA Centers listed below. For a list of other ISAAA publications, contact the nearest Center: ISAAA AmeriCenter ISAAA AfriCenter ISAAA EuroCenter ISAAA SEAsiaCenter 260 Emerson Hall c/o CIP John Innes Centre c/o IRRI Cornell University PO 25171 Colney Lane PO Box 933 Ithaca, NY 14853 Nairobi Norwich NR4 7UH 1099 Manila USA Kenya United Kingdom The Philippines [email protected] Also on: www.isaaa.cornell.edu Cost: Cost US$ 10 per copy. Available free of charge for developing countries. Contents Introduction and Overview: Diagnosing Maize Diseases with Proprietary Biotechnology Applications Transferred from Pioneer Hi-Bred International to Brazil and Latin America................................................................1 Anatole Krattiger, Ellen S.
    [Show full text]
  • Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Doctoral Documents from Doctor of Plant Health Plant Health Program, Doctor of Program 5-2019 Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/planthealthdoc Part of the Agronomy and Crop Sciences Commons, Apiculture Commons, Biosecurity Commons, Genetics Commons, and the Plant Breeding and Genetics Commons Blecha, Sarah, "Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts" (2019). Doctoral Documents from Doctor of Plant Health Program. 14. https://digitalcommons.unl.edu/planthealthdoc/14 This Doctoral Document is brought to you for free and open access by the Plant Health Program, Doctor of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Doctoral Documents from Doctor of Plant Health Program by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS by Sarah Blecha A Doctoral Document Presented to the Faculty of The College of Agricultural Sciences and Natural Resources In Partial Fulfillment of Requirements For the Degree of Doctor of Plant Health Under the Supervision of Professor Gary L. Hein Lincoln, Nebraska May, 2019 ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS Sarah Blecha, D. P. H. University of Nebraska, 2019 Advisor: Gary L. Hein Bread wheat, Triticum aestivum L., provides 20 percent of the global daily calorie intake. It is the third most important food crop, after rice and corn.
    [Show full text]
  • Fusarium Head Blight of Wheat: Evaluation of the Efficacies Of
    Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China By Chami Chathurangi Amarasinghe A Thesis Submitted to the Faculty of Graduate Studies In partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada ©Copyright by Chami Chathurangi Amarasinghe 2010 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China BY Chami Chathurangi Amarasinghe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree OF MASTER OF SCIENCE Chami Amarasinghe © 2010 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis. The reproduction or copy of this thesis has been made available by authority of copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. ACKNOWLEGMENTS First of all my sincere gratitude goes to Dr.
    [Show full text]
  • Evaluation of Winter Wheat Germplasm for Resistance To
    EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By ALBERT OKABA KERTHO In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology August 2014 Fargo, North Dakota North Dakota State University Graduate School Title EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST By ALBERT OKABA KERTHO The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Maricelis Acevedo Chair Dr. Francois Marais Dr. Liu Zhaohui Dr. Phil McClean Approved: 09/29/2014 Dr. Jack Rasmussen Date Department Chair ABSTRACT Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively.
    [Show full text]
  • Durum Wheat in Canada
    1 SUSTAINABLE PRODUCTION OF DURUM WHEAT IN CANADA The purpose of the durum production manual is to promote sustainable production of durum wheat on the Canadian prairies and enable Canada to provide a consistent and increased supply of durum wheat with high quality to international and domestic markets. 2 TABLE OF CONTENTS 1. Introduction: respecting the consumer and the environment: R.M. DePauw 4 2. Durum production and consumption, a global perspective: E. Sopiwnyk 5 PLANNING 3. Variety selection to meet processing requirements and consumer preferences: R.M. DePauw and Y. Ruan 10 4. Field selection and optimum crop rotation: Y. Gan and B. McConkey 16 5. Planting date and seeding rate to optimize crop inputs: B. Beres and Z. Wang 23 6. Seed treatment to minimize crop losses: B. Beres and Z. Wang 29 7. Fertilizer management of durum wheat: 4Rs to respect the environment: R.H. McKenzie and D. Pauly 32 8. Irrigating durum to minimize damage and achieve optimum returns: R.H. McKenzie and S. Woods 41 9. Smart Farming, Big Data, GPS and precision farming as tools to achieve efficiencies. Integration of all information technologies: Big Data: R.M. DePauw 48 PEST MANAGEMENT 10. Integrated weed management to minimize yield losses: C.M. Geddes, B.D. Tidemann, T. Wolf, and E.N. Johnson 50 11. Disease management to minimize crop losses and maximize quality: R.E. Knox 58 12. Insect pest management to minimize crop losses and maximize quality: H. Catton, T. Wist, and I. Wise 63 HARVESTING TO MARKETING 13. Harvest to minimize losses: R.M.
