Evaluation and Comparison of the Agronomic Traits of 100 Wheat Cultivars Grown in Western Canada

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation and Comparison of the Agronomic Traits of 100 Wheat Cultivars Grown in Western Canada Evaluation and Comparison of the Agronomic Traits of 100 Wheat Cultivars Grown in Western Canada By Neshat Pazooki Moakhar A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Plant Science Department of Agricultural, Food and Nutritional Science University of Alberta © Neshat Pazooki Moakhar, 2014 Abstract Breeding efforts have been crucial in solving the challenges of wheat production in western Canada. This study evaluates and compares the agronomic traits of plant height, days to heading, lodging, days to maturity, grain yield, disease resistance, test weight, thousand kernel weight, and protein content of 100 cultivars grown in western Canada in order to monitor the effectiveness of breeding programs. The results indicate the positive selection of breeding programs for most of the traits. Modern wheat cultivars have higher grain yield, protein content, earlier days to maturity and improved disease resistance. II Preface This thesis is an original work by Neshat Pazooki Moakhar. The research project, of which this thesis is a part, received research ethics approval from the University of Alberta Research Ethics Board, Project Name “Evaluation and Comparison of the Agronomic Traits of 100 Wheat Cultivars Grown in Western Canada”, No. 12345, 24/03/2014. The agronomic traits data from the Kernen, St. Albert and Edmonton fields used in this research were collected by the University of Saskatchewan, the University of Alberta and by Neshat Pazooki Moakhar respectively. The nursery data from Lethbridge and Creston fields were collected by Agriculture Canada in Lethbridge. The nursery data from Edmonton was collected by Neshat Pazooki Moakhar. Statistical data analysis of this work was performed by Dr. Muhammad Iqbal from cereal research group supervised by Prof. Dean Spaner. The literature Review (chapter 1), Materials and Methods, data collection (Chapter 2), data presentation in Results section (Chapter 3) as well as data interpretation and conclusions presented in Discussion section (Chapter 4) are my original work. No part of this thesis has been previously published. III Acknowledgment This M. Sc. thesis has been carried out since I joined the cereal research group at the University of Alberta. I have worked with a great number of people who have contributed in various ways to the research in this thesis and deserve special mention. It is a pleasure to convey my gratitude to them with my humble acknowledgment. I would like to express my gratitude to my supervisor Prof. Dean Spaner for his supervision and advice from the early stages of this research. I obtained valuable experience throughout the work as well as adding significantly to my knowledge about wheat. Above all, he provided me with constant encouragement and support and helped me to understand the different scientific aspects of this research and to develop new ideas which have enriched my growth as a researcher. I would like to thank my thesis committee member, Dr. Stephen Strelkov for his valuable teachings during the course “Principles of Plant Pathology”. My special thanks to my colleague, Mr. Klaus Strenzke, who never hesitated to help me whenever I called on him. I would like also to acknowledge the “University of Saskatchewan” and “Agriculture Canada” for their data collections and submission to me which enabled drawing a more clear picture of wheat properties in this research. I gratefully acknowledge, Dr. Muhammad Iqbal, my colleague who helped me to understand different aspects of this research as well as due to his efforts in statistical analysis of the data. Special thanks to my nice colleagues, Ms Hua Chen, Dr. Atif Kamran, Mr. Muhammad Asif, Ms Fabiana Dias, Mr. Ivan Adamyk, Mr. Graham Collier and Mr. Hirushi Kubota for their supports throughout this research. Last of all but not least, I would like to thank my family especially my mother Nahid and my husband Amir for their support and encouragement which helped me carry out this research. IV Table of Contents Title Page 1. An introduction to wheat ......................................................................................................... 1 1.1. Wheat in Canada .............................................................................................................. 2 1.1.1. Wheat classifications in western Canada and grading system .................................. 3 1.1.2. Canadian spring wheat classes .................................................................................. 4 1.2. Wheat breeding ................................................................................................................ 4 1.2.1. Wheat breeding in Canada ........................................................................................ 4 1.2.2. Breeding of the Hard Red Spring Wheat in western Canada .................................... 5 1.2.3. Canada Western Red Spring Wheat (CWRS) ........................................................... 6 1.2.4. Breeding of Amber Durum wheat in western Canada ............................................ 11 1.2.5. Canada Prairie Spring Wheat Red (CPSR) ............................................................. 13 1.2.6. Canada Western Extra Strong (CWES) .................................................................. 14 1.2.7. Canada Prairie Spring Wheat White (CPSW) ........................................................ 15 1.2.8. Canada Western Soft White Spring (CWSWS) ...................................................... 16 1.2.9. Canada Western Hard White Spring (CWHWS) .................................................... 17 1.3. Agronomic traits in western Canadian wheat cultivars .................................................. 