Winter-Hardy Spring Wheat Breeding: Analysis of Winter X Spring Wheat Germplasm and the Development of Selection Tools
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt
fermentation Article Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt Alice Fujita, Senay Simsek and Paul B. Schwarz * Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; [email protected] (A.F.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-701-231-7732 Received: 25 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan. Keywords: arabinoxylan; brewing; einkorn; enzyme activity; emmer; malt; phenolic acid; spelt; and sprouting 1. -
Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection
plants Article Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection Mohamed A. M. Atia 1,* , Eman A. El-Khateeb 2, Reem M. Abd El-Maksoud 3 , Mohamed A. Abou-Zeid 4 , Arwa Salah 1 and Amal M. E. Abdel-Hamid 5 1 Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 2 Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt; [email protected] 3 Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 4 Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 5 Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-1000164922 Abstract: Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust Citation: Atia, M.A.M.; El-Khateeb, resistance in wheat mainly depends on the availability of deep mining of resistance genes within the E.A.; Abd El-Maksoud, R.M.; germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian Abou-Zeid, M.A.; Salah, A.; wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence Abdel-Hamid, A.M.E. -
Using the Qualities of Heritage Grains to Build Local Markets
Using the Qualities of Heritage Grains to Build Local Markets 2017 Organic Alberta Conference – Lacombe, AB Chris Wooding, Ironwood Organics 1 ironwoodorganics.ca Instagram: Ironwoodorganics What heritage grain is not • Selling food by the pound – Cost of production is higher – Yield is lower • Modern wheat – Is for weight and uniformity – Principally grown as a filler – Has been bred to accept inputs, hold air and absorb water 2 Heritage ● Landrace ● Ancient • Ancient Grains – Emmer, Einkorn, Spelt, (Farro) – Domestication @ 7500-10000BC • Landrace – 1700-1920 – Adaptable to region • Heritage – Open pollinated – Pre-green revolution (1940) • Primarily includes Wheat and Barley 3 Other Heritage Grains • Amaranth: – Aztec culture, higher protein & mineral content • Quinoa – Inca culture, higher protein & mineral content • Millet – Small seeded grasses, important in semi-arid tropics • Sorghum – Single species native to Africa, drought and heat tolerant •Teff – staple in Ethiopia, very tiny seed, higher mineral content •Gluten Free 4 Diverse Genetics • Genetic “plasticity” – Barley has 7 chromosomes – Rye (Diploid 2 copies of 7 = 14) – Einkorn Wheat (Diploid 2 copies of 7 = 14) – Durum Wheat (Tetraploid 3 copies of 7 = 28) •Emmer – Bread Wheat (Hexaploid 6 copies of 7 = 42) •Spelt 5 Percival 1921 Sports – Discontinuous Variation 6 Farmer Qualities of Heritage Grain • Early breeding efforts – Stiff straw – Non-shattering – Heavy bushel weight – Early maturity – Winter hardiness – Disease resistance – Pre-harvest sprouting – Low inputs • Not -
Diagnosing Maize Diseases in Latin America
Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Published by: The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: (1998) International Service for the Acquisition of Agri-biotech Applications (ISAAA). Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission from the copyright holder, provided the source is properly acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission from the copyright holder. Citation: Diagnosing Maize Diseases in Latin America. C.Casela, R.Renfro and A.F. Krattiger (eds). 1998. ISAAA Briefs No. 9. ISAAA: Ithaca, NY and EMBRAPA, Brasilia. pp. 57. Cover pictures: Pictures taken during the field visits and the diagnostics training workshop in Brazil by ISAAA (K.V. Raman). Available from: The ISAAA Centers listed below. For a list of other ISAAA publications, contact the nearest Center: ISAAA AmeriCenter ISAAA AfriCenter ISAAA EuroCenter ISAAA SEAsiaCenter 260 Emerson Hall c/o CIP John Innes Centre c/o IRRI Cornell University PO 25171 Colney Lane PO Box 933 Ithaca, NY 14853 Nairobi Norwich NR4 7UH 1099 Manila USA Kenya United Kingdom The Philippines [email protected] Also on: www.isaaa.cornell.edu Cost: Cost US$ 10 per copy. Available free of charge for developing countries. Contents Introduction and Overview: Diagnosing Maize Diseases with Proprietary Biotechnology Applications Transferred from Pioneer Hi-Bred International to Brazil and Latin America................................................................1 Anatole Krattiger, Ellen S. -
(Triticum Monococcum) and Durum Wheat (Triticum Durum) and Evaluation of Morphological Properties Using Scanning Electron Microscopy and Image Analysis