    [Show full text]
  • INDIAN PHYTOPATHOLOGICAL SOCIETY IPS 7Th International Conference "Phytopathology in Achieving UN Sustainable Development Goals"
    INDIAN PHYTOPATHOLOGICAL SOCIETY IPS 7th International Conference "Phytopathology in Achieving UN Sustainable Development Goals" January 16-20, 2020 IARI Pusa Campus, New Delhi, India PROGARMME Presentation Time: Keynote: 15 Min. Invited: 10 Min. Oral: 7 Min Day 01 (Thursday, January 16, 2020) 10.00-14.00 Registration 15.00-17.30 Welcome and Inauguration Hall 1: B.P. Pal Felicitation of Awardees - Auditorium - Release of publications 17.30-18.00 Group photography & High Tea 18.00-18.30 Presidential Address: Advances in Mushroom Production: Key Hall 1: B.P. to Food, Nutritional and Employment Security Pal Auditorium Dr. M.P. Thakur, President-IPS, IGKV, Raipur, Chhattisgarh Chairman: Dr. A.N. Mukhopadhyay; Co-Chairman: Dr. Gerd Stammler 18.30-19.00 Plenary Lecture 1 : Role of Plant Protection and Innovation in Hall 1: B.P. Achieving Sustainable Development Goals in Asia-Pacific Pal Auditorium Dr. Ravi Khetarpal, Executive Secretary, APAARI, Bangkok, Thailand Chairman: Dr. R.K. Jain; Co-Chairman: Dr. Neena Mitter 19.00-19.30 S.P. Raychaudhuri Memorial Lecture: Hall 1: B.P. Pal Dr. S.N. Puri, Former Vice chancellor, CAU, Imphal Auditorium Chairman: Dr. R.B. Somani; Co-Chairman: Dr. Rashmi Aggarwal 20.00-21.30 Dinner (1) IPS 7th International Conference: "Phytopathology in Achieving UN Sustainable Development Goals" (January 16-20, 2020, New Delhi, India) Day 02 (Friday, January 17, 2020) 09.00-09.30 Plenary Lecture 2: Chitooligosaccharides as pathogen- Hall 1: B.P. associated molecular patters to induce immunity in plants Pal Auditorium Prof Appa Rao Podile, Vice Chancellor, University of Hyderabad, Hyderabad, India Chairman: Dr.
    [Show full text]
  • Wheat Diseases 19 IX
    Pest Management Strategic Plan For Northern Wheat Hard Red Spring Wheat, Amber Durum Wheat and Hard Red Winter Wheat in ND, SD, MN and NE November 20-21, 2003 Brookings, South Dakota Sponsored by: USDA North Central Region Pest Management Center Hosted by: South Dakota State University North Dakota State University University of Minnesota University of Nebraska- Lincoln Project Coordinators, Editors, Projects and Contributing Authors Project Coordinator And Editor: Brad Ruden, Extension Associate South Dakota Project, North Central IPM Center 241 Ag Hall, Box 2207A South Dakota State University Brookings SD 57007-1096 Voice: (605) 688-4596 Fax: (605) 688-4602 e-mail: [email protected] Cooperating Projects: North Dakota Project, North Central IPM Center Dr. Phillip Glogoza, North Dakota State University Nebraska Project, North Central IPM Center Dr. Shripat Kamble, University of Nebraska- Lincoln Minnesota Project, North Central IPM Center Dr. William Hutchinson, University of Minnesota Patrick O’Rourke, University of Minnesota Significant portions of this document were excerpted from the Crop Profiles developed by the above cooperating projects of the North Central IPM Center Regional Contacts: North Central IPM Center B18 Food Safety and Toxicology Building Michigan State University East Lansing, MI 48824 Dr. Larry Olsen, Director Ms. Lynnae Jess, Assistant Director Contributing Authors: Dr. Marcia McMullen Extension Plant Pathologist Walster Hall, Room 303 North Dakota State University Fargo, ND 701-231-7627 [email protected] ii Dr. Yue Jin Research Plant Pathologist USDA/ARS Cereal Disease Laboratory 1551 Lindig Street University of Minnesota St. Paul, MN 55108 (612) 625-5291 [email protected] Dr.
    [Show full text]
  • Climate Change and the Wheat Crop Marie-Odile Bancal, Philippe Gate
    Climate change and the wheat crop Marie-Odile Bancal, Philippe Gate To cite this version: Marie-Odile Bancal, Philippe Gate. Climate change and the wheat crop: The main impacts. The Green book of the CLIMATOR project, ADEME Editions, 334 p., 2011. hal-01192327 HAL Id: hal-01192327 https://hal.archives-ouvertes.fr/hal-01192327 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Climate change and the wheat crop: the main impacts C2 Marie-Odile Bancal, Philippe Gate Wheat A Some key elements for the soft wheat crop in France Center-North 3 3 West 0 Wheat yield (t/ha) 3.5-4.5 North-East 4.5-5.5 5.5-6.5 Center-East 3 6.5-7.5 Wheat area (ha) 17 1 000 000 South-West 94 South-East Figure 1: yields and areas sown with wheat in the CLIMATOR regions, with the proportion of durum wheat in red, and mean yields*. Means 2000-2007. Source Agreste. Occupying about 4.8 million hectares (17% of the UAA), soft wheat is the highest-ranking of French arable crops.
