Scott Triclosan Free Antibacterial Skin Cleanser

Total Page:16

File Type:pdf, Size:1020Kb

Scott Triclosan Free Antibacterial Skin Cleanser SCOTT TRICLOSAN FREE ANTIBACTERIAL SKIN CLEANSER- benzalkonium chloride solution Kimberly-Clark Corporation Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- Scott Triclosan Free Antibacterial Skin Cleanser Drug Facts Active Ingredient Benzalkonium Chloride 0.13% Purpose Antiseptic Use For handwashing to decrease bacteria on the skin. Warnings For External Use Only. When using this product avoid contact with eyes. In case of contact, flush eyes with water. Stop use & ask a doctor if irritation or redness develops and persists. Keep out of reach of children. If swallowed, get medical help or contact a Poison Control Center right away. Directions Wet hands and apply a palmful to hands. Lather vigorously for at least 15 seconds. Rinse and dry thoroughly. Other Information Report any serious side effects from this product to 1-877-561-6587 Inactive Ingredients Water, PEG-175 Diisostearate, Cocamidopropylamine Oxide, Polysilicone-20, Cetrimonium Chloride, Di-PPG-2 Myreth-10 Adipate, Benzyl Alcohol, Polymethacrylamidopropyltrimonium Chloride, Fragrance, Tetrasodium Iminodisuccinic Acid, Citric Acid, Aminomethylpropanol Questions? 1-888-346-4652 Distributed in the U.S. by Kimberly-Clark Global Sales, LLC, Roswell, GA 30076-2199 PRINCIPAL DISPLAY PANEL - 500 mL Bottle Label 34918 Scott* BRAND Triclosan Free Antibacterial Skin Cleanser Benzalkonium Chloride 0.13% 500 mL (16.9 fl oz) SCOTT TRICLOSAN FREE ANTIBACTERIAL SKIN CLEANSER benzalkonium chloride solution Product Information Product T ype HUMAN OTC DRUG Ite m Code (Source ) NDC:55118 -555 Route of Administration TOPICAL Active Ingredient/Active Moiety Ingredient Name Basis of Strength Strength Benza lko nium Chlo ride (UNII: F5UM2KM3W7) (Benzalko nium - UNII:7N6 JUD5X6 Y) Benzalko nium Chlo ride 0 .13 g in 10 0 mL Inactive Ingredients Ingredient Name Strength WATER (UNII: 0 59 QF0 KO0 R) CO CAMIDO PRO PYLAMINE O XIDE (UNII: M4SL8 2J7HK) CETRIMO NIUM CHLO RIDE (UNII: UC9 PE9 5IBP) BENZYL ALCO HO L (UNII: LKG8 49 4WBH) CITRIC ACID MO NO HYDRATE (UNII: 29 6 8 PHW8 QP) AMINO METHYLPRO PANO L (UNII: LU49 E6 6 26 Q) Packaging Marketing Start Marketing End # Item Code Package Description Date Date NDC:55118 -555- 50 0 mL in 1 CONTAINER; Type 0 : No t a Co mbinatio n 1 0 5 Pro duct Marketing Information Marke ting Cate gory Application Numbe r or Monograph Citation Marke ting Start Date Marke ting End Date OTC mo no graph no t final part333E 0 3/0 1/20 12 Labeler - Kimberly-Clark Corporation (006072136) Revised: 11/2014 Kimberly-Clark Corporation.