17 1.3.1. Yield increase.......................................................................................................... 18 1.3.2. Protein concentration .............................................................................................. 18 1.3.3. Early maturity ......................................................................................................... 19 1.3.4. Disease resistance ................................................................................................... 19 1.4. Wheat diseases in western Canada ................................................................................. 20 1.4.1. Stem rust ................................................................................................................. 20 1.4.2. Leaf rust .................................................................................................................. 23 1.4.3. Stripe rust ................................................................................................................ 26 1.5. Summary ............................................................................................................................ 28 1.6. Research objectives ............................................................................................................ 28 2. Materials and Methods .............................................................................................................. 30 2.1. Data Collection ................................................................................................................... 31 2.2. Data analysis ...................................................................................................................... 32 V 3. Results ................................................................................................................................... 34 3.1. Contribution of various effects to phenotypic variation ..................................................... 34 3.1.1. Days to heading....................................................................................................... 34 3.1.2. Plant height ............................................................................................................. 35 3.1.3. Days to maturity ...................................................................................................... 35 3.1.4. Lodging ................................................................................................................... 35 3.1.5. Grain yield .............................................................................................................. 36 3.1.6. Test weight (TWT) ................................................................................................. 36 3.1.7. Thousand kernel weight (TKW) ............................................................................. 36 3.1.8. Protein content ........................................................................................................ 37 3.2. Least squares means of the traits .................................................................................... 37 3.2.1. Days to heading....................................................................................................... 37 3.2.2. Plant height ............................................................................................................. 38 3.2.3. Days to maturity ...................................................................................................... 38 3.2.4. Lodging ................................................................................................................... 38 3.2.5. Grain yield .............................................................................................................
Recommended publications
  • Submitted by DR.K.UMA MAHESWARI DIRECTOR CAFT - HOME SCIENCE
    TWENTY-FOURTH ANNUAL REPORT OF CENTRE FOR ADVANCED FACULTY TRAINING IN HOME SCIENCE (APRIL 2018 – MARCH 2019) Submitted by DR.K.UMA MAHESWARI DIRECTOR CAFT - HOME SCIENCE POST GRADUATE & RESEARCH CENTRE FACULTY OF HOME SCIENCE PROFESSOR JAYASHANKAR TELANGANA STATE AGRICULTURAL UNIVERSITY RAJENDRANAGAR: HYDERABAD – 500 030 1 TWENTY-FOURTH ANNUAL REPORT OF CENTRE FOR ADVANCED FACULTY TRAINING FOR THE YEAR 2018-2019 1. Project Title : Centre of Advanced Faculty Training. 2. Sanction No. : Proc. No. 37735/H.Sc/A1/94, Date: 22-9-95 of APAU 3. Report Period : April 2018 – March 2019. Report No. : XXIV 4. Date of Start : 02-11-1995 5. A) Name of Institute/Station : Professor Jayashankar Telangana State Agricultural . University Rajendranagar, Hyderabad B) Division/Department/ : Centre for Advanced Faculty Training Section Post Graduate & Research Centre, Faculty of Home Science, Rajendranagar, Hyderabad – 500 030 6. Technical Programme a) Technical Programme as approved for the scheme: Appendix – I (Enclosed) b) Technical Programme for the next plan period: Submitted for Approval in the year 2019-20 (Appendix II enclosed) 7. Technical Personnel employed Contractual Personal Date of engaged Date of leaving 1. Computer Operator / J.A.C.T 01.04.2018 31.03.2019 @ Rs. 10733/- Consolidated pay 2 8. Total outlay : Rs. 1,87,61,845.70 S Year Budget sanctioned No (Rs) 1 1995-96 4, 56,219-20 2 1996-97 9, 61,192-20 3 1997-98 12, 01,649-20 4 1998-1999 9, 10,103-40 5 1999-2000 4, 86,691-75 6 2000-2001 7, 03,771-30 7 2001-2002 5, 28,023-90 8 2002-2003 5, 14,463-75 9 2003-2004 6, 32,489-00 10 2004-2005 4, 75,996-00 11 2005-2006 6, 45,016-00 12 2006-2007 6, 79,644-00 13 2007-2008 5, 06,987-00 14 2008-2009 7, 77,737-00 15 2009-2010 4, 33,989-00 16 2010-2011 5, 26,084-00 17 2011-2012 10, 27,806-00 18 2012-2013 9, 44,662-00 19 2013-2014 9, 57,426-00 20 2014-2015 13, 59,824-00 21 2015-2016 8, 49,234-00 22 2016-2017 7, 94, 384-00 23 2017-2018 8,96,953-00 24 2018-2019 11,06,500-00 Additional funds 2018-2019 3,85,000-00 Total Rs.