    [Show full text]
  • 228 Effects of Different Levels of NPK on Growth of Wheat
    International Journal of Multidisciplinary Research and Development International Journal of Multidisciplinary Research and Development Online ISSN: 2349-4182 Print ISSN: 2349-5979, Impact Factor: RJIF 5.72 www.allsubjectjournal.com Volume 3; Issue 5; May 2016; Page No. 228-231 Effects of different levels of NPK on growth of wheat (Triticum aestivum L.). 1 Ahmad Shahab Samimi, 2 Dr. Tarence Thomas 1 Department of soil science, Allahabad school of agriculture Sam higgin bottom institute of agriculture, technology and sciences (deemed-to-be-university) allahabad-211007 (up.) India 2 Department of soil science, Allahabad school of agriculture Sam higgin bottom institute of agriculture, technology and sciences (deemed-to-be-university) allahabad-211007 (up.) India Abstract A field experiment was conducted to investigate the combined effect of NPK (Nitrogen, Phosphorus and Potash) on the growth of wheat cultivars super golden. The objective of study was to determine effects of different levels of NPK on Growth by wheat (Triticum eastiveum L.) variety. The thrice replicated treatments (T0: 0 -0 -0 NPK, T1: 30- 0-20 NPK, T2: 60 -0 -0 NPK, T3: 120 - 0 -0 NPK, T4: 0 -15 -50 NPK, T5: 0 -30 -0 NPK, T6: 0 -60 -10 NPK, T7: 120 -60 -50 NPK and T8: 60 -30 -25 NPK) Kg ha-1 were tested in Randomized Block Design (RBD). The results revealed that highest growth parameters replied significantly to NPK fertilizers. It is resulted that highest growth was recorded with the application of (120-60-50) NPK Kg ha-1 and lowest conclude treatment combinations T0 (0- 0- 0) NPK kg ha-1.
    [Show full text]
  • Effects of Diseases and Pests on Yield and Quality of Wheat
    Effects of diseases and pests on yield and quality of wheat. M. G. Cromey, I. C. Harvey1, M. Braithwaite2, J. A. K. Farrell, S. Ganev2 New Zealand Institute for Crop and Food Research Ltd., Private Bag 4704, Christchurch 1 New Zealand Pastoral Agriculture Research Institute, Lincoln 2 Plant Protection Centre, MAF Quality Management, P.O. Box 24, Lincoln. Wheat crops in New Zealand are subject to several Introduction other leaf and stem diseases which can cause economic Wheat crops are subject to a wide range of diseases losses. Leaf diseases such as powdery mildew (caused and pests; with 43 diseases so far recorded on wheat in by Erysiphe graminis), speckled leaf blotch (caused by New Zealand (Pennycook, 1989). Some of these can Mycosphaerella tritici), and glume blotch (caused by cause substantial losses in grain yield and quality. When Leptosphaeria nodorum) are each favoured by different new diseases are detected, such as stripe rust in 1980, environmental conditions, and are most prevalent at changes to growing practices and breeding priorities may different times during the season. Speckled leaf blotch be necessary. is usually detected early in the season, and can cause The disease and pest spectrum in a specific paddock yield losses in autumn-sown crops, especially in cool wet is influenced by physical environment, cultivar weather. Powdery mildew is common in crops of susceptibility, and crop management (Cromey and susceptible wheat cultivars in Canterbury throughout the Beresford, 1990). A fundamental understanding of these season and is the most significant disease in currently factors and how they interact is necessary for appropriate grown durum wheat cultivars.
    [Show full text]
  • Effects of Septoria Leaf Blotch on Soft Red Winter Wheat Milling and Baking Quality'
    GRAIN QUALITY Effects of Septoria Leaf Blotch on Soft Red Winter Wheat Milling and Baking Quality' A. L. McKENDRY, 2 G. E. HENKE, 3 and P. L. FINNEY 4 ABSTRACT Cereal Chem. 72(2):142-146 Septoria leaf blotch causes economic yield losses in wheat worldwide. blotch severity. Increased disease pressure resulted in linear reductions Research on the impact of septoria leaf blotch on grain quality, however, in test weight (r = 0.97**), milling quality (r = 0.98**), adjusted flour has been limited to its effect on test weight. The objectives of this study yield (r = 0.97**), and a linear increase in water absorption in the flour were to determine the effect of septoria leaf blotch severity on soft red (r = 0.95**). Increased disease severity also resulted in an increase in winter wheat quality in cultivars with varying levels of resistance and flour protein and a decrease in baking quality, however, the linear cor- to assess the impact of disease pressure on selection for improved quality relation coefficients were nonsignificant. The role of resistance genes for in breeding programs. Twelve cultivars expressing a range of genetic maintaining quality was important for milling quality but was negligible resistance were grown in a split-plot design with four replicates in two for baking quality. Cultivar by treatment interactions were due primarily Missouri environments. Cultivars were considered main plots. Five experi- to changes in magnitude and not in cultivar rank, which suggested that mental subplot treatments, including a noninoculated unprotected control selection for milling and baking quality would be effective even when and plots with fungicide protection as well as plots inoculated at tillering, septoria leaf blotch disease pressure is high.
    [Show full text]