Recommended publications
  • Antiseptics and Disinfectants for the Treatment Of
    Verstraelen et al. BMC Infectious Diseases 2012, 12:148 http://www.biomedcentral.com/1471-2334/12/148 RESEARCH ARTICLE Open Access Antiseptics and disinfectants for the treatment of bacterial vaginosis: A systematic review Hans Verstraelen1*, Rita Verhelst2, Kristien Roelens1 and Marleen Temmerman1,2 Abstract Background: The study objective was to assess the available data on efficacy and tolerability of antiseptics and disinfectants in treating bacterial vaginosis (BV). Methods: A systematic search was conducted by consulting PubMed (1966-2010), CINAHL (1982-2010), IPA (1970- 2010), and the Cochrane CENTRAL databases. Clinical trials were searched for by the generic names of all antiseptics and disinfectants listed in the Anatomical Therapeutic Chemical (ATC) Classification System under the code D08A. Clinical trials were considered eligible if the efficacy of antiseptics and disinfectants in the treatment of BV was assessed in comparison to placebo or standard antibiotic treatment with metronidazole or clindamycin and if diagnosis of BV relied on standard criteria such as Amsel’s and Nugent’s criteria. Results: A total of 262 articles were found, of which 15 reports on clinical trials were assessed. Of these, four randomised controlled trials (RCTs) were withheld from analysis. Reasons for exclusion were primarily the lack of standard criteria to diagnose BV or to assess cure, and control treatment not involving placebo or standard antibiotic treatment. Risk of bias for the included studies was assessed with the Cochrane Collaboration’s tool for assessing risk of bias. Three studies showed non-inferiority of chlorhexidine and polyhexamethylene biguanide compared to metronidazole or clindamycin. One RCT found that a single vaginal douche with hydrogen peroxide was slightly, though significantly less effective than a single oral dose of metronidazole.
    [Show full text]
  • Quaternary Ammonium Compounds
    FACT SHEET: Quaternary Ammonium Compounds Quaternary ammonium compounds, also known as “quats” or “QACs,” include a number of chemicals used as sanitizers and disinfectants, including benzalkonium chloride, benzethonium chloride, cetalkonium chloride, cetrimide, cetrimonium bromide, cetylpyridinium chloride, glycidyl trimethyl, ammonium chloride, and stearalkonium chloride.[i] In general, quats cause toxic effects through all Mutagenicity routes of exposure including inhalation, Some quats have shown to be mutagenic and to ingestion, dermal application, and irrigation of damage animal DNA and DNA in human body cavities. Exposure to diluted solutions may lymphocytes at much lower levels than are result in mild irritation, while concentrated present in cleaning chemicals.[6] solutions are corrosive, causing burns to the skin and mucous Membranes. They can produce Antimicrobial Resistance systemic toxicity and can also cause allergic Genes have been discovered that mediate reactions.[2] resistance to quats. There has been an association of some of these genes with beta lactamase genes, Asthma and Allergies raising concern for a relationship between Of particular interest with regard to use as disinfectant resistance and antibiotic resistance.[7] disinfectants in the COVID-19 pandemic, quats increase the risk for asthma and allergic Reproductive Toxicity sensitization. Evidence from occupational Mice whose cages were cleaned with QACs had exposures shows increased risk of rhinitis and very low fertility rates. [8] Exposure to a common asthma
    [Show full text]
  • Evaluating Disinfectants for Use Against the COVID-19 Virus
    When it comes to choosing a disinfectant to combat the COVID-19 virus, research and health authorities suggest not all disinfectants are equally effective. The difference is in their active ingredient(s). HEALTH CANADA AND U.S. EPA ASSESSMENTS The work to evaluate disinfectants perhaps best starts with lists of approved disinfectants compiled by government health authorities. Health Canada has compiled a list of 85 hard surface disinfectant products (as of March 20, 2020) that meet their requirements for disinfection of emerging pathogens, including the virus that causes COVID-19. It can be accessed here. You can wade through the entire list. But if you locate the Drug Identification Number (DIN) on the disinfectant product label or the safety data sheet (SDS), then you can use the search function to quickly see if the product meets Health Canada requirements. A second list, updated on March 19, 2020, provides 287 products that meet the U.S. Environmental Protection Agency’s (EPA) criteria for use against SARS-CoV-2, the novel coronavirus that causes the disease COVID-19. This list can be found here. Like the Health Canada list, you can wade through this one too. However, to best use this list, you should locate the U.S. EPA registration number on the product label or SDS, and use that number to search the list. The U.S. EPA registration number of a product consists of two sets of numbers separated by a hyphen. The first set of numbers refers to the company identification number, and the second set of numbers following the hyphen represents the product number.