Tarım Bilimleri Dergisi Journal of Agricultural Sciences Tar. Bil. Der. Dergi web sayfası: Journal homepage: www.agri.ankara.edu.tr/dergi www.agri.ankara.edu.tr/journal Comparison of Physicochemical Attributes of Einkorn Wheat (Triticum monococcum) and Durum Wheat (Triticum durum) and Evaluation of Morphological Properties Using Scanning Electron Microscopy and Image Analysis Müge HENDEK ERTOPa, Rabia ATASOYb 25 (2019) 93-99 aKastamonu University, Faculty of Engineering and Architecture, Department of Food Engineering, Kastamonu, TURKEY bKastamonu University, Institute of Science, Department of Food Engineering, Kastamonu, TURKEY ARTICLE INFO Research Article DOI: 10.15832/ankutbd.539009 Corresponding Author: Müge HENDEK ERTOP, E-mail: [email protected], Tel: +90 (532) 667 82 40 Received: 14 February 2018, Received in Revised Form: 24 April 2018, Accepted: 05 July 2018 ABSTRACT Einkorn (Triticum monococcum L. subsp. monococcum) is a diploid hulled wheat strictly related to durum and bread wheat types. Many farms in northern Turkey, especially the province of Kastamonu, continue to cultivate the oldest type of wheat still in existence, Triticum monococcum, also known as Siyez. Although there is great potential for breeding, it’s production and consumption has been locally limited and cultivation quantity has been very low. However nowadays, today’s consumer demands to traditional or regional food products and grains have been increased einkorn cultivation in Kastamonu, and cultivation area has been reached to approximately from 5 thousand decares to 35 thousand decares. Einkorn is cultivated two times a year in Kastamonu. The variety which is named as “Çatal Siyez” (Kaplica) composed 60-70% of the production of einkorn, is sowed in April and used as animal feed after harvest. -
Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected]
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Doctoral Documents from Doctor of Plant Health Plant Health Program, Doctor of Program 5-2019 Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/planthealthdoc Part of the Agronomy and Crop Sciences Commons, Apiculture Commons, Biosecurity Commons, Genetics Commons, and the Plant Breeding and Genetics Commons Blecha, Sarah, "Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts" (2019). Doctoral Documents from Doctor of Plant Health Program. 14. https://digitalcommons.unl.edu/planthealthdoc/14 This Doctoral Document is brought to you for free and open access by the Plant Health Program, Doctor of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Doctoral Documents from Doctor of Plant Health Program by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS by Sarah Blecha A Doctoral Document Presented to the Faculty of The College of Agricultural Sciences and Natural Resources In Partial Fulfillment of Requirements For the Degree of Doctor of Plant Health Under the Supervision of Professor Gary L. Hein Lincoln, Nebraska May, 2019 ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS Sarah Blecha, D. P. H. University of Nebraska, 2019 Advisor: Gary L. Hein Bread wheat, Triticum aestivum L., provides 20 percent of the global daily calorie intake. It is the third most important food crop, after rice and corn. -
Spring, Einkorn and Emmer Wheat Species – Potential Rich Sources of Free Ferulic Acid and Other Phenolic Compounds
Spring, einkorn and emmer wheat species – potential rich sources of free ferulic acid and other phenolic compounds J. Lachman1, J. Musilová2, Z. Kotíková1, K. Hejtmánková1, M. Orsák1, J. Přibyl1 1Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic 2Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic ABSTRACT Einkorn (Triticum monococcum L., subsp. monococcum), emmer (Triticum dicoccum Schuebl [Schrank], subsp. dicoccum) and spring wheat (Triticum aestivum L.) may be rich in hydrophilic antioxidants, therefore being a po- tential food source with high nutritional properties. The aim of the present study was to assess the content of free ferulic acid (FFA) and total polyphenols (TP) beneficial for human health in wheat varieties and accessions for breeding and production. Einkorn, emmer and spring wheat varieties were assessed for TP and FFA contents in the precise two-year field experiments. The highest FFA content was determined in emmer wheat varieties and spring cv. Granny. High TP content was characteristic for emmer and spring wheat accessions, however also some einkorn ones were characterised by high levels. Year of cultivation showed a significant impact on FFA contents. Keywords: diploid and tetraploid ancestor wheats; spring hexaploid wheat; hydrophilic antioxidants Cereals and pseudocereals are widely consumed 2002a,b), and the location where it is grown (Yu and are a valuable means to deliver beneficial and Zhou 2004). Environmental factors (such as natural antioxidants to humans (Klepacka and temperature stress, solar radiation and irrigation), Fornal 2006, Bystrická et al. -
Where Was Einkorn Wheat Domesticated?
research news Where was einkorn wheat domesticated? The emergence of agriculture in southwest show that 19 accessions of wild einkorn from Asia and its spread to Europe is the key fac- the basalt mountain of Karacadag in southeast tor in the development of complex civiliz- Turkey are distinct from other lines of wild ations in these regions1. One of the earliest cinkorn from within the fertile crescent, and domesticates was einkorn whcat (Fig. l), and that 11 lines of these are by far the most other early crops included emmer wheat, bar- closely related to domesticated einkorns. ley, pulses such as lentil and pea, and flax. Wild einkorn lines from secondary habitats Collaboration between archaeologists and outside the fertile crescent were found to be crop scientists over the last 40 years has estab- related to wild einkorn from primary habitats lished that the wild ancestors of these early in othcr fertile-crescent groups, but not to the crops grow mainly in an area known as the Karacadag lines. These weedy einkorns are 'fertile crescent' (Fig. 2), stretching from the therefore not feral derivatives of domesti- Levant to southeast Turkey and the Zagros cated einkorn, but rather spread with agricul- mountains of Iran. The earliest Neolithic ture from different parts of the fertile crescent. farming villages known from the Old World The case of the aegilopoides form of that have evidence of these crops appear weedy wild einkorn is different. The mor- within the fertile crescent from about 10 000 phological traits of aegilopoides - increased years ago2. However, until now it has been number of spikelets per spike, larger seeds impossible to localize the region in which any and tough rachis - iire so similar to those of of these crops was domesticated more pre- domesticated einkorn that they probably cisely. -
Antioxidant Activity of Grain of Einkorn (Triticum Mono- Coccum L.), Emmer (Triticum Dicoccum Schuebl [Schrank]) and Spring Wheat (Triticum Aestivum L.) Varieties
Antioxidant activity of grain of einkorn (Triticum mono- coccum L.), emmer (Triticum dicoccum Schuebl [Schrank]) and spring wheat (Triticum aestivum L.) varieties J. Lachman, M. Orsák, V. Pivec, K. Jírů Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic ABSTRACT Wheat and cereals generally are largely consumed worldwide and contribute significantly to antioxidant intake with beneficial health effects.In the precise two-year field experiments, two varieties of wheat einkorn, two varieties of em- mer wheat and three varieties of spring wheat in 2008 and moreover further two spring wheat varieties, three einkorn varieties and three emmer wheat varieties in 2009, were evaluated for antioxidant activity (AOA) using 2,2-diphenyl- 1-picrylhydrazyl assay (DPPH). The higher grain AOA was observed in emmer (215.4–257.6 mg Trolox/kg DM) and einkorn (149.8–255.8 mg Trolox/kg DM) varieties, while in spring varieties the AOA ranged between 195.8 and 210.0 mg Trolox/kg DM. A linear correlation between total polyphenols and AOA was determined (r = 0.739, P ≤ 0.05). Emmer and einkorn wheat varieties showed high AOA and can be promising sources of these nutritionally appreciated grain constituents. Keywords: minority wheat varieties; radical scavenging activity Cereals could be important sources of antioxidant Nowadays, the global food supply has become vitamins and enzymes and other health-beneficial increasingly dependent on only a few crops. Three substances in human nutrition (Ehrenbergerová et cereals meet more than 50% of the worldwide al. 2009, Březinová-Belcredi et al. -
Food Menu Report: Artisan Bread
Food Menu Report: Artisan Bread Item Name Ingredient Statement Allergen Statement Loaves 100% Whole Grain Bread (Whole Grain White Wheat Flour, Water, 10-Grain Cereal [Cracked Whole Wheat, Rye Meal, Corn Meal, Oats, Rye Flour, Soy Grits, Sunflower Seeds, Crushed 100% Whole Grain Hearth Triticale, Barley Flakes, Millet, Flaxseed], Clover Honey, Sea Salt, Yeast, Ascorbic Acid). Contains Soy, Wheat. Asiago Cheese Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Asiago Cheese [Pasteurized Asiago Cheese Milk, Cheese Cultures, Enzymes], Sea Salt, Yeast, Malt, Ascorbic Acid). Contains Milk, Wheat. Challah Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Organic Eggs, Sugar, Butter [Cream, Challah Salt, Milk], Milk Powder, Sea Salt, Yeast). Contains Egg, Milk, Wheat. Ciabatta Ciabatta Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron,Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Sea Salt, Yeast, Ascorbic Acid. Contains Wheat. Classic 10 Grain Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, 10-Grain Cereal [Cracked Whole Wheat, Rye Meal, Corn Meal, Oats, Rice Flour, Soy Grits, Sunflower Seeds, Crushed Triticale, Barley Flakes, Millet, Flaxseed], Stone Ground Whole Wheat Flour, Clover Honey, Sea Salt, Classic 10 Grain Yeast, Ascorbic Acid). Contains Soy, Wheat. French Boule/Baguette (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Sea Salt, Yeast, Malt, French Baguette Ascorbic Acid). Contains Wheat. French Boule/Baguette (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Sea Salt, Yeast, Malt, French Boule Ascorbic Acid). -
Fusarium Head Blight of Wheat: Evaluation of the Efficacies Of
Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China By Chami Chathurangi Amarasinghe A Thesis Submitted to the Faculty of Graduate Studies In partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada ©Copyright by Chami Chathurangi Amarasinghe 2010 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China BY Chami Chathurangi Amarasinghe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree OF MASTER OF SCIENCE Chami Amarasinghe © 2010 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis. The reproduction or copy of this thesis has been made available by authority of copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. ACKNOWLEGMENTS First of all my sincere gratitude goes to Dr. -
Evaluation of Winter Wheat Germplasm for Resistance To
EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By ALBERT OKABA KERTHO In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology August 2014 Fargo, North Dakota North Dakota State University Graduate School Title EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST By ALBERT OKABA KERTHO The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Maricelis Acevedo Chair Dr. Francois Marais Dr. Liu Zhaohui Dr. Phil McClean Approved: 09/29/2014 Dr. Jack Rasmussen Date Department Chair ABSTRACT Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively.