FDA-2015-N-0101; and FDA-2016-N-0124

Total Page:16

File Type:pdf, Size:1020Kb

FDA-2015-N-0101; and FDA-2016-N-0124 DE PARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Silver Spring MD 20993 November 18, 2020 Docket Nos. FDA-1975-N-0012; FDA-2015-N-0101; and FDA-2016-N-0124 The American Cleaning Institute Attention: James Kim, PhD Vice President, Science and Regulatory Affairs 1401 H Street, N.W. Suite 700 Washington, D.C. 20005 Re: Benzalkonium Chloride, Benzethonium Chloride, Chloroxylenol, Ethanol, and Povidone-Iodine Dear Dr. Kim: This letter responds to The American Cleaning Institute’s (ACI’s) July 14, 2020 communication regarding the deferral from final rulemaking under the over-the-counter (OTC) Drug Review on benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, and povidone-iodine for use in nonprescription (often referred to as over-the-counter or OTC) consumer antiseptic wash, health care antiseptic, and consumer antiseptic rub drug products. In March 2016, FDA issued letters granting requests to defer three active ingredients— benzalkonium chloride, benzethonium chloride, and chloroxylenol—from inclusion in the final rulemaking for the December 2013 proposed rule for OTC consumer antiseptic washes (78 FR 76444). Similarly, in January 2017, FDA issued letters granting requests to defer six active ingredients—benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, povidone- iodine, and isopropyl alcohol—from inclusion in the final rulemaking for the May 2015 proposed rule for OTC health care antiseptics (80 FR 25166). In October 2017, FDA issued letters granting requests to defer three active ingredients—benzalkonium chloride, ethanol, and isopropyl alcohol—from inclusion in the final rulemaking for the June 2016 proposed rule for OTC consumer rub antiseptics (81 FR 42912). In April 2018, FDA granted an extension to defer final rulemaking on five active ingredients— benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, and povidone-iodine— under the antiseptic rulemakings, and granted ACI’s request to harmonize into a single document and reporting cycle the timing for deferrals of these five active ingredients among the various antiseptic rulemakings for which it has requested deferrals. On August 14, 2019, FDA granted another one-year deferral extension, subject to renewal, for these five active ingredients. As explained in each of the deferral letters, FDA deferred inclusion of these active ingredients in the respective rulemakings for one year, subject to renewal, to allow more time for completion of the studies necessary to demonstrate safety and effectiveness. FDA also stated, however, that “if no such studies have been commenced, or if the studies in progress do not appear, in FDA’s judgment, to be productive, the agency expects that it will proceed to rulemaking for [the] ingredient[s] after [the] initial deferral[s].” In March 2020, Section 505G of the Federal Food, Drug & Cosmetic Act (FD&C Act or Act) was enacted as part of the Coronavirus Aid, Relief, and Economic Security Act (CARES Act). Section 505G addresses nonprescription drugs marketed without an approved application. The CARES Act replaces the rulemaking process that was previously used in determining the conditions under which certain nonprescription drugs are generally recognized as safe and effective (GRASE) with a streamlined administrative order process. Under section 505G(a)(3) of the FD&C Act, as added by the CARES Act, drugs that were classified as Category III in a tentative final monograph (TFM) that is the most recently applicable proposal or determination for such drug issued under 21 CFR Part 330 – and that were not classified as Category II for safety or effectiveness – are not required to have an approved application under section 505 of the Act in order to be marketed, as long as they are in conformity with the relevant conditions of use outlined in the applicable TFM, including the active ingredient, and comply with all other applicable requirements.1 In the Consumer Antiseptic Wash Proposed Rule, which is the most recently applicable proposal or determination issued under 21 CFR Part 330 for consumer antiseptic wash products, benzalkonium chloride, benzethonium chloride, and chloroxylenol were classified in 1 Topical antiseptics were addressed in the TFM entitled “Topical Antimicrobial Drug Products for Over-the- Counter Human Use; Tentative Final Monograph for Health-Care Antiseptic Drug Products,” Proposed Rule, 59 FR 31402 (June 17, 1994) (1994 TFM), as further amended by “Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use,” Proposed Rule, 78 FR 76444 (December 17, 2013) (the Consumer Antiseptic Wash Proposed Rule), “Safety and Effectiveness of Health Care Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use; and Proposed Amendment of the Tentative Final Monograph; Reopening of Administrative Record,” Proposed Rule, 80 FR 25166 (May 1, 2015) (the Health Care Antiseptics Proposed Rule), and “Safety and Effectiveness of Consumer Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use; Proposed Amendment of the Tentative Final Monograph; Reopening of Administrative Record,” Proposed Rule, 81 FR 42912 (June 30, 2016) (the Consumer Antiseptic Rub Proposed Rule). 