Wo 2010/127231 A2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Quaternary Ammonium Compounds
FACT SHEET: Quaternary Ammonium Compounds Quaternary ammonium compounds, also known as “quats” or “QACs,” include a number of chemicals used as sanitizers and disinfectants, including benzalkonium chloride, benzethonium chloride, cetalkonium chloride, cetrimide, cetrimonium bromide, cetylpyridinium chloride, glycidyl trimethyl, ammonium chloride, and stearalkonium chloride.[i] In general, quats cause toxic effects through all Mutagenicity routes of exposure including inhalation, Some quats have shown to be mutagenic and to ingestion, dermal application, and irrigation of damage animal DNA and DNA in human body cavities. Exposure to diluted solutions may lymphocytes at much lower levels than are result in mild irritation, while concentrated present in cleaning chemicals.[6] solutions are corrosive, causing burns to the skin and mucous Membranes. They can produce Antimicrobial Resistance systemic toxicity and can also cause allergic Genes have been discovered that mediate reactions.[2] resistance to quats. There has been an association of some of these genes with beta lactamase genes, Asthma and Allergies raising concern for a relationship between Of particular interest with regard to use as disinfectant resistance and antibiotic resistance.[7] disinfectants in the COVID-19 pandemic, quats increase the risk for asthma and allergic Reproductive Toxicity sensitization. Evidence from occupational Mice whose cages were cleaned with QACs had exposures shows increased risk of rhinitis and very low fertility rates. [8] Exposure to a common asthma -
FDA-2015-N-0101; and FDA-2016-N-0124
DE PARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration Silver Spring MD 20993 November 18, 2020 Docket Nos. FDA-1975-N-0012; FDA-2015-N-0101; and FDA-2016-N-0124 The American Cleaning Institute Attention: James Kim, PhD Vice President, Science and Regulatory Affairs 1401 H Street, N.W. Suite 700 Washington, D.C. 20005 Re: Benzalkonium Chloride, Benzethonium Chloride, Chloroxylenol, Ethanol, and Povidone-Iodine Dear Dr. Kim: This letter responds to The American Cleaning Institute’s (ACI’s) July 14, 2020 communication regarding the deferral from final rulemaking under the over-the-counter (OTC) Drug Review on benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, and povidone-iodine for use in nonprescription (often referred to as over-the-counter or OTC) consumer antiseptic wash, health care antiseptic, and consumer antiseptic rub drug products. In March 2016, FDA issued letters granting requests to defer three active ingredients— benzalkonium chloride, benzethonium chloride, and chloroxylenol—from inclusion in the final rulemaking for the December 2013 proposed rule for OTC consumer antiseptic washes (78 FR 76444). Similarly, in January 2017, FDA issued letters granting requests to defer six active ingredients—benzalkonium chloride, benzethonium chloride, chloroxylenol, ethanol, povidone- iodine, and isopropyl alcohol—from inclusion in the final rulemaking for the May 2015 proposed rule for OTC health care antiseptics (80 FR 25166). In October 2017, FDA issued letters granting requests to defer three active -
A Screening-Based Approach to Circumvent Tumor Microenvironment
JBXXXX10.1177/1087057113501081Journal of Biomolecular ScreeningSingh et al. 501081research-article2013 Original Research Journal of Biomolecular Screening 2014, Vol 19(1) 158 –167 A Screening-Based Approach to © 2013 Society for Laboratory Automation and Screening DOI: 10.1177/1087057113501081 Circumvent Tumor Microenvironment- jbx.sagepub.com Driven Intrinsic Resistance to BCR-ABL+ Inhibitors in Ph+ Acute Lymphoblastic Leukemia Harpreet Singh1,2, Anang A. Shelat3, Amandeep Singh4, Nidal Boulos1, Richard T. Williams1,2*, and R. Kiplin Guy2,3 Abstract Signaling by the BCR-ABL fusion kinase drives Philadelphia chromosome–positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myelogenous leukemia (CML). Despite their clinical activity in many patients with CML, the BCR-ABL kinase inhibitors (BCR-ABL-KIs) imatinib, dasatinib, and nilotinib provide only transient leukemia reduction in patients with Ph+ ALL. While host-derived growth factors in the leukemia microenvironment have been invoked to explain this drug resistance, their relative contribution remains uncertain. Using genetically defined murine Ph+ ALL cells, we identified interleukin 7 (IL-7) as the dominant host factor that attenuates response to BCR-ABL-KIs. To identify potential combination drugs that could overcome this IL-7–dependent BCR-ABL-KI–resistant phenotype, we screened a small-molecule library including Food and Drug Administration–approved drugs. Among the validated hits, the well-tolerated antimalarial drug dihydroartemisinin (DHA) displayed potent activity in vitro and modest in vivo monotherapy activity against engineered murine BCR-ABL-KI–resistant Ph+ ALL. Strikingly, cotreatment with DHA and dasatinib in vivo strongly reduced primary leukemia burden and improved long-term survival in a murine model that faithfully captures the BCR-ABL-KI–resistant phenotype of human Ph+ ALL. -
Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01 -
Toxicological Evaluation Purifog.Pdf
Università degli Studi di Torino Prof Valter Maurino Dipartimento di Chimica phone: +39 0116705218 fax: +39 0116707615 Via P. Giuria, 7 10125 Torino Italy e-mail: [email protected] Toxicological evaluation of “PURIFOG” Page 2/24 Short term/single exposure .................................................................................................................................... 17 Inhalation ............................................................................................................................................................... 17 Oral administration LD50 ..................................................................................................................................... 17 Dermal application LD50 ...................................................................................................................................... 18 Skin irritation ........................................................................................................................................................ 18 Sensitisation .......................................................................................................................................................... 18 Mucous membranes and eye ................................................................................................................................ 18 LD and LC50 reported values for Benzyldimethyldecylammonium chloride ................................................... 19 LD and LC50 reported values for Dimethyldioctadecylammonium -
Alcohol Based Anti-Microbial Compositions with Cosmetic Appearance
Patentamt Europaisches ||| || 1 1| || || || 1 1| || || || || 1 1| (19) J European Patent Office Office europeen des brevets (11) EP 0 930 065 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51 ) |nt. CI.6: A61 K 7/48, A61 K 7/50, 21.07.1999 Bulletin 1999/29 ^61 |_ 2/Q0 (21) Application number: 99300394.6 (22) Date of filing : 20.01 .1 999 (84) Designated Contracting States: (72) Inventors: AT BE CH CY DE DK ES Fl FR GB GR IE IT LI LU • Jampani, Hanuman J. MC NL PT SE Grapevine, TX 76051 (US) Designated Extension States: • Newman, Jerry L. AL LT LV MK RO SI Arlington, TX 7601 6 (US) • Newman, Anthony W. (30) Priority: 20.01.1998 US 9491 Fort Worth, TX 761 1 1 (US) (71) Applicant: ETHICON INC. (74) Representative: Somerville New Jersey 08876 (US) Mercer, Christopher Paul et al Carpmaels & Ransford 43, Bloomsbury Square London WC1 A 2RA(GB) (54) Alcohol based anti-microbial compositions with cosmetic appearance (57) The present invention provides antimicrobial compositions containing high levels of alcohol, car- bomer polymers and antimicrobial agents. The present invention provides stable, high viscosity antimicrobial formulations possessing cosmetic characteristics. CM < LO CO o o CO o Q_ LU Printed by Xerox (UK) Business Services 2.16.7/3.6 EP 0 930 065 A2 Description [0001] This application is related to European patent application No. (claiming priority from USSN 09/009 489 - Attorney's ref: P020733EP) and European patent application No. (claiming 5 priority from USSN 09 -Attorney's ref: ) the disclosures of which are incorporated herein by reference. -
Toxicological Evaluation and Limit Values for 2-Ethylhexyl Acryate, Propylene Carbonate, Quaternary Ammonium Compounds, Triglyci
Environmental Project No. 555 2000 Miljøprojekt Toxicological Evaluation and Limit Values for 2-Ethylhexyl acryate, Propylene carbonate, Quaternary ammonium compounds, triglycidyl isocyanurate and tripropyleneglycol diacrylate Pia Berthelsen, Vibe Beltoft, Inger Thorup, Inge Søborg and Elsa Nielsen The Institute of Food Safety and Toxicology Danish Veterinary and Food Administration The Danish Environmental Protection Agency will, when opportunity offers, publish reports and contributions relating to environmental research and development projects financed via the Danish EPA. Please note that publication does not signify that the contents of the reports necessarily reflect the views of the Danish EPA. The reports are, however, published because the Danish EPA finds that the studies represent a valuable contribution to the debate on environmental policy in Denmark. Contents Preface 5 Principles for setting of limit values for chemical substances 7 2-Ethylhexyl acrylate 11 Propylene carbonate 35 Quaternary ammonium compounds 51 Triglycidyl isocyanurate 81 Tripropyleneglycol diacrylate 111 3 4 Preface This series of reports constitutes a part of the work related to the setting of health based limit values for chemical substances in air, soil and drinking water. In this report, the toxicological documentation for the setting of limit values for 2-ethylhexyl acrylate, propylene carbonate, quaternary ammo- nium compounds, triglycidyl isocyanurate, and tripropyleneglycol diac- rylate are presented. For every substance, the following items are -
Benefits of Benzalkonium Chloride Based Hand Sanitizers
Benzalkonium chloride-based Hand Sanitizers have distinct advantages over gelled