    [Show full text]
  • Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt
    fermentation Article Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt Alice Fujita, Senay Simsek and Paul B. Schwarz * Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; [email protected] (A.F.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-701-231-7732 Received: 25 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan. Keywords: arabinoxylan; brewing; einkorn; enzyme activity; emmer; malt; phenolic acid; spelt; and sprouting 1.
    [Show full text]
  • INTRODUCTION BARLEY Barley (Also Known As Groats) Is a Cereal
    INTRODUCTION BARLEY Barley (also known as groats) is a cereal grain botanically known as Hordeum vulgare L. , and is believed for its origin from western Asia or Ethiopia. Barley is still considered one of the top five cereal grains in the world. Only ten percent of barley is used as human food, while the remaining percentage is used for brewing malt beverages, including beer and whiskey. However, the majority of harvest barley is used for livestock feed. Barley is also a prime ingredient in the making of variety of the popular foods in the world. The exact origin of barley is debatable, possibly originating in Egypt, Ethiopia, and the near East of Tibet (4). However, it is confirmed that certain barley species was among the earliest cultivated grains, around the same time as domestication of wheat, Barley was grown in the Middle East prior to 10,000 BC (5), but barley's cultivation in China and India probably occurred later (5, 20, 31) . The old English word for 'barley' was baere, which traces back to Proto-Indo- European and is cognate to the Latin word farina "flour". The un-derived world ‘baere’ survives in the north of Scotland as bere , and refers to a specific strain of six-row barley (4, 15). The word barn, which originally meant barley-house, is also rooted in these words (2). In a ranking of cereal crops (2007) in the world, barley was fourth both in terms of quantity produced (136 million tons) and in area of cultivation (566,000 km²) 6. 1 BARLEY IN ISLAMIC LITERATURE According to the scholars of Hadiths (Prophetic sayings) barley supposed to be very nutritious, beneficial in coughs and inflammation of the stomach.
    [Show full text]
  • The Hordeum Toolbox: the Barley Coordinated Agricultural Project Genotype and Phenotype Resource
    ORIGINAL RESEARCH The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource Victoria C. Blake,* Jennifer G. Kling, Patrick M. Hayes, Jean-Luc Jannink, Suman R. Jillella, John Lee, David E. Matthews, Shiaoman Chao, Timothy J. Close, Gary J. Muehlbauer, Kevin P. Smith, Roger P. Wise, and Julie A. Dickerson Abstract RADITIONALLY, plant breeders have collected phenotype The use of DNA markers in public sector plant breeding is now Tdata from breeding populations and used it to select the norm. Such markers are common across breeding programs for superior genotypes. Data access was limited to indi- and this commonality enables and enhances collaboration. vidual programs via spreadsheets or in-house databases. Therefore, large collaborative research projects that measure Th is approach has been successful in developing novel several phenotypes across multiple environments coupled with germplasm and varieties. However, with the exception the expanding amount of genotype data attainable with current of the few lines being grown in regional nurseries, the marker technologies are on the rise and these projects demand only scientists that had access to these extensive datasets effi cient data delivery. However, development of computational were those that were intimately associated with the pro- tools for advanced data integration, visualization, and analysis is grams that generated the data. Th erefore, there was little still a bottleneck, even though these resources have the greatest understanding of the relationship of germplasm between potential impact for users who are extracting and developing programs, and the ability to share germplasm between hypothesis-based solutions. The Hordeum Toolbox (THT) was programs in an intelligent manner was restricted.