2 Category III for use as an active ingredient in such products. In the Health Care Antiseptics Proposed Rule, which is the most recently applicable proposal or determination issued under 21 CFR Part 330 for health care antiseptic products, benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, isopropyl alcohol, and povidone-iodine were classified as Category III for use as an active ingredient in different indications for such products. In the Consumer Antiseptic Rub Proposed Rule, which was the most recently applicable proposal or determination for consumer antiseptic rub products issued under 21 CFR Part 330, benzalkonium chloride, ethanol (also referred to as ethyl alcohol), and isopropyl alcohol were classified as Category III for use as an active ingredient in such products. Accordingly, a nonprescription topical antiseptic product can be legally marketed for a use for which its active ingredient was classified as Category III if (1) the product is in conformity with the conditions of use in the TFM, as amended by the Consumer Antiseptic Wash Proposed Rule, the Health Care Antiseptics Proposed Rule, and the Consumer Antiseptic Rub Proposed Rule, and (2) the product complies with all other applicable requirements. While, as a result of the CARES Act, certain nonprescription topical antiseptic products have legal marketing status as described above, FDA continues to believe that completion of the studies necessary to demonstrate the safety and effectiveness of the active ingredients discussed above for the proposed indications is important for the public health. We are committed to working with you to fill the remaining data gaps. As we explain in detail below, FDA has reviewed the information that ACI has submitted thus far in support of its progress to demonstrate the safety and effectiveness of drug products containing benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, and povidone-iodine for certain topical antiseptic uses, and we believe that ACI continues to demonstrate its ongoing commitment to and progress in conducting the necessary safety and efficacy studies. We, therefore, do not intend to issue a proposed administrative order regarding the safety and effectiveness of these products for one year, ending on October 31, 2021, subject to renewal. Submit an updated report that includes a description of ACI’s specific progress for these active ingredients to FDA by October 1, 2021.2 ACI submitted its statements of intent to fill the safety and effectiveness data gaps for benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, and povidone-iodine under the antiseptic rulemaking proceedings for use in OTC consumer antiseptic washes, consumer antiseptic rubs, and health care antiseptic products, for certain specified indications. To date, ACI has submitted multiple reports demonstrating its ongoing progress in conducting the necessary safety and efficacy studies (see August 14, 2019 FDA Extension Deferral Letter). On July 14, 2020, ACI submitted its most recent progress report and provided reference to the following updated information in support of its progress in fulfilling the data gaps: 2 Although in FDA’s Meeting Minutes to ACI dated September 29, 2020, we stated that an updated progress report for benzalkonium chloride should be submitted in August 2021, with this letter we are harmonizing the submission date so that the updated progress report should be submitted by October 1, 2021, for all five ingredients, including benzalkonium chloride. Accordingly, the August 2021 report no longer needs to be submitted. 3 (1) ACI’s February 15, 2019 final report (#150941-202) for the active ingredients benzalkonium chloride, benzethonium chloride, chloroxylenol, povidone-iodine, and ethanol entitled “Determination of the Minimum Inhibitory Concentrations (MIC) and Minimum Bacterial Concentrations (MBC) of Five Test Materials.” FDA confirmed in its Advice Letter dated August 29, 2019 that this study is satisfactory, and the milestone is complete; (2) ACI’s February 26, 2019 response to comments and questions contained in FDA’s Advice letter dated July 5, 2018 regarding the time-kill study final report (#150940-201) for the active ingredients benzalkonium
Recommended publications
  • Quaternary Ammonium Compounds
    FACT SHEET: Quaternary Ammonium Compounds Quaternary ammonium compounds, also known as “quats” or “QACs,” include a number of chemicals used as sanitizers and disinfectants, including benzalkonium chloride, benzethonium chloride, cetalkonium chloride, cetrimide, cetrimonium bromide, cetylpyridinium chloride, glycidyl trimethyl, ammonium chloride, and stearalkonium chloride.[i] In general, quats cause toxic effects through all Mutagenicity routes of exposure including inhalation, Some quats have shown to be mutagenic and to ingestion, dermal application, and irrigation of damage animal DNA and DNA in human body cavities. Exposure to diluted solutions may lymphocytes at much lower levels than are result in mild irritation, while concentrated present in cleaning chemicals.[6] solutions are corrosive, causing burns to the skin and mucous Membranes. They can produce Antimicrobial Resistance systemic toxicity and can also cause allergic Genes have been discovered that mediate reactions.[2] resistance to quats. There has been an association of some of these genes with beta lactamase genes, Asthma and Allergies raising concern for a relationship between Of particular interest with regard to use as disinfectant resistance and antibiotic resistance.[7] disinfectants in the COVID-19 pandemic, quats increase the risk for asthma and allergic Reproductive Toxicity sensitization. Evidence from occupational Mice whose cages were cleaned with QACs had exposures shows increased risk of rhinitis and very low fertility rates. [8] Exposure to a common asthma
    [Show full text]
  • Evaluating Disinfectants for Use Against the COVID-19 Virus
    When it comes to choosing a disinfectant to combat the COVID-19 virus, research and health authorities suggest not all disinfectants are equally effective. The difference is in their active ingredient(s). HEALTH CANADA AND U.S. EPA ASSESSMENTS The work to evaluate disinfectants perhaps best starts with lists of approved disinfectants compiled by government health authorities. Health Canada has compiled a list of 85 hard surface disinfectant products (as of March 20, 2020) that meet their requirements for disinfection of emerging pathogens, including the virus that causes COVID-19. It can be accessed here. You can wade through the entire list. But if you locate the Drug Identification Number (DIN) on the disinfectant product label or the safety data sheet (SDS), then you can use the search function to quickly see if the product meets Health Canada requirements. A second list, updated on March 19, 2020, provides 287 products that meet the U.S. Environmental Protection Agency’s (EPA) criteria for use against SARS-CoV-2, the novel coronavirus that causes the disease COVID-19. This list can be found here. Like the Health Canada list, you can wade through this one too. However, to best use this list, you should locate the U.S. EPA registration number on the product label or SDS, and use that number to search the list. The U.S. EPA registration number of a product consists of two sets of numbers separated by a hyphen. The first set of numbers refers to the company identification number, and the second set of numbers following the hyphen represents the product number.
    [Show full text]
  • A Screening-Based Approach to Circumvent Tumor Microenvironment
    JBXXXX10.1177/1087057113501081Journal of Biomolecular ScreeningSingh et al. 501081research-article2013 Original Research Journal of Biomolecular Screening 2014, Vol 19(1) 158 –167 A Screening-Based Approach to © 2013 Society for Laboratory Automation and Screening DOI: 10.1177/1087057113501081 Circumvent Tumor Microenvironment- jbx.sagepub.com Driven Intrinsic Resistance to BCR-ABL+ Inhibitors in Ph+ Acute Lymphoblastic Leukemia Harpreet Singh1,2, Anang A. Shelat3, Amandeep Singh4, Nidal Boulos1, Richard T. Williams1,2*, and R. Kiplin Guy2,3 Abstract Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7–dependent BCR-ABL-KI–resistant phenotype, we screened a small-molecule library including Food and Drug Administration–approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI–resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI–resistant phenotype of human Ph+ ALL.
    [Show full text]
  • Which Disinfectants Work Best Against C. Difficile?
    Science at Your Doorstep WHICH DISINFECTANTS WORK BEST AGAINST C. DIFFICILE? Summary: In healthcare facilities, Clostridium difficile infections spread by transmission of bacterial spores. Appropriate sporicidal disinfectants are needed to prevent development of clusters and outbreaks. In this study, researchers in The Netherlands compared the effectiveness of 4 different disinfectant classes on killing distinctive C. difficile spores. They published their results in the respected journal, Antimicrobial Resistance & Infection Control. Hydrogen peroxide disinfectant wipes showed the highest bactericidal activity. Publication Description: According to the study, a dilution of sodium hypochlorite (chlorine bleach) has historically been used in hospitals to disinfect areas contaminated with C. difficile spores. But the authors state that “hypochlorite has to be used in excessive concentrations to be effective, thereby increasing its toxic and corrosive properties.” So the authors searched for alternative disinfectant types to eliminate C. difficile spores. The 4 different disinfectant compounds tested were: 1. Glucoprotamin 2. Hydrogen peroxide 3. Ethanol/propane/amino propyl glycine 4. Didecyldimonium chloride/benzalkonium chloride/biguanide (quat) Tiles were contaminated with a solution containing 5x106 CFU/ml spores of C. difficile. The tiles were left to dry for an hour and then wiped or sprayed with one of the sprays or wipes as intended by the manufacturers. After 5 minutes, microbiological cultures were performed. Conclusion: The authors concluded that for each active ingredient, the wipes performed better than the sprays. In general, impregnated cleaning/disinfection wipes performed better than ready-to-use sprays. Wipes with hydrogen peroxide showed the highest bactericidal activity. Reference: See article at: Antimicrobial Resistance & Infection Control; Volume 6, No.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Release of Antimicrobial Agents from Glass Ionomer Cements
    Y T E I C O S L BALKAN JOURNAL OF STOMATOLOGY A ISSN 1107 - 1141 IC G LO TO STOMA Release of Antimicrobial Agents from Glass Ionomer Cements SUMMARY Aleksandar Dimkov, Elizabeta Gjorgievska, The aim of this study was to determine the level of antimicrobial Aleksandar Fildishevski agents Benzalkonium Chloride and Cetylpyridinium Chloride released Faculty of Dentistry, Clinic for Pediatric and from ChemFlex, a conventional glass ionomer cement (GIC). The main null Preventive Dentistry, Skopje, FYROM hypothesis tested was that there is no release of antimicrobial agents into the surrounding medium. 3 groups of the conventional ChemFlex GIC of 5 samples each, with Benzalconium Chloride and CPC incorporated, were prepared - each group with a different percentage of the agents (1%, 2%, and 3%). The determination of the quantity of the antimicrobial agents was done by an UV- Spectrophotometer. The measurements were performed at 11 successive time intervals. The results of the statistical analysis point out that it is possible to incorporate these antimicrobial agents in conventional GIC, especially when the added percentage of the antimicrobial agents is 3%. ORIGINAL PAPERS (OP) Keywords: GIC; Antimicrobial Agents; UV-Spectrophotometry Balk J Stom, 2012; 16:84-89 Introduction application9. There are several studies dealing with the effect of incorporating chlorhexidine in different Because of the relatively frequent occurrence of concentrations and its combinations in GIC to improve recurrent caries after a restorative treatment, and because their antimicrobial properties10-14. of the huge number of cariogenic microorganisms There are only a few data in the literature referring existing in the oral cavity, which present a potential to the incorporation and release of other antimicrobial risk factor regarding the development of new carious components in GIC.
    [Show full text]
  • Alcohol Based Anti-Microbial Compositions with Cosmetic Appearance
    Patentamt Europaisches ||| || 1 1| || || || 1 1| || || || || 1 1| (19) J European Patent Office Office europeen des brevets (11) EP 0 930 065 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51 ) |nt. CI.6: A61 K 7/48, A61 K 7/50, 21.07.1999 Bulletin 1999/29 ^61 |_ 2/Q0 (21) Application number: 99300394.6 (22) Date of filing : 20.01 .1 999 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU • Jampani, Hanuman J. MC NL PT SE Grapevine, TX 76051 (US) Designated Extension States: • Newman, Jerry L. AL LT LV MK RO SI Arlington, TX 7601 6 (US) • Newman, Anthony W. (30) Priority: 20.01.1998 US 9491 Fort Worth, TX 761 1 1 (US) (71) Applicant: ETHICON INC. (74) Representative: Somerville New Jersey 08876 (US) Mercer, Christopher Paul et al Carpmaels & Ransford 43, Bloomsbury Square London WC1 A 2RA(GB) (54) Alcohol based anti-microbial compositions with cosmetic appearance (57) The present invention provides antimicrobial compositions containing high levels of alcohol, car- bomer polymers and antimicrobial agents. The present invention provides stable, high viscosity antimicrobial formulations possessing cosmetic characteristics. CM < LO CO o o CO o Q_ LU Printed by Xerox (UK) Business Services 2.16.7/3.6 EP 0 930 065 A2 Description [0001] This application is related to European patent application No. (claiming priority from USSN 09/009 489 - Attorney's ref: P020733EP) and European patent application No. (claiming 5 priority from USSN 09 -Attorney's ref: ) the disclosures of which are incorporated herein by reference.
    [Show full text]
  • Australian Statistics on Medicines 1997 Commonwealth Department of Health and Family Services
    Australian Statistics on Medicines 1997 Commonwealth Department of Health and Family Services Australian Statistics on Medicines 1997 i © Commonwealth of Australia 1998 ISBN 0 642 36772 8 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be repoduced by any process without written permission from AusInfo. Requests and enquiries concerning reproduction and rights should be directed to the Manager, Legislative Services, AusInfo, GPO Box 1920, Canberra, ACT 2601. Publication approval number 2446 ii FOREWORD The Australian Statistics on Medicines (ASM) is an annual publication produced by the Drug Utilisation Sub-Committee (DUSC) of the Pharmaceutical Benefits Advisory Committee. Comprehensive drug utilisation data are required for a number of purposes including pharmacosurveillance and the targeting and evaluation of quality use of medicines initiatives. It is also needed by regulatory and financing authorities and by the Pharmaceutical Industry. A major aim of the ASM has been to put comprehensive and valid statistics on the Australian use of medicines in the public domain to allow access by all interested parties. Publication of the Australian data facilitates international comparisons of drug utilisation profiles, and encourages international collaboration on drug utilisation research particularly in relation to enhancing the quality use of medicines and health outcomes. The data available in the ASM represent estimates of the aggregate community use (non public hospital) of prescription medicines in Australia. In 1997 the estimated number of prescriptions dispensed through community pharmacies was 179 million prescriptions, a level of increase over 1996 of only 0.4% which was less than the increase in population (1.2%).
    [Show full text]
  • Contact Sensitivity in Patients with Leg Ulcerations: a North American Study
    STUDY Contact Sensitivity in Patients With Leg Ulcerations A North American Study Liliana Saap, MD; Simone Fahim, MD; Emily Arsenault, MD; Melanie Pratt, MD; Tad Pierscianowski, MD; Vincent Falanga, MD; Anita Pedvis-Leftick, MD Objectives: (1) To determine the prevalence of aller- had no positive patch test result. The most common al- gen sensitivity in patients with past or present leg ulcers lergens were Myroxylon pereirae (balsam of Peru) (30% in 2 North American study centers vs European study [16/54]), bacitracin (24% [13/54]), fragrance mix (20% findings and the North American Contact Dermatitis [11/54]), wood tar mix (20% [11/54]), propylene glycol Group (NACDG) database and (2) to delineate a stan- (14% [7/52]), neomycin sulfate (13% [7/54]), benzal- dard battery of allergens for patch testing in North Ameri- konium chloride (13% [7/54]), carba mix (11% [6/54]), can patients that is representative of the newer dress- nickel sulfate (11% [6/54]), and control gel hydrocol- ings and wound care products. loid (11% [6/54]). Design: Fifty-four patients, with or without dermatitis, Conclusions: Comparable to European study findings, were prospectively entered in the study. The patients were there is a high incidence of positive patch test results in patch tested to the NACDG standard series and a com- patients with past or present leg ulcerations. The inci- prehensive supplemental series of 52 allergens. dences of the most common allergens in our patient popu- lation were higher than those seen in the NACDG, ex- Setting: Wound healing clinics at Boston University Roger cept for nickel.
    [Show full text]
  • Wo 2010/127231 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 4 November 2010 (04.11.2010) WO 2010/127231 A2 (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every AOlN 33/12 (2006.01) A61K 31/14 (2006.01) kind of national protection available): AE, AG, AL, AM, AOlN 25/04 (2006.01) CIlD 3/26 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, AOlP 1/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US2010/033 148 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 30 April 2010 (30.04.2010) NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (25) Filing Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/174,724 1 May 2009 (01 .05.2009) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): SIG¬ TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, NAL INVESTMENT AND MANAGEMENT CO.
    [Show full text]
  • Antiseptics in the Era of Bacterial Resistance: a Focus on Povidone Iodine
    Therapeutic Perspective Antiseptics in the era of bacterial resistance: a focus on povidone iodine Jean-Marie Lachapelle*1, Olivier Castel2, Alejandro Fueyo Casado3, Bernard Leroy1, Giuseppe Micali4, Dominique Tennstedt1 & Julien Lambert5 Practice Points Increasing bacterial resistance to antibiotics makes the management of superficial skin infections a major medical challenge. Antiseptics have broader spectrums of antimicrobial activity and a reduced potential for selection of bacterial resistance, relative to antibiotics. Consequently, antiseptics are appropriate alternatives to antibiotics for the prevention and treatment of superficial skin infections. Of four widely used antiseptics (povidone iodine, polihexanide, chlorhexidine and octenidine), povidone iodine has a particularly broad spectrum of antimicrobial activity that includes Gram-positive and Gram-negative bacteria, bacterial spores, fungi, protozoa and viruses. Widespread and extended use of povidone iodine is not associated with the selection of resistant bacterial strains. In contrast, bacterial resistance to chlorhexidine, quaternary ammonium salts, silver and triclosan has been documented. Regarding duration of effect on healthy skin, chlorhexidine is active for 1–4 h, whereas solutions of povidone iodine are active for 12–14 h. Aqueous and hydroalcoholic formulations of povidone iodine have good skin tolerance. Povidone iodine scrub has better skin tolerance than soap formulations of chlorhexidine and quaternary ammonium compounds (e.g., benzalkonium chloride and
    [Show full text]