    [Show full text]
  • FDA-2015-N-0101; and FDA-2016-N-0124
    DE PARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Silver Spring MD 20993 November 18, 2020 Docket Nos. FDA-1975-N-0012; FDA-2015-N-0101; and FDA-2016-N-0124 The American Cleaning Institute Attention: James Kim, PhD Vice President, Science and Regulatory Affairs 1401 H Street, N.W. Suite 700 Washington, D.C. 20005 Re: Benzalkonium Chloride, Benzethonium Chloride, Chloroxylenol, Ethanol, and Povidone-Iodine Dear Dr. Kim: This letter responds to The American Cleaning Institute’s (ACI’s) July 14, 2020 communication regarding the deferral from final rulemaking under the over-the-counter (OTC) Drug Review on benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, and povidone-iodine for use in nonprescription (often referred to as over-the-counter or OTC) consumer antiseptic wash, health care antiseptic, and consumer antiseptic rub drug products. In March 2016, FDA issued letters granting requests to defer three active ingredients— benzalkonium chloride, benzethonium chloride, and chloroxylenol—from inclusion in the final rulemaking for the December 2013 proposed rule for OTC consumer antiseptic washes (78 FR 76444). Similarly, in January 2017, FDA issued letters granting requests to defer six active ingredients—benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, povidone- iodine, and isopropyl alcohol—from inclusion in the final rulemaking for the May 2015 proposed rule for OTC health care antiseptics (80 FR 25166). In October 2017, FDA issued letters granting requests to defer three active
    [Show full text]
  • Which Disinfectants Work Best Against C. Difficile?
    Science at Your Doorstep WHICH DISINFECTANTS WORK BEST AGAINST C. DIFFICILE? Summary: In healthcare facilities, Clostridium difficile infections spread by transmission of bacterial spores. Appropriate sporicidal disinfectants are needed to prevent development of clusters and outbreaks. In this study, researchers in The Netherlands compared the effectiveness of 4 different disinfectant classes on killing distinctive C. difficile spores. They published their results in the respected journal, Antimicrobial Resistance & Infection Control. Hydrogen peroxide disinfectant wipes showed the highest bactericidal activity. Publication Description: According to the study, a dilution of sodium hypochlorite (chlorine bleach) has historically been used in hospitals to disinfect areas contaminated with C. difficile spores. But the authors state that “hypochlorite has to be used in excessive concentrations to be effective, thereby increasing its toxic and corrosive properties.” So the authors searched for alternative disinfectant types to eliminate C. difficile spores. The 4 different disinfectant compounds tested were: 1. Glucoprotamin 2. Hydrogen peroxide 3. Ethanol/propane/amino propyl glycine 4. Didecyldimonium chloride/benzalkonium chloride/biguanide (quat) Tiles were contaminated with a solution containing 5x106 CFU/ml spores of C. difficile. The tiles were left to dry for an hour and then wiped or sprayed with one of the sprays or wipes as intended by the manufacturers. After 5 minutes, microbiological cultures were performed. Conclusion: The authors concluded that for each active ingredient, the wipes performed better than the sprays. In general, impregnated cleaning/disinfection wipes performed better than ready-to-use sprays. Wipes with hydrogen peroxide showed the highest bactericidal activity. Reference: See article at: Antimicrobial Resistance & Infection Control; Volume 6, No.
    [Show full text]
  • ANNEX VI List of Preservatives Allowed for Use in Cosmetic Products
    ANNEX VI List of preservatives allowed for use in cosmetic products ANNEX VI LIST OF PRESERVATIVES WHICH COSMETIC PRODUCTS MAY CONTAIN Preamble 1. Preservatives are substances which may be added to cosmetic products for the primary purpose of inhibiting the development of micro-organisms in such products. 2. The substances marked with the symbol (+) may also be added to cosmetic products in concentration other than those laid down in this ANNEX for other purposes apparent from the presentation of the products, e.g. as deodorants in soaps or as anti-dandruff agents in shampoos. 3. Other substances used in the formulation of cosmetic products may also have anti-microbial properties and thus help in the preservation of the products, as, for instance, many essential oils and some alcohols. These substances are not included in the ANNEX. 4. For the purposes of this list - “Salts” is taken to mean: salts of the cations sodium, potassium, calcium, magnesium, ammonium, and ethanolamines; salts of the anions chloride, bromide, sulphate, acetate. - “Esters” is taken to mean: esters of methyl, ethyl, propyl, isopropyl, butyl, isobutyl, phenyl. 5. All finished products containing formaldehyde or substances in this ANNEX and which release formaldehyde must be labelled with the warning “contains formaldehyde” where the concentration of formaldehyde in the finished product exceeds 0.05%. Revised as per August 2015 ASEAN Cosmetic Documents 1 Annex VI – Part 1 – List of preservatives allowed for use in cosmetic products ANNEX VI – PART 1 LIST OF PRESERVATIVES ALLOWED Reference Substance Maximum authorized Limitations and Conditions of use and Number concentration requirements warnings which must be printed on the label a b c d e 1 Benzoic acid (CAS No.