    [Show full text]
  • Mixed Cropping of Barley(Hordeum Vulgare)And Wheat
    Mixed cropping of barley (Hordeum vulgare) and wheat (Triticum aestivum) landraces in the central highlands ofEritre a Woldeamlak Araia Promotor: Prof.dr .ir .P .C .Strui k Hoogleraar ind e gewasfysiologie Co-promotor: Dr.Dagne w Ghebreselassie Associate professor, University ofAsmara , Asmara, Eritrea Samenstellingpromotiecommissie : Prof.dr .ir .L .Stroosnijde r (Wageningen Universiteit) Prof.dr .ir .M . Wessel (Wageningen Universiteit) Dr.ir .L .Bastiaan s (Wageningen Universiteit) Dr.ir .C.J.M . Almekinders (Wageningen Universiteit) Dr. Bissrat Ghebru (University ofAsmara , Eritrea) ^jaUo^i^Zl Mixed cropping ofbarle y (Hordeum vulgare) and wheat (Triticumaestivum) landraces inth ecentra l highlandso f Eritrea Woldeamlak Araia Proefschrift ter verkrijging vand egraa d van doctor opgeza gva nd erecto r magnificus vanWageninge n Universiteit, Prof.dr . ir. L.Speelma n in hetopenbaa r te verdedigen op2 3 januari 2001 des namiddagst evie ruu r in deAul a m Financial support for the printing of this thesis was obtained from the Dr. Judith Zwartz Foundation, Wageningen, TheNetherlands . Woldeamlak Araia(2001 ) Mixed cropping of barley (Hordeum vulgare) and wheat (Triticum aestivum) landraces in thecentra l highlands of Eritrea. Woldeamlak A.- [S.L.: s.n.]. 111. PhDThesi s Wageningen University.- Withref . - With summaries in English and Dutch ISBN: 90-5808-335-7 Subject headings: mixed cropping, landraces, barley, wheat, Eritrea Propositions 1. Mixed cropping of barley and wheat increases yield stability compared to barleyo r wheat solecrops . (thisthesis) 2. The yield advantage of barley and wheat mixtures over their sole crops is due to niche differentiation, caused by differences in crop phenology and growth. (this thesis) 3. Mixed cropping can play a major role in the on-farm conservation of biodiversity.
    [Show full text]
  • Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection
    plants Article Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection Mohamed A. M. Atia 1,* , Eman A. El-Khateeb 2, Reem M. Abd El-Maksoud 3 , Mohamed A. Abou-Zeid 4 , Arwa Salah 1 and Amal M. E. Abdel-Hamid 5 1 Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 2 Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt; [email protected] 3 Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 4 Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 5 Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-1000164922 Abstract: Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust Citation: Atia, M.A.M.; El-Khateeb, resistance in wheat mainly depends on the availability of deep mining of resistance genes within the E.A.; Abd El-Maksoud, R.M.; germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian Abou-Zeid, M.A.; Salah, A.; wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence Abdel-Hamid, A.M.E.
    [Show full text]
  • Diagnosing Maize Diseases in Latin America
    Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Published by: The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: (1998) International Service for the Acquisition of Agri-biotech Applications (ISAAA). Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission from the copyright holder, provided the source is properly acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission from the copyright holder. Citation: Diagnosing Maize Diseases in Latin America. C.Casela, R.Renfro and A.F. Krattiger (eds). 1998. ISAAA Briefs No. 9. ISAAA: Ithaca, NY and EMBRAPA, Brasilia. pp. 57. Cover pictures: Pictures taken during the field visits and the diagnostics training workshop in Brazil by ISAAA (K.V. Raman). Available from: The ISAAA Centers listed below. For a list of other ISAAA publications, contact the nearest Center: ISAAA AmeriCenter ISAAA AfriCenter ISAAA EuroCenter ISAAA SEAsiaCenter 260 Emerson Hall c/o CIP John Innes Centre c/o IRRI Cornell University PO 25171 Colney Lane PO Box 933 Ithaca, NY 14853 Nairobi Norwich NR4 7UH 1099 Manila USA Kenya United Kingdom The Philippines [email protected] Also on: www.isaaa.cornell.edu Cost: Cost US$ 10 per copy. Available free of charge for developing countries. Contents Introduction and Overview: Diagnosing Maize Diseases with Proprietary Biotechnology Applications Transferred from Pioneer Hi-Bred International to Brazil and Latin America................................................................1 Anatole Krattiger, Ellen S.
    [Show full text]
  • Wild Wheat to Productive Drylands: Global Scientific Practice and the Agroecological Remaking of Palestine
    Geoforum 78 (2017) 43–51 Contents lists available at ScienceDirect Geoforum journal homepage: www.elsevier.com/locate/geoforum Wild wheat to productive drylands: Global scientific practice and the agroecological remaking of Palestine Omar Tesdell Department of Geography, Birzeit University, PO Box 14, Birzeit, West Bank, Palestine article info abstract Article history: This paper traces how scientific research on wheat (Triticum) worked to establish Palestine as a region Received 23 May 2016 sought for colonization. Recent work in geography has refined our understanding of agricultural expan- Received in revised form 16 November 2016 sion as an outcome of colonization, however, this work leaves the place-making capacity of agricultural Accepted 18 November 2016 research largely unexplored. My claim is that rather than a byproduct of colonization, wheat research served to remake Palestine as a biophysical region in need of improvement and colonization. I show how a shift in the plant sciences from research in taxonomy to plant breeding corresponded to an Keywords: agro-climatic shift on Palestine from an undesirable, arid region to a promising dryland agricultural Agro-climatology region. In this way, wheat research drew Palestine and the United States into a wider effort to transform Agro-ecology Colonization arid areas into agricultural drylands. Drawing on a previously unexplored episode of technical coopera- Palestine tion between researchers in the United States and Palestine, I argue that we must examine how wildness, United States native-ness, and agro-climatic suitability are scientifically constituted within and not apart from colonial Drylands conquest. In doing so, the paper calls for reconsideration within geography and political ecology of the place-making relationship between colonization and scientific practice.
    [Show full text]
  • Classification of Wheat Varieties Grown in the United States in 1949
    Technical Bulletin No. 1083 March 1954 /' Classification of Wheat Varieties Grown in the United States in 1949 By B. B. BAYLES Principal Agronomist and J. ALLEN CLARK Senior Agronomist Field Crops Research Bran~h United States Department of Agriculture, Washingtc'll, D. C. For gale by the Superintendent of Documents, WaehinMlon 25, D. C. • Price 70 cent. 66 TECHNICAL BULLETIN 1083, U. S. DEPT. OF AGRICULTURE to strong; spike apically awnleted, fusi­ Distribution.-Estimated area in 1949, form, middense to dense, inclined; glumes 452,427 acres (fig. 32). glabrous, white with black stripes, mid­ long, wide; shoulders wide, oblique to LOFTHOUSE square; beaks mid wide, obtuse, 0.5 mm. long; awnlets 3 to 10 mm. long, some­ Description.-Plant winter habit mid­ tim,;s incurved; kernels red, midlong, se:;tson, midtall; ste:n white,. midstrong; semlhard, ovate; germ midsized· crease s~lke awnleted, fusIform, mlddense, in­ midwide, middeep; cheeks rounded; brush cllped_; glumes glabrous, white, midlong, midsized, midlong. ml~wlde; should~rs wanting to narrow, History.-Kanqueen (C. 1. 12762) was oblIque; beaks WIde, obtuse, 1 mm. long; developed by Earl G. Clark, the farmer­ awnlets several, 5 to 30 mill. long; wheat breeder of Sedgwick, Kans., and kernels red, mic_llon.g, sof~, ovate; germ first offered for sale in the fall of 1949. small; crease mldwlde, mlddeep; cheeks It was sold in small lots in all sections usually angular; brush small, midlong. of Kansas. There is some confusion as to the VIGO identity of this variety. It frequently has been referred to as white-kerneled Description.-Plant' winter habit, mid­ and often is confused with the Kofod variety.
    [Show full text]
  • Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Doctoral Documents from Doctor of Plant Health Plant Health Program, Doctor of Program 5-2019 Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/planthealthdoc Part of the Agronomy and Crop Sciences Commons, Apiculture Commons, Biosecurity Commons, Genetics Commons, and the Plant Breeding and Genetics Commons Blecha, Sarah, "Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts" (2019). Doctoral Documents from Doctor of Plant Health Program. 14. https://digitalcommons.unl.edu/planthealthdoc/14 This Doctoral Document is brought to you for free and open access by the Plant Health Program, Doctor of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Doctoral Documents from Doctor of Plant Health Program by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS by Sarah Blecha A Doctoral Document Presented to the Faculty of The College of Agricultural Sciences and Natural Resources In Partial Fulfillment of Requirements For the Degree of Doctor of Plant Health Under the Supervision of Professor Gary L. Hein Lincoln, Nebraska May, 2019 ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS Sarah Blecha, D. P. H. University of Nebraska, 2019 Advisor: Gary L. Hein Bread wheat, Triticum aestivum L., provides 20 percent of the global daily calorie intake. It is the third most important food crop, after rice and corn.
    [Show full text]
  • Northwestern Ontario Specialty Crop Market Report
    2013 Northwestern Ontario Specialty Crop Market Report 3/31/2013 Acknowledgements Funded By: NRC-IRAP Prepared By: The Northwestern Ontario Innovation Centre Inc With assistance from: Dr. Tarlok Singh Satoka, Thunder Bay Agriculture Research Station Wayne Vanderwees, Freight Managers Inc. Paul Tulonen, IRAP Allan Mitchell, AgraTactics Agronomy Marlene Boersch, Merchantile Consulting Venture Inc. iii Table of Contents Executive Summary ........................................................................................................ 1 Agriculture Market Research Report ............................................................................... 3 Project Overview.......................................................................................................... 3 Section 1: Crop Analysis and Profile of Economically Viable Crops ................................ 5 Chickpeas .................................................................................................................... 5 Lentils .......................................................................................................................... 5 Field Peas .................................................................................................................... 6 Hard White Spring Wheat ............................................................................................ 6 Millhouse Barley .......................................................................................................... 6 Durum Wheat .............................................................................................................
    [Show full text]
  • Growing Small Grains Organically
    LAKEVIEW ORGANIC GRAIN Box 361, Penn Yan, NY 14527 315-531-1038 MANAGING SMALL GRAINS ORGANICALLY Small grains respond strongly to soil fertility and soil condition. Most small grains will do best in well-drained, fertile soils with a pH of at least 6.0. Barley needs a higher pH (>6.5pH) and oats can tolerate more acidity (>5.8pH) Barley prefers high fertility and dry soil, oats can tolerate lower fertility and wetter fields. More fertile soil that has adequate calcium will definitely give better yields. If possible, spread compost, lime and gypsum in the fall on fields where spring small grains are planned, especially if there is a cover crop to put the amendments on. Fall is also a great time to take soil tests to determine nutrient deficiencies. Oats and rye respond well to manure or compost applications, but putting on too much nitrogen may cause lodging. Fall planted grains need generous amounts of P and K for good fall tillering and winter survival. As soil cools, phosphorus becomes less available making high P levels more important than with summer planted crops. When soil test levels of P and K are low, poultry litter or compost can be spread before planting to prevent deficiencies. When K is very low, spreading some additional potassium fertilizers (potassium sulfate, potassium chloride, SulPoMag, or green sand) may be needed to improve winter survival and prevent lodging. According to European research, barley is an extremely heavy feeder, especially of potassium and phosphorus. High nitrogen levels will reduce potassium uptake, possibly creating a shortage if potash soil levels are moderate.
    [Show full text]