Climate Change and the Wheat Crop Marie-Odile Bancal, Philippe Gate

Total Page:16

File Type:pdf, Size:1020Kb

Climate Change and the Wheat Crop Marie-Odile Bancal, Philippe Gate Climate change and the wheat crop Marie-Odile Bancal, Philippe Gate To cite this version: Marie-Odile Bancal, Philippe Gate. Climate change and the wheat crop: The main impacts. The Green book of the CLIMATOR project, ADEME Editions, 334 p., 2011. hal-01192327 HAL Id: hal-01192327 https://hal.archives-ouvertes.fr/hal-01192327 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Climate change and the wheat crop: the main impacts C2 Marie-Odile Bancal, Philippe Gate Wheat A Some key elements for the soft wheat crop in France Center-North 3 3 West 0 Wheat yield (t/ha) 3.5-4.5 North-East 4.5-5.5 5.5-6.5 Center-East 3 6.5-7.5 Wheat area (ha) 17 1 000 000 South-West 94 South-East Figure 1: yields and areas sown with wheat in the CLIMATOR regions, with the proportion of durum wheat in red, and mean yields*. Means 2000-2007. Source Agreste. Occupying about 4.8 million hectares (17% of the UAA), soft wheat is the highest-ranking of French arable crops. Half the area is situated in the centre-north (fig. 1). The mean yields are about 7 t ha-1 with a maximum of 7.5 t ha-1 in the north-east and a minimum of 3.7 t ha-1 in the south- eastern region where it is usually replaced by durum wheat (cf. “And durum wheat?”). Soft wheat is grown for its starch, and an improvement in its protein content is often sought for human and animal feeding. The diversity of industrial outlets with a primary processing (semolina and starch manufacture, milling) and often a secondary one (biscuits and bread) involves precise specifica- tions to reach optimal quality at harvest which are specific for each industrial process. Wheat is a major crop in arable rotations. Its long life cycle, from October to July, its wide range of sowing dates and it relative tolerance to degraded environments make it an easy crop to grow, exploiting a wide range of environments; its sensitivity to heat and water stress* however limit its expansion into the southern zones. As to diseases, wheat is subject to numerous fungal diseases, both soil-borne (eyespot, take-all) and foliar (mainly Septoria leaf spot, rusts and Fusarium foot rot), which frequently affect yield and the technological, hygienic and nutritional quality of the harvest. It is also sensitive to waterlogging and has high nitrogen requirements. | Green Book | The crops | Wheat | Marie-Odile Bancal, Philippe Gate 155 C 2 Wheat B Simulation protocol of CLIMATOR The cultivation of soft wheat has been studied in monoculture with three crop models*, CERES, STICS and PANORAMIX, and several cropping systems* with the STICS model, including a basic irrigated cereal system (MWRW) and two low-input systems (SWSgW) and ORG). Durum wheat was only studied in STICS simulations as part of the MWRW and SWSgW successions. Sites 12 sites in mainland France including one at high altitude Monoculture (all models) Three successions (STICS): System • maize-soft wheat-rape-durum wheat (MWRW) • sunflower-durum wheat-sorghum-soft wheat (SWSgW) • peas-soft wheat-2 years of forage grass (ORG) Recommended management, sowing 10 Oct, 230 kg N ha-1 in 3 applications Sowing dates: 20 Sept, 1 Oct, 10 Oct, 20 Oct, 10 Nov, 1 Dec Management Irrigation for the MWRW system to 50% of water requirements (if necessary) Soil 1: deep silt soil with a high available water reserve (AWR) (226 mm) and average fertility Soils Soil 2: rendzina with a low AWR (104 mm) and low fertility Soil 3: leached hydromorphic soil with a high AWR (218 mm) and high fertility Soissons (early) and Arminda (late) which differ in their earliness at the 1cm Variety ear stage and duration of stem elongation Model CERES, PANORAMIX, STICS Climate SRES: A1B, ARPÈGE, downscaling: WT, QQ and ANO C Ecophysiological identity card of wheat in the climate change context Advantages Like all C3 plants, soft winter wheat and durum wheat are good for exploiting the increase in CO2 concentration, with both a stimulation of photosynthesis* and a limitation of transpiration. The calendar timing of its developmental cycle is generally advantageous for avoiding summer water stress*, and this could be further enhanced by suitable varietal choice. Also, soft wheat has high vernalisation* requirements: to complete its floral development*; it requires a certain number of days when the mean temperature does not exceed 10°C (about 40-80 days according to the varieties and the climate*). These vernalisation requirements depend on the variety and are a component of their earliness. Moreover, to flower, a vernalised wheat must be subjected to a long photoperiod, which gives a certain