    [Show full text]
  • Of 8 August 2014 Amending Annexes III, V and VI to Regulation (EC) No 1223/2009 of the European Parliament and the Council on Cosmetic Products
    9.8.2014 EN Official Journal of the European Union L 238/3 COMMISSION REGULATION (EU) No 866/2014 of 8 August 2014 amending Annexes III, V and VI to Regulation (EC) No 1223/2009 of the European Parliament and the Council on cosmetic products (Text with EEA relevance) THE EUROPEAN COMMISSION, Having regard to the Treaty on the Functioning of the European Union, Having regard to Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products (1), and in particular Article 31(2) thereof, Whereas: (1) The substances identified by the denominations alkyl (C12-22) trimethyl ammonium bromide and chloride are regu­ lated as preservatives under entry 44 of Annex V to Regulation (EC) No 1223/2009 with a maximum concentra­ tion of 0,1 %. (2) The Scientific Committee on Consumer Products (‘SCCP’), subsequently replaced by the Scientific Committee on Consumer Safety (‘SCCS’) pursuant to Commission Decision 2008/721/EC (2), evaluated the safety of alkyl (C16, C18, C22) trimethylammonium chloride (cetrimonium chloride, steartrimonium chloride and behentrimonium chloride) for other uses than as preservatives in 2005, 2007 and 2009. (3) The SCCS concluded in its opinion of 8 December 2009 (3) that, apart from the fact that quaternary ammonium derivative formulations have the potential to be skin irritants, especially when combinations of the concerned compounds are used, the use of cetrimonium chloride, steartrimonium chloride and behentrimonium chloride does not pose a risk to the health of the consumer in concentrations below certain limits, which are explicitly set out in the SCCS opinion.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Release of Antimicrobial Agents from Glass Ionomer Cements
    Y T E I C O S L BALKAN JOURNAL OF STOMATOLOGY A ISSN 1107 - 1141 IC G LO TO STOMA Release of Antimicrobial Agents from Glass Ionomer Cements SUMMARY Aleksandar Dimkov, Elizabeta Gjorgievska, The aim of this study was to determine the level of antimicrobial Aleksandar Fildishevski agents Benzalkonium Chloride and Cetylpyridinium Chloride released Faculty of Dentistry, Clinic for Pediatric and from ChemFlex, a conventional glass ionomer cement (GIC). The main null Preventive Dentistry, Skopje, FYROM hypothesis tested was that there is no release of antimicrobial agents into the surrounding medium. 3 groups of the conventional ChemFlex GIC of 5 samples each, with Benzalconium Chloride and CPC incorporated, were prepared - each group with a different percentage of the agents (1%, 2%, and 3%). The determination of the quantity of the antimicrobial agents was done by an UV- Spectrophotometer. The measurements were performed at 11 successive time intervals. The results of the statistical analysis point out that it is possible to incorporate these antimicrobial agents in conventional GIC, especially when the added percentage of the antimicrobial agents is 3%. ORIGINAL PAPERS (OP) Keywords: GIC; Antimicrobial Agents; UV-Spectrophotometry Balk J Stom, 2012; 16:84-89 Introduction application9. There are several studies dealing with the effect of incorporating chlorhexidine in different Because of the relatively frequent occurrence of concentrations and its combinations in GIC to improve recurrent caries after a restorative treatment, and because their antimicrobial properties10-14. of the huge number of cariogenic microorganisms There are only a few data in the literature referring existing in the oral cavity, which present a potential to the incorporation and release of other antimicrobial risk factor regarding the development of new carious components in GIC.
    [Show full text]
  • Australian Statistics on Medicines 1997 Commonwealth Department of Health and Family Services
    Australian Statistics on Medicines 1997 Commonwealth Department of Health and Family Services Australian Statistics on Medicines 1997 i © Commonwealth of Australia 1998 ISBN 0 642 36772 8 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be repoduced by any process without written permission from AusInfo. Requests and enquiries concerning reproduction and rights should be directed to the Manager, Legislative Services, AusInfo, GPO Box 1920, Canberra, ACT 2601. Publication approval number 2446 ii FOREWORD The Australian Statistics on Medicines (ASM) is an annual publication produced by the Drug Utilisation Sub-Committee (DUSC) of the Pharmaceutical Benefits Advisory Committee. Comprehensive drug utilisation data are required for a number of purposes including pharmacosurveillance and the targeting and evaluation of quality use of medicines initiatives. It is also needed by regulatory and financing authorities and by the Pharmaceutical Industry. A major aim of the ASM has been to put comprehensive and valid statistics on the Australian use of medicines in the public domain to allow access by all interested parties. Publication of the Australian data facilitates international comparisons of drug utilisation profiles, and encourages international collaboration on drug utilisation research particularly in relation to enhancing the quality use of medicines and health outcomes. The data available in the ASM represent estimates of the aggregate community use (non public hospital) of prescription medicines in Australia. In 1997 the estimated number of prescriptions dispensed through community pharmacies was 179 million prescriptions, a level of increase over 1996 of only 0.4% which was less than the increase in population (1.2%).
    [Show full text]
  • Vr Meds Ex01 3B 0825S Coding Manual Supplement Page 1
    vr_meds_ex01_3b_0825s Coding Manual Supplement MEDNAME OTHER_CODE ATC_CODE SYSTEM THER_GP PHRM_GP CHEM_GP SODIUM FLUORIDE A12CD01 A01AA01 A A01 A01A A01AA SODIUM MONOFLUOROPHOSPHATE A12CD02 A01AA02 A A01 A01A A01AA HYDROGEN PEROXIDE D08AX01 A01AB02 A A01 A01A A01AB HYDROGEN PEROXIDE S02AA06 A01AB02 A A01 A01A A01AB CHLORHEXIDINE B05CA02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D08AC02 A01AB03 A A01 A01A A01AB CHLORHEXIDINE D09AA12 A01AB03 A A01 A01A A01AB CHLORHEXIDINE R02AA05 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S01AX09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S02AA09 A01AB03 A A01 A01A A01AB CHLORHEXIDINE S03AA04 A01AB03 A A01 A01A A01AB AMPHOTERICIN B A07AA07 A01AB04 A A01 A01A A01AB AMPHOTERICIN B G01AA03 A01AB04 A A01 A01A A01AB AMPHOTERICIN B J02AA01 A01AB04 A A01 A01A A01AB POLYNOXYLIN D01AE05 A01AB05 A A01 A01A A01AB OXYQUINOLINE D08AH03 A01AB07 A A01 A01A A01AB OXYQUINOLINE G01AC30 A01AB07 A A01 A01A A01AB OXYQUINOLINE R02AA14 A01AB07 A A01 A01A A01AB NEOMYCIN A07AA01 A01AB08 A A01 A01A A01AB NEOMYCIN B05CA09 A01AB08 A A01 A01A A01AB NEOMYCIN D06AX04 A01AB08 A A01 A01A A01AB NEOMYCIN J01GB05 A01AB08 A A01 A01A A01AB NEOMYCIN R02AB01 A01AB08 A A01 A01A A01AB NEOMYCIN S01AA03 A01AB08 A A01 A01A A01AB NEOMYCIN S02AA07 A01AB08 A A01 A01A A01AB NEOMYCIN S03AA01 A01AB08 A A01 A01A A01AB MICONAZOLE A07AC01 A01AB09 A A01 A01A A01AB MICONAZOLE D01AC02 A01AB09 A A01 A01A A01AB MICONAZOLE G01AF04 A01AB09 A A01 A01A A01AB MICONAZOLE J02AB01 A01AB09 A A01 A01A A01AB MICONAZOLE S02AA13 A01AB09 A A01 A01A A01AB NATAMYCIN A07AA03 A01AB10 A A01
    [Show full text]