Winter-Hardy Spring Wheat Breeding: Analysis of Winter X Spring Wheat Germplasm and the Development of Selection Tools

Total Page:16

File Type:pdf, Size:1020Kb

Winter-Hardy Spring Wheat Breeding: Analysis of Winter X Spring Wheat Germplasm and the Development of Selection Tools Winter-Hardy Spring Wheat Breeding: Analysis of Winter x Spring Wheat Germplasm and the Development of Selection Tools by Roger James Andrew Larsen A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctorate of Philosophy in Plant Agriculture Guelph, Ontario, Canada © Roger James Andrew Larsen, August, 2012 ABSTRACT Winter-Hardy Spring Wheat Breeding: Analysis of Winter x Spring Wheat Germplasm and the Development of Selection Tools Roger James Andrew Larsen Advisor: University of Guelph, 2012 Dr. Duane E. Falk Development of a winter-hardy spring wheat breeding platform could increase the gain in selection per year over traditional winter wheat breeding programs. To make use of spring wheat being able to produce three generations per year, an indoor cold tolerance screen using chlorophyll fluorescence (Fv/Fm) and visual assessment two weeks after freezing as evaluation parameters was developed. Evaluation of Ontario-adapted winter and spring wheat varieties demonstrated that the test was able to differentiate between winter and spring wheat. Specific varieties from this data set were used to develop an indoor freezing survival index (IFSI) to normalize data for effective ranking of germplasm in further experiments. Indepth analysis of a Froid (winter) x Siete Cerros (spring) wheat population using molecular markers indicated that a significant level of cold tolerance is preserved when the Vrn- B1 spring allele is used compared to the Vrn-A1 allele. Generation means analysis of the same cross indicated that the cold tolerance was due to additive genetic effects. Multiple populations with at least one spring parent were advanced to the F3:4 generation. IFSI analysis indicated that several lines from the populations had cold tolerance similar to Ontario-adapted winter wheats and better than several winter barley varieites. Further testing found a significant 5% improvement in cold tolerance was noted for spring wheat varieties treated with Cruiser Maxx seed treatment. Finally, a Norstar (winter) x Bergen (spring) doubled haploid wheat population was analysed and a significant correlation to LT50 data from an independent laboratory validated the methods used in these experiments. In a separate experiment, multiple indicies calculated from spectral reflectance measurements taken on the Ontario winter wheat performance trial at Elora and Harriston in 2008-09 were found to be significantly correlated to winter survival ratings. Fall reflectance measurements indicate non-random plant density or vigour effects in the trials. To adjust winter survival ratings accordingly, linear and non-linear approaches were used and found the non-linear model to be statistically superior. Large differences between locations illustrated that for complete modelling of winter survival, more data from locations of differing soil types, plant density and plant growth stage is required. ACKNOWLEDGEMENTS I would like to sincerely thank my advisor Dr. Duane Falk for mentoring me over the course of my studies. The main reason why I continued on in school was to hone my skills as a practical and classical plant breeder. His consistent encouragement to take a hands-on approach helped me to learn to be self-sufficient and gain a greater understanding of what it takes to be a cereals breeder. Our scientific, philosophical and personal conversations at school, in the field and during travel will always be remembered, and I am glad to say I enjoyed my time as a graduate student. His encouragement to get involved with committees inside and outside of the department led to recognition from SeCan as ‘Seed of the Year’. Furthermore, it led to collaborative research opportunities with private industry and the chance to become involved with the OCCC. All of these aspects were important for a young plant breeders education. Equally, I would like to thank Mark Etienne and Henry Olechowski at Hyland Seeds, my NSERC Industrial post-Graduate Scholarship and MITACS partners for being willing to fund my education and research. Mark is an excellent breeder. He is always open to new ideas, always willing to be patient, share advice with me, and always willing to include me as a member of his team. He could have viewed me as extra labour or bother; instead, he trusted me to make selections in the nursery, solicited me to provide advice in the breeding program and included me on breeding trips. His doubled haploid breeding program was different than the breeding program at Guelph, giving me knowledge and experience with another method of breeding. Mark’s rigourous and meticulous note taking helped me to understand the importance to be detailed in my approaches and his ability to pull light brown chaff out of a plot still amazes me! Henry was a constant source of support as a member of my advisory committee and as an industrial partner. He furthered my education by always including me in the business aspects of the iv Hyland cereals program, as well as, ongoing research projects in the corn and soybean programs. He was always willing to support my research interests by any means possible, which was not easy considering the constraints of a medium-sized, family owned breeding company. I would like to thank the two other members of my advisory committee, Dr. Hugh Earl and Dr. Laima Kott. Hugh was instrumental in encouraging me to work with chlorophyll fluorimetry and spectral reflectance to measure cold tolerance and winter survival. Laima was always available for me, willing to share ideas and even growth cabinet space for my experiments. Her lab is a source of constant innovation and it is something that I hope to replicate in my career. I would like to thank the members of the cereal breeding lab, Zorka Zslavnics and the gang. They were a great help in planting, managing plots, and harvesting. They were also a source of good conversation and practical knowledge. I would like to thank the staff members of the Department of Plant Agriculture. Specifically, I would like to thank Peter Smith, Dietmar Scholz and Jim Hoare for all of their assistance. We had a strong cohort of graduate students while I was in the department and I will fondly remember dating myself at every coffee break. I will also remember the sharing of ideas and co-learning which is really what school is all about. Finally, I would like to acknowledge my family for being a constant source of support. My wife Angela deserves most of the recognition for tolerating me going back to school, listening to my scientific drivel, having two amazing children while I was in school, working to support me and doing with less and never complaining. v TABLE OF CONTENTS ABSTRACT II ACKNOWLEDGEMENTS IV LIST OF TABLES XI LIST OF FIGURES XVI LIST OF ABREVIATIONS XIX INTRODUCTION 1 CHAPTER 1. LITERATURE REVIEW 4 1.2 The Evolution of Wheat (Triticum sp.) 4 1.2.1 Pre-Domestication Evolution 4 1.2.2 Domestication and Cultivation of Wheat 9 1.3.1 Wheat Production in the World 12 1.3.2 Wheat Production in Canada 14 1.3.3 Wheat Production in Ontario 17 1.4 Mechanisms for Control of Flowering in Wheat 19 1.4.1 Vernalization 19 1.4.2 Photoperiod 28 1.4.3 The Flowering Pathway in Cereals 32 1.4.4 Gene specific Molecular Markers for Vernlization and Photoperiod 33 1.5 Cold Tolerance in Cereals 35 1.5.1 Winter Survival in Ontario 35 1.5.2 Effect of Cold on Plant Cells 35 1.5.3 Effects of Low Temperatures on Photosynthesis 36 1.5.4 Effect of Reactive oxygen species on the Photosystems 36 1.5.5 Cold Temperature Effects on Plant Cell Membranes 37 1.6 Plant Cell Responses to Cold and Mechanisms to Avoid Cold Temperature Induced Damage 37 1.6.1 Alteration of Plant Cell Membranes and Membrane Composition 38 vi 1.6.2 Alterations to the Plant Cell Wall 38 1.6.3 Change in Plant Metabolite Concentrations 39 1.6.4 Alteration of Solute Concentrations 39 1.6.5 Alteration in Light Energy Usage and Photosynthetic Pathways 40 1.6.6 Genetic Mechanisms of Cold tolerance and Activation of Genes involved in Acclimation to Cold Temperatures 41 1.7 Methods for Testing Cold Tolerance in Cereals 44 1.7.1 Electrolyte Leakage 45 1.7.2 Chlorophyll Fluorescence 46 1.7.2.1 THE BIPARTITE MODEL 46 1.7.2.2 PHOTOSYNTHESIS (PQ) 46 1.7.2.3 NON-PHOTOCHEMICAL QUENCHING (NPQ) 47 1.7.2.4 CHLOROPHYLL FLUORESCENCE (FQ) 47 1.7.2.5 FLUORESCENCE MEASURES OF DARK ADAPTED LEAVES (MAXIMUN QUANTUM YIELD OF PHOTOSYSTEM II) 48 1.7.3 Application of Fv/Fm for Testing Cold Stress in Cereals 49 1.7.4 Assessment of Cold Tolerance Outdoors 51 1.8 Using Spectroradiometry for Evaluating Biomass in Field Crops 52 1.8.1 The Development of Spectral Reflectance as a Tool to Assess Plant Leaves 52 1.8.2 Factors Affecting Canopy Reflectance 53 1.8.3 Informative Reflectance Ratios 54 1.8.3.1 NORMALIZED DIFFERENCE VEGETATIVE INDEX 54 1.8.3.2 SOIL ADJUSTED VEGETATIVE INDEX 55 1.8.3.3 TRIANGULAR VEGETATIVE INDEX 56 1.8.4 Canopy Reflectance as a Measure of Biomass 56 CHAPTER 2. DEVELOPING THE WINTER HARDY SPRING WHEAT PLATFORM 75 2.1 Introduction 75 2.2 Materials and Methods 82 2.2.1 Experiment #1- Testing of Ontario-adapted spring and winter wheat varieties 82 2.2.1.1 GERMPLASM 82 2.2.1.2 EXPERIMENTAL DESIGN, PLANT GROWTH CONDITIONS 82 2.2.1.3 CHLOROPHYLL FLUORESCENCE MEASUREMENTS 83 2.2.1.4 VISUAL ASSESSMENT OF WHEAT PLANTS TWO WEEKS POST FREEZING 84 2.2.1.5 FIELD EVALUATION FOR ONTARIO-ADAPTED WINTER WHEAT 84 2.2.1.6 STATISTICAL ANALYSIS 85 2.2.1.7 CALCULATION OF LT50 85 2.2.1.8 INDOOR FREEZING SURVIVAL INDEX (IFSI) OF ONTARIO ADAPTED WINTER AND SPRING
Recommended publications
  • Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt
    fermentation Article Observations on the Malting of Ancient Wheats: Einkorn, Emmer and Spelt Alice Fujita, Senay Simsek and Paul B. Schwarz * Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; [email protected] (A.F.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +1-701-231-7732 Received: 25 November 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: There have been tremendous marketing efforts and consumer interest in the so-called ancient grains. Einkorn, emmer and spelt, which are sometimes referred to as ancient wheats, are frequently included in this category, and have gained some attention among brewers. The objective of the current study was to compare the malting behavior and quality of einkorn, emmer and spelt cultivars obtained from the same growing environment. Aside from standard malt quality traits, the levels of β-amylase, protease, xylanase, wort arabinoxylans and wort phenolic acids were measured. While protein levels of the samples were higher (11.4–14.0%) than normally selected for wheat malt, the results indicated that malts of acceptable quality in terms of extract and amylolytic activity can be prepared from the three grain types. However, the ideal malting protocol will likely differ between the grains. The kernels of einkorn are significantly smaller, and steep hydration and malt modification are quicker. In terms of potential health benefits from antioxidant capacity and dietary fiber, wort from einkorn trended to higher levels of free and conjugated ferulic acid, as well as high-molecular-weight arabinoxylan. Keywords: arabinoxylan; brewing; einkorn; enzyme activity; emmer; malt; phenolic acid; spelt; and sprouting 1.
    [Show full text]
  • Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection
    plants Article Mining of Leaf Rust Resistance Genes Content in Egyptian Bread Wheat Collection Mohamed A. M. Atia 1,* , Eman A. El-Khateeb 2, Reem M. Abd El-Maksoud 3 , Mohamed A. Abou-Zeid 4 , Arwa Salah 1 and Amal M. E. Abdel-Hamid 5 1 Molecular Genetics and Genome Mapping Laboratory, Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 2 Department of Botany, Faculty of Science, Tanta University, Tanta 31527, Egypt; [email protected] 3 Department of Nucleic Acid & Protein Structure, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 4 Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt; [email protected] 5 Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Roxy, Cairo 11341, Egypt; [email protected] * Correspondence: [email protected]; Tel.: +20-1000164922 Abstract: Wheat is a major nutritional cereal crop that has economic and strategic value worldwide. The sustainability of this extraordinary crop is facing critical challenges globally, particularly leaf rust disease, which causes endless problems for wheat farmers and countries and negatively affects humanity’s food security. Developing effective marker-assisted selection programs for leaf rust Citation: Atia, M.A.M.; El-Khateeb, resistance in wheat mainly depends on the availability of deep mining of resistance genes within the E.A.; Abd El-Maksoud, R.M.; germplasm collections. This is the first study that evaluated the leaf rust resistance of 50 Egyptian Abou-Zeid, M.A.; Salah, A.; wheat varieties at the adult plant stage for two successive seasons and identified the absence/presence Abdel-Hamid, A.M.E.
    [Show full text]
  • Using the Qualities of Heritage Grains to Build Local Markets
    Using the Qualities of Heritage Grains to Build Local Markets 2017 Organic Alberta Conference – Lacombe, AB Chris Wooding, Ironwood Organics 1 ironwoodorganics.ca Instagram: Ironwoodorganics What heritage grain is not • Selling food by the pound – Cost of production is higher – Yield is lower • Modern wheat – Is for weight and uniformity – Principally grown as a filler – Has been bred to accept inputs, hold air and absorb water 2 Heritage ● Landrace ● Ancient • Ancient Grains – Emmer, Einkorn, Spelt, (Farro) – Domestication @ 7500-10000BC • Landrace – 1700-1920 – Adaptable to region • Heritage – Open pollinated – Pre-green revolution (1940) • Primarily includes Wheat and Barley 3 Other Heritage Grains • Amaranth: – Aztec culture, higher protein & mineral content • Quinoa – Inca culture, higher protein & mineral content • Millet – Small seeded grasses, important in semi-arid tropics • Sorghum – Single species native to Africa, drought and heat tolerant •Teff – staple in Ethiopia, very tiny seed, higher mineral content •Gluten Free 4 Diverse Genetics • Genetic “plasticity” – Barley has 7 chromosomes – Rye (Diploid 2 copies of 7 = 14) – Einkorn Wheat (Diploid 2 copies of 7 = 14) – Durum Wheat (Tetraploid 3 copies of 7 = 28) •Emmer – Bread Wheat (Hexaploid 6 copies of 7 = 42) •Spelt 5 Percival 1921 Sports – Discontinuous Variation 6 Farmer Qualities of Heritage Grain • Early breeding efforts – Stiff straw – Non-shattering – Heavy bushel weight – Early maturity – Winter hardiness – Disease resistance – Pre-harvest sprouting – Low inputs • Not
    [Show full text]
  • Diagnosing Maize Diseases in Latin America
    Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Diagnosing Maize Diseases in Latin America Carlos Casela, Bobby (R.B.) Renfro, Anatole F. Krattiger Editors Published in collaboration with PIONEER HI-BRED INTERNATIONAL, INC. No. 9-1998 Published by: The International Service for the Acquisition of Agri-biotech Applications (ISAAA). Copyright: (1998) International Service for the Acquisition of Agri-biotech Applications (ISAAA). Reproduction of this publication for educational or other non-commercial purposes is authorized without prior permission from the copyright holder, provided the source is properly acknowledged. Reproduction for resale or other commercial purposes is prohibited without the prior written permission from the copyright holder. Citation: Diagnosing Maize Diseases in Latin America. C.Casela, R.Renfro and A.F. Krattiger (eds). 1998. ISAAA Briefs No. 9. ISAAA: Ithaca, NY and EMBRAPA, Brasilia. pp. 57. Cover pictures: Pictures taken during the field visits and the diagnostics training workshop in Brazil by ISAAA (K.V. Raman). Available from: The ISAAA Centers listed below. For a list of other ISAAA publications, contact the nearest Center: ISAAA AmeriCenter ISAAA AfriCenter ISAAA EuroCenter ISAAA SEAsiaCenter 260 Emerson Hall c/o CIP John Innes Centre c/o IRRI Cornell University PO 25171 Colney Lane PO Box 933 Ithaca, NY 14853 Nairobi Norwich NR4 7UH 1099 Manila USA Kenya United Kingdom The Philippines [email protected] Also on: www.isaaa.cornell.edu Cost: Cost US$ 10 per copy. Available free of charge for developing countries. Contents Introduction and Overview: Diagnosing Maize Diseases with Proprietary Biotechnology Applications Transferred from Pioneer Hi-Bred International to Brazil and Latin America................................................................1 Anatole Krattiger, Ellen S.
    [Show full text]
  • (Triticum Monococcum) and Durum Wheat (Triticum Durum) and Evaluation of Morphological Properties Using Scanning Electron Microscopy and Image Analysis
    Tarım Bilimleri Dergisi Journal of Agricultural Sciences Tar. Bil. Der. Dergi web sayfası: Journal homepage: www.agri.ankara.edu.tr/dergi www.agri.ankara.edu.tr/journal Comparison of Physicochemical Attributes of Einkorn Wheat (Triticum monococcum) and Durum Wheat (Triticum durum) and Evaluation of Morphological Properties Using Scanning Electron Microscopy and Image Analysis Müge HENDEK ERTOPa, Rabia ATASOYb 25 (2019) 93-99 aKastamonu University, Faculty of Engineering and Architecture, Department of Food Engineering, Kastamonu, TURKEY bKastamonu University, Institute of Science, Department of Food Engineering, Kastamonu, TURKEY ARTICLE INFO Research Article DOI: 10.15832/ankutbd.539009 Corresponding Author: Müge HENDEK ERTOP, E-mail: [email protected], Tel: +90 (532) 667 82 40 Received: 14 February 2018, Received in Revised Form: 24 April 2018, Accepted: 05 July 2018 ABSTRACT Einkorn (Triticum monococcum L. subsp. monococcum) is a diploid hulled wheat strictly related to durum and bread wheat types. Many farms in northern Turkey, especially the province of Kastamonu, continue to cultivate the oldest type of wheat still in existence, Triticum monococcum, also known as Siyez. Although there is great potential for breeding, it’s production and consumption has been locally limited and cultivation quantity has been very low. However nowadays, today’s consumer demands to traditional or regional food products and grains have been increased einkorn cultivation in Kastamonu, and cultivation area has been reached to approximately from 5 thousand decares to 35 thousand decares. Einkorn is cultivated two times a year in Kastamonu. The variety which is named as “Çatal Siyez” (Kaplica) composed 60-70% of the production of einkorn, is sowed in April and used as animal feed after harvest.
    [Show full text]
  • Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Doctoral Documents from Doctor of Plant Health Plant Health Program, Doctor of Program 5-2019 Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts Sarah Blecha University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/planthealthdoc Part of the Agronomy and Crop Sciences Commons, Apiculture Commons, Biosecurity Commons, Genetics Commons, and the Plant Breeding and Genetics Commons Blecha, Sarah, "Addressing the Challenges Facing Wheat Production: Nebraska and International Breeding Efforts" (2019). Doctoral Documents from Doctor of Plant Health Program. 14. https://digitalcommons.unl.edu/planthealthdoc/14 This Doctoral Document is brought to you for free and open access by the Plant Health Program, Doctor of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Doctoral Documents from Doctor of Plant Health Program by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS by Sarah Blecha A Doctoral Document Presented to the Faculty of The College of Agricultural Sciences and Natural Resources In Partial Fulfillment of Requirements For the Degree of Doctor of Plant Health Under the Supervision of Professor Gary L. Hein Lincoln, Nebraska May, 2019 ADDRESSING THE CHALLENGES FACING WHEAT PRODUCTION: NEBRASKA AND INTERNATIONAL BREEDING EFFORTS Sarah Blecha, D. P. H. University of Nebraska, 2019 Advisor: Gary L. Hein Bread wheat, Triticum aestivum L., provides 20 percent of the global daily calorie intake. It is the third most important food crop, after rice and corn.
    [Show full text]
  • Spring, Einkorn and Emmer Wheat Species – Potential Rich Sources of Free Ferulic Acid and Other Phenolic Compounds
    Spring, einkorn and emmer wheat species – potential rich sources of free ferulic acid and other phenolic compounds J. Lachman1, J. Musilová2, Z. Kotíková1, K. Hejtmánková1, M. Orsák1, J. Přibyl1 1Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic 2Department of Chemistry, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic ABSTRACT Einkorn (Triticum monococcum L., subsp. monococcum), emmer (Triticum dicoccum Schuebl [Schrank], subsp. dicoccum) and spring wheat (Triticum aestivum L.) may be rich in hydrophilic antioxidants, therefore being a po- tential food source with high nutritional properties. The aim of the present study was to assess the content of free ferulic acid (FFA) and total polyphenols (TP) beneficial for human health in wheat varieties and accessions for breeding and production. Einkorn, emmer and spring wheat varieties were assessed for TP and FFA contents in the precise two-year field experiments. The highest FFA content was determined in emmer wheat varieties and spring cv. Granny. High TP content was characteristic for emmer and spring wheat accessions, however also some einkorn ones were characterised by high levels. Year of cultivation showed a significant impact on FFA contents. Keywords: diploid and tetraploid ancestor wheats; spring hexaploid wheat; hydrophilic antioxidants Cereals and pseudocereals are widely consumed 2002a,b), and the location where it is grown (Yu and are a valuable means to deliver beneficial and Zhou 2004). Environmental factors (such as natural antioxidants to humans (Klepacka and temperature stress, solar radiation and irrigation), Fornal 2006, Bystrická et al.
    [Show full text]
  • Where Was Einkorn Wheat Domesticated?
    research news Where was einkorn wheat domesticated? The emergence of agriculture in southwest show that 19 accessions of wild einkorn from Asia and its spread to Europe is the key fac- the basalt mountain of Karacadag in southeast tor in the development of complex civiliz- Turkey are distinct from other lines of wild ations in these regions1. One of the earliest cinkorn from within the fertile crescent, and domesticates was einkorn whcat (Fig. l), and that 11 lines of these are by far the most other early crops included emmer wheat, bar- closely related to domesticated einkorns. ley, pulses such as lentil and pea, and flax. Wild einkorn lines from secondary habitats Collaboration between archaeologists and outside the fertile crescent were found to be crop scientists over the last 40 years has estab- related to wild einkorn from primary habitats lished that the wild ancestors of these early in othcr fertile-crescent groups, but not to the crops grow mainly in an area known as the Karacadag lines. These weedy einkorns are 'fertile crescent' (Fig. 2), stretching from the therefore not feral derivatives of domesti- Levant to southeast Turkey and the Zagros cated einkorn, but rather spread with agricul- mountains of Iran. The earliest Neolithic ture from different parts of the fertile crescent. farming villages known from the Old World The case of the aegilopoides form of that have evidence of these crops appear weedy wild einkorn is different. The mor- within the fertile crescent from about 10 000 phological traits of aegilopoides - increased years ago2. However, until now it has been number of spikelets per spike, larger seeds impossible to localize the region in which any and tough rachis - iire so similar to those of of these crops was domesticated more pre- domesticated einkorn that they probably cisely.
    [Show full text]
  • Antioxidant Activity of Grain of Einkorn (Triticum Mono- Coccum L.), Emmer (Triticum Dicoccum Schuebl [Schrank]) and Spring Wheat (Triticum Aestivum L.) Varieties
    Antioxidant activity of grain of einkorn (Triticum mono- coccum L.), emmer (Triticum dicoccum Schuebl [Schrank]) and spring wheat (Triticum aestivum L.) varieties J. Lachman, M. Orsák, V. Pivec, K. Jírů Department of Chemistry, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences in Prague, Prague, Czech Republic ABSTRACT Wheat and cereals generally are largely consumed worldwide and contribute significantly to antioxidant intake with beneficial health effects.In the precise two-year field experiments, two varieties of wheat einkorn, two varieties of em- mer wheat and three varieties of spring wheat in 2008 and moreover further two spring wheat varieties, three einkorn varieties and three emmer wheat varieties in 2009, were evaluated for antioxidant activity (AOA) using 2,2-diphenyl- 1-picrylhydrazyl assay (DPPH). The higher grain AOA was observed in emmer (215.4–257.6 mg Trolox/kg DM) and einkorn (149.8–255.8 mg Trolox/kg DM) varieties, while in spring varieties the AOA ranged between 195.8 and 210.0 mg Trolox/kg DM. A linear correlation between total polyphenols and AOA was determined (r = 0.739, P ≤ 0.05). Emmer and einkorn wheat varieties showed high AOA and can be promising sources of these nutritionally appreciated grain constituents. Keywords: minority wheat varieties; radical scavenging activity Cereals could be important sources of antioxidant Nowadays, the global food supply has become vitamins and enzymes and other health-beneficial increasingly dependent on only a few crops. Three substances in human nutrition (Ehrenbergerová et cereals meet more than 50% of the worldwide al. 2009, Březinová-Belcredi et al.
    [Show full text]
  • Food Menu Report: Artisan Bread
    Food Menu Report: Artisan Bread Item Name Ingredient Statement Allergen Statement Loaves 100% Whole Grain Bread (Whole Grain White Wheat Flour, Water, 10-Grain Cereal [Cracked Whole Wheat, Rye Meal, Corn Meal, Oats, Rye Flour, Soy Grits, Sunflower Seeds, Crushed 100% Whole Grain Hearth Triticale, Barley Flakes, Millet, Flaxseed], Clover Honey, Sea Salt, Yeast, Ascorbic Acid). Contains Soy, Wheat. Asiago Cheese Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Asiago Cheese [Pasteurized Asiago Cheese Milk, Cheese Cultures, Enzymes], Sea Salt, Yeast, Malt, Ascorbic Acid). Contains Milk, Wheat. Challah Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Organic Eggs, Sugar, Butter [Cream, Challah Salt, Milk], Milk Powder, Sea Salt, Yeast). Contains Egg, Milk, Wheat. Ciabatta Ciabatta Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron,Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Sea Salt, Yeast, Ascorbic Acid. Contains Wheat. Classic 10 Grain Bread (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, 10-Grain Cereal [Cracked Whole Wheat, Rye Meal, Corn Meal, Oats, Rice Flour, Soy Grits, Sunflower Seeds, Crushed Triticale, Barley Flakes, Millet, Flaxseed], Stone Ground Whole Wheat Flour, Clover Honey, Sea Salt, Classic 10 Grain Yeast, Ascorbic Acid). Contains Soy, Wheat. French Boule/Baguette (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Sea Salt, Yeast, Malt, French Baguette Ascorbic Acid). Contains Wheat. French Boule/Baguette (Unbleached Unbromated Enriched Flour [Niacin, Reduced Iron, Thiamine Mononitrate, Riboflavin, Folic Acid], Malted Barley Flour, Water, Sea Salt, Yeast, Malt, French Boule Ascorbic Acid).
    [Show full text]
  • Fusarium Head Blight of Wheat: Evaluation of the Efficacies Of
    Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China By Chami Chathurangi Amarasinghe A Thesis Submitted to the Faculty of Graduate Studies In partial Fulfillment of the Requirements for the degree of MASTER OF SCIENCE Department of Plant Science University of Manitoba Winnipeg, Manitoba, Canada ©Copyright by Chami Chathurangi Amarasinghe 2010 THE UNIVERSITY OF MANITOBA FACULTY OF GRADUATE STUDIES ***** Fusarium Head Blight of Wheat: Evaluation of the efficacies of fungicides towards Fusarium graminearum 3-ADON and 15-ADON isolates in spring wheat and assess the genetic differences between 3-ADON isolates from Canada and China BY Chami Chathurangi Amarasinghe A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements for the degree OF MASTER OF SCIENCE Chami Amarasinghe © 2010 Permission has been granted to the Library of the University of Manitoba to lend or sell copies of this thesis, to the National Library of Canada to microfilm this thesis and to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this thesis. The reproduction or copy of this thesis has been made available by authority of copyright owner solely for the purpose of private study and research, and may only be reproduced and copied as permitted by copyright laws or with express written authorization from the copyright owner. ACKNOWLEGMENTS First of all my sincere gratitude goes to Dr.
    [Show full text]
  • Evaluation of Winter Wheat Germplasm for Resistance To
    EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By ALBERT OKABA KERTHO In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Department: Plant Pathology August 2014 Fargo, North Dakota North Dakota State University Graduate School Title EVALUATION OF WINTER WHEAT GERMPLASM FOR RESISTANCE TO STRIPE RUST AND LEAF RUST By ALBERT OKABA KERTHO The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Dr. Maricelis Acevedo Chair Dr. Francois Marais Dr. Liu Zhaohui Dr. Phil McClean Approved: 09/29/2014 Dr. Jack Rasmussen Date Department Chair ABSTRACT Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively.
    [Show full text]