stability to the duration of the emergence-flowering period in relation to regional temperature regimes and climate change*. Thus the shortening of the growth cycle caused by climatic warming will be limited by these two requirements (vernali- sation and long days) of soft wheat. The beginning of stem elongation (or the 1cm ear stage) is a critical stage as regards low tem- peratures at the moment when the apex passes from the buffered temperature of the soil to that of the air, and from a vegetative physiology to a reproductive one: the temperature threshold 156 | Green Book | The crops | Wheat | Marie-Odile Bancal, Philippe Gate C 2 Wheat of –4.5°C for soft wheat is usually lethal for main culms during stem elongation (earlier, during the vegetative phase, one can assume a temperature of –25°C for the freezing threshold of the plants). This ear frost damage mainly affects the main stems which contribute about 50% to the final yield. Consequently, this occurrence of early freezing of the ears is regarded as a major fac- tor in the feasibility* of growing the crop, even though tillering can partially compensate for the losses caused. If, as seems likely, these ear frosts should become rarer with climate change, it is important to reconsider the timing of the sensitive stages in relation to the occurrences of low temperatures. Still in relation to winter physiology, the reduction of waterlogging may also prove to be favourable in certain regions. Weaknesses Although soft winter wheat is less sensitive to summer water stress than spring-sown wheat, it is on the other hand very sensitive to heat stress towards the end of growth, which can occur above 28°C: above this threshold, there is an irreversible cessation of the growth of the grains and some- times even abortion of grains beginning to fill. Also, above 25°C there may be a reduction in grain growth. More generally, one must consider the timing of the critical stages (stem elongation, flowering, grain filling) in relation to the occurrence of high temperatures and/or water stress, because it is these stresses brought about by climate change which could hinder the formation of wheat yield in the future. Note also that its vernalisation requirements make soft wheat sensitive to an increase in winter temperatures which, above a certain threshold, could become critical for its flowering. D Impacts of climate change on wheat growing Impacts on yield and its components The maps (fig. 2) show the geographical distribution of yield trends and their variability* for an early variety (Soissons) and a late variety (Arminda) of soft wheat, simulated with CERES. Com- pared with the RP* we see an increase in the yield of the variety Soissons (a mean increase of about 0.7 ± 0.5 t/ha for the NF* and of 1.2 ± 0.8 t/ha for the DF*), mainly in the east of the coun- try. This increase in mean yield is nearly always accompanied by an increase in the variability of yields, indicated by the shade of grey of the circles in figure 2. | Green Book | The crops | Wheat | Marie-Odile Bancal, Philippe Gate 157 C 2 Wheat Except for certain sites* (Bordeaux, Clermont and Saint-Étienne), the variety Arminda has a lower yield than the early variety (96% of its yield on average for the RP). It also shows a less clear trend towards an increase in yields: of about 2% and 6% for the NF and DF respectively, as against 9% and 14% for the early variety. Hence this all supports the view that for the late variety, the benefit of the increased CO2 is counterbalanced by the larger effect of stresses. These results, obtained with the CERES crop model, agree in general with those of PANORAMIX. One should note however one difference with the STICS model which, by taking account of wa- terlogging, simulates a substantial increase in yield at all the sites towards the west (Rennes, Lusignan, Bordeaux). Standard deviation (t MS/ha) : Standard deviation (t MS/ha) : 93 97 100 97 100 100 <1 <1 1-2 1-2 2-3 83 90 90 2-3 90 90 97 >3 >3 Mons Mons Versailles Versailles Rennes Mirecourt Rennes Mirecourt Colmar Colmar 97 100 100 Dijon 97 100 100 Dijon 97 97 97 97 97 97 Number: 93 100 93 Number: 93 100 100 % Feasability 97 100 97 % Feasability 97 100 100 Lusignan 90 97 100 Lusignan 93 100 100 1970-99 1970-99 Clermont Clermont 2020-49 St Étienne 2020-49 St Étienne Bordeaux 60 83 80 2070-99 2070-99 Bordeaux 77 90 97 73 77 77 63 50 50 Toulouse Avignon 93 97 100 100 100 100 Toulouse Avignon 93 93 97 100 100 100 Yield( t/ha) 80 90 97 Yield( t/ha) 93 100 100 9 8 8 9 7 7 6 6 Figure 2: changes in yield (means and variability) and in feasibility (percentage given below the average yield persite) of the soft wheat crop for the early variety Soissons (A) and the late variety Arminda (B).
Recommended publications
  • Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection
    plants Article Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection Mohamed A. M. Atia 1,* , Eman A. El-Khateeb 2, Reem M. Abd El-Maksoud 3 , Mohamed A. Abou-Zeid 4 , Arwa Salah 1 and Amal M. E. Abdel-Hamid 5 1 Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 2 Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt; [email protected] 3 Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 4 Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 5 Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-1000164922 Abstract: Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust Citation: Atia, M.A.M.; El-Khateeb, resistance in wheat mainly depends on the availability of deep mining of resistance genes within the E.A.; Abd El-Maksoud, R.M.; germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian Abou-Zeid, M.A.; Salah, A.; wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence Abdel-Hamid, A.M.E.
    [Show full text]
  • Diagnosing Maize Diseases in Latin America
    Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Published by: The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: (1998) International Service for the Acquisition of Agri-biotech Applications (ISAAA). Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission from the copyright holder, provided the source is properly acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission from the copyright holder. Citation: Diagnosing Maize Diseases in Latin America. C.Casela, R.Renfro and A.F. Krattiger (eds). 1998. ISAAA Briefs No. 9. ISAAA: Ithaca, NY and EMBRAPA, Brasilia. pp. 57. Cover pictures: Pictures taken during the field visits and the diagnostics training workshop in Brazil by ISAAA (K.V. Raman). Available from: The ISAAA Centers listed below. For a list of other ISAAA publications, contact the nearest Center: ISAAA AmeriCenter ISAAA AfriCenter ISAAA EuroCenter ISAAA SEAsiaCenter 260 Emerson Hall c/o CIP John Innes Centre c/o IRRI Cornell University PO 25171 Colney Lane PO Box 933 Ithaca, NY 14853 Nairobi Norwich NR4 7UH 1099 Manila USA Kenya United Kingdom The Philippines [email protected] Also on: www.isaaa.cornell.edu Cost: Cost US$ 10 per copy. Available free of charge for developing countries. Contents Introduction and Overview: Diagnosing Maize Diseases with Proprietary Biotechnology Applications Transferred from Pioneer Hi-Bred International to Brazil and Latin America................................................................1 Anatole Krattiger, Ellen S.
    [Show full text]
  • Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Doctoral Documents from Doctor of Plant Health Plant Health Program, Doctor of Program 5-2019 Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/planthealthdoc Part of the Agronomy and Crop Sciences Commons, Apiculture Commons, Biosecurity Commons, Genetics Commons, and the Plant Breeding and Genetics Commons Blecha, Sarah, "Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts" (2019). Doctoral Documents from Doctor of Plant Health Program. 14. https://digitalcommons.unl.edu/planthealthdoc/14 This Doctoral Document is brought to you for free and open access by the Plant Health Program, Doctor of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Doctoral Documents from Doctor of Plant Health Program by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS by Sarah Blecha A Doctoral Document Presented to the Faculty of The College of Agricultural Sciences and Natural Resources In Partial Fulfillment of Requirements For the Degree of Doctor of Plant Health Under the Supervision of Professor Gary L. Hein Lincoln, Nebraska May, 2019 ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS Sarah Blecha, D. P. H. University of Nebraska, 2019 Advisor: Gary L. Hein Bread wheat, Triticum aestivum L., provides 20 percent of the global daily calorie intake. It is the third most important food crop, after rice and corn.
    [Show full text]
  • Fusarium Head Blight of Wheat: Evaluation of the Efficacies Of
    Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China By Chami Chathurangi Amarasinghe A Thesis Submitted to the Faculty of Graduate Studies In partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada ©Copyright by Chami Chathurangi Amarasinghe 2010 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China BY Chami Chathurangi Amarasinghe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree OF MASTER OF SCIENCE Chami Amarasinghe © 2010 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis. The reproduction or copy of this thesis has been made available by authority of copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. ACKNOWLEGMENTS First of all my sincere gratitude goes to Dr.
    [Show full text]
  • Evaluation of Winter Wheat Germplasm for Resistance To
    EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By ALBERT OKABA KERTHO In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology August 2014 Fargo, North Dakota North Dakota State University Graduate School Title EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST By ALBERT OKABA KERTHO The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Maricelis Acevedo Chair Dr. Francois Marais Dr. Liu Zhaohui Dr. Phil McClean Approved: 09/29/2014 Dr. Jack Rasmussen Date Department Chair ABSTRACT Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively.
    [Show full text]
  • Durum Wheat in Canada
    1 SUSTAINABLE PRODUCTION OF DURUM WHEAT IN CANADA The purpose of the durum production manual is to promote sustainable production of durum wheat on the Canadian prairies and enable Canada to provide a consistent and increased supply of durum wheat with high quality to international and domestic markets. 2 TABLE OF CONTENTS 1. Introduction: respecting the consumer and the environment: R.M. DePauw 4 2. Durum production and consumption, a global perspective: E. Sopiwnyk 5 PLANNING 3. Variety selection to meet processing requirements and consumer preferences: R.M. DePauw and Y. Ruan 10 4. Field selection and optimum crop rotation: Y. Gan and B. McConkey 16 5. Planting date and seeding rate to optimize crop inputs: B. Beres and Z. Wang 23 6. Seed treatment to minimize crop losses: B. Beres and Z. Wang 29 7. Fertilizer management of durum wheat: 4Rs to respect the environment: R.H. McKenzie and D. Pauly 32 8. Irrigating durum to minimize damage and achieve optimum returns: R.H. McKenzie and S. Woods 41 9. Smart Farming, Big Data, GPS and precision farming as tools to achieve efficiencies. Integration of all information technologies: Big Data: R.M. DePauw 48 PEST MANAGEMENT 10. Integrated weed management to minimize yield losses: C.M. Geddes, B.D. Tidemann, T. Wolf, and E.N. Johnson 50 11. Disease management to minimize crop losses and maximize quality: R.E. Knox 58 12. Insect pest management to minimize crop losses and maximize quality: H. Catton, T. Wist, and I. Wise 63 HARVESTING TO MARKETING 13. Harvest to minimize losses: R.M.
    [Show full text]
  • INDIAN PHYTOPATHOLOGICAL SOCIETY IPS 7Th International Conference "Phytopathology in Achieving UN Sustainable Development Goals"
    INDIAN PHYTOPATHOLOGICAL SOCIETY IPS 7th International Conference "Phytopathology in Achieving UN Sustainable Development Goals" January 16-20, 2020 IARI Pusa Campus, New Delhi, India PROGARMME Presentation Time: Keynote: 15 Min. Invited: 10 Min. Oral: 7 Min Day 01 (Thursday, January 16, 2020) 10.00-14.00 Registration 15.00-17.30 Welcome and Inauguration Hall 1: B.P. Pal Felicitation of Awardees - Auditorium - Release of publications 17.30-18.00 Group photography & High Tea 18.00-18.30 Presidential Address: Advances in Mushroom Production: Key Hall 1: B.P. to Food, Nutritional and Employment Security Pal Auditorium Dr. M.P. Thakur, President-IPS, IGKV, Raipur, Chhattisgarh Chairman: Dr. A.N. Mukhopadhyay; Co-Chairman: Dr. Gerd Stammler 18.30-19.00 Plenary Lecture 1 : Role of Plant Protection and Innovation in Hall 1: B.P. Achieving Sustainable Development Goals in Asia-Pacific Pal Auditorium Dr. Ravi Khetarpal, Executive Secretary, APAARI, Bangkok, Thailand Chairman: Dr. R.K. Jain; Co-Chairman: Dr. Neena Mitter 19.00-19.30 S.P. Raychaudhuri Memorial Lecture: Hall 1: B.P. Pal Dr. S.N. Puri, Former Vice chancellor, CAU, Imphal Auditorium Chairman: Dr. R.B. Somani; Co-Chairman: Dr. Rashmi Aggarwal 20.00-21.30 Dinner (1) IPS 7th International Conference: "Phytopathology in Achieving UN Sustainable Development Goals" (January 16-20, 2020, New Delhi, India) Day 02 (Friday, January 17, 2020) 09.00-09.30 Plenary Lecture 2: Chitooligosaccharides as pathogen- Hall 1: B.P. associated molecular patters to induce immunity in plants Pal Auditorium Prof Appa Rao Podile, Vice Chancellor, University of Hyderabad, Hyderabad, India Chairman: Dr.
    [Show full text]
  • Wheat Diseases 19 IX
    Pest Management Strategic Plan For Northern Wheat Hard Red Spring Wheat, Amber Durum Wheat and Hard Red Winter Wheat in ND, SD, MN and NE November 20-21, 2003 Brookings, South Dakota Sponsored by: USDA North Central Region Pest Management Center Hosted by: South Dakota State University North Dakota State University University of Minnesota University of Nebraska- Lincoln Project Coordinators, Editors, Projects and Contributing Authors Project Coordinator And Editor: Brad Ruden, Extension Associate South Dakota Project, North Central IPM Center 241 Ag Hall, Box 2207A South Dakota State University Brookings SD 57007-1096 Voice: (605) 688-4596 Fax: (605) 688-4602 e-mail: [email protected] Cooperating Projects: North Dakota Project, North Central IPM Center Dr. Phillip Glogoza, North Dakota State University Nebraska Project, North Central IPM Center Dr. Shripat Kamble, University of Nebraska- Lincoln Minnesota Project, North Central IPM Center Dr. William Hutchinson, University of Minnesota Patrick O’Rourke, University of Minnesota Significant portions of this document were excerpted from the Crop Profiles developed by the above cooperating projects of the North Central IPM Center Regional Contacts: North Central IPM Center B18 Food Safety and Toxicology Building Michigan State University East Lansing, MI 48824 Dr. Larry Olsen, Director Ms. Lynnae Jess, Assistant Director Contributing Authors: Dr. Marcia McMullen Extension Plant Pathologist Walster Hall, Room 303 North Dakota State University Fargo, ND 701-231-7627 [email protected] ii Dr. Yue Jin Research Plant Pathologist USDA/ARS Cereal Disease Laboratory 1551 Lindig Street University of Minnesota St. Paul, MN 55108 (612) 625-5291 [email protected] Dr.
    [Show full text]
  • 228 Effects of Different Levels of NPK on Growth of Wheat
    International Journal of Multidisciplinary Research and Development International Journal of Multidisciplinary Research and Development Online ISSN: 2349-4182 Print ISSN: 2349-5979, Impact Factor: RJIF 5.72 www.allsubjectjournal.com Volume 3; Issue 5; May 2016; Page No. 228-231 Effects of different levels of NPK on growth of wheat (Triticum aestivum L.). 1 Ahmad Shahab Samimi, 2 Dr. Tarence Thomas 1 Department of soil science, Allahabad school of agriculture Sam higgin bottom institute of agriculture, technology and sciences (deemed-to-be-university) allahabad-211007 (up.) India 2 Department of soil science, Allahabad school of agriculture Sam higgin bottom institute of agriculture, technology and sciences (deemed-to-be-university) allahabad-211007 (up.) India Abstract A field experiment was conducted to investigate the combined effect of NPK (Nitrogen, Phosphorus and Potash) on the growth of wheat cultivars super golden. The objective of study was to determine effects of different levels of NPK on Growth by wheat (Triticum eastiveum L.) variety. The thrice replicated treatments (T0: 0 -0 -0 NPK, T1: 30- 0-20 NPK, T2: 60 -0 -0 NPK, T3: 120 - 0 -0 NPK, T4: 0 -15 -50 NPK, T5: 0 -30 -0 NPK, T6: 0 -60 -10 NPK, T7: 120 -60 -50 NPK and T8: 60 -30 -25 NPK) Kg ha-1 were tested in Randomized Block Design (RBD). The results revealed that highest growth parameters replied significantly to NPK fertilizers. It is resulted that highest growth was recorded with the application of (120-60-50) NPK Kg ha-1 and lowest conclude treatment combinations T0 (0- 0- 0) NPK kg ha-1.
    [Show full text]
  • Effects of Diseases and Pests on Yield and Quality of Wheat
    Effects of diseases and pests on yield and quality of wheat. M. G. Cromey, I. C. Harvey1, M. Braithwaite2, J. A. K. Farrell, S. Ganev2 New Zealand Institute for Crop and Food Research Ltd., Private Bag 4704, Christchurch 1 New Zealand Pastoral Agriculture Research Institute, Lincoln 2 Plant Protection Centre, MAF Quality Management, P.O. Box 24, Lincoln. Wheat crops in New Zealand are subject to several Introduction other leaf and stem diseases which can cause economic Wheat crops are subject to a wide range of diseases losses. Leaf diseases such as powdery mildew (caused and pests; with 43 diseases so far recorded on wheat in by Erysiphe graminis), speckled leaf blotch (caused by New Zealand (Pennycook, 1989). Some of these can Mycosphaerella tritici), and glume blotch (caused by cause substantial losses in grain yield and quality. When Leptosphaeria nodorum) are each favoured by different new diseases are detected, such as stripe rust in 1980, environmental conditions, and are most prevalent at changes to growing practices and breeding priorities may different times during the season. Speckled leaf blotch be necessary. is usually detected early in the season, and can cause The disease and pest spectrum in a specific paddock yield losses in autumn-sown crops, especially in cool wet is influenced by physical environment, cultivar weather. Powdery mildew is common in crops of susceptibility, and crop management (Cromey and susceptible wheat cultivars in Canterbury throughout the Beresford, 1990). A fundamental understanding of these season and is the most significant disease in currently factors and how they interact is necessary for appropriate grown durum wheat cultivars.
    [Show full text]
  • Effects of Septoria Leaf Blotch on Soft Red Winter Wheat Milling and Baking Quality'
    GRAIN QUALITY Effects of Septoria Leaf Blotch on Soft Red Winter Wheat Milling and Baking Quality' A. L. McKENDRY, 2 G. E. HENKE, 3 and P. L. FINNEY 4 ABSTRACT Cereal Chem. 72(2):142-146 Septoria leaf blotch causes economic yield losses in wheat worldwide. blotch severity. Increased disease pressure resulted in linear reductions Research on the impact of septoria leaf blotch on grain quality, however, in test weight (r = 0.97**), milling quality (r = 0.98**), adjusted flour has been limited to its effect on test weight. The objectives of this study yield (r = 0.97**), and a linear increase in water absorption in the flour were to determine the effect of septoria leaf blotch severity on soft red (r = 0.95**). Increased disease severity also resulted in an increase in winter wheat quality in cultivars with varying levels of resistance and flour protein and a decrease in baking quality, however, the linear cor- to assess the impact of disease pressure on selection for improved quality relation coefficients were nonsignificant. The role of resistance genes for in breeding programs. Twelve cultivars expressing a range of genetic maintaining quality was important for milling quality but was negligible resistance were grown in a split-plot design with four replicates in two for baking quality. Cultivar by treatment interactions were due primarily Missouri environments. Cultivars were considered main plots. Five experi- to changes in magnitude and not in cultivar rank, which suggested that mental subplot treatments, including a noninoculated unprotected control selection for milling and baking quality would be effective even when and plots with fungicide protection as well as plots inoculated at tillering, septoria leaf blotch disease pressure is high.
    [Show full text]
  • Wheat Diseases I
    WHEAT DISEASES I 1. Black head 2. Botrytis 3. Common 4. Loose smut. 5. White heads 6. Foot rot bunt or R, healthy head (Fusarium) (Fusarium molds head mold stinking smut cu/morum) 7. Scab or head blight 8. Black chaff. L, leaf 9. Septaria leaf blotch. R, pycnidia of and R, glume symptoms Septaria tritici in leaf lesion 10. Stem rust. L, telial stage; C, 11. Leaf rust 12. Septaria leaf and glume blotch uredial stage; R, aecial stage on (S. nodorum). L, leaf and R, glume barberry lea symptoms 13. Tan or yellow leaf spot. R 14. Powdery mildew. L, black 15. Cephalosporium stripe. L, leaf ps.eudothecia of Pyrenophora ' specks (cleistothecia) in older and R, culm symptoms (left culm trrchostoma on straw colonies is healthy) UNIVERSITY OF ILLINOIS COLLEGE OF AGRICULTURE PLANT DISEASE NO. 5 COOPERATIVE EXTENSION SERVICE JANUARY 1980 and VOCATIONAL AGRICULTURE SERVICE URBANA, ILLINOIS WHEAT DISEASES I 1. Black Head Molds are species of Cladosporium and Alternaria and 9. Septaria Leaf Blotch is caused by the fungus Septaria tritici. to a lesser extent Stemphylium, Epicoccum, and Sporobolomyses. Small, light green-to-yellow spots on the leaves and sheaths enlarge and These fungi, often called "sooty molds," give an olive-brown to black appearance to the glumes and grain. These molds infect during damp merge to form irregular, tan-to-reddish-brown blotches with gray-brown weather at or near grain maturity, and are most severe when harvest is to ash-colored centers often partly surrounded by a yellow margin. delayed. Plants prediposed to other diseases, shading, nutrient deficien­ Black specks (pycnidia) form in older lesions or at stem nodes.
    [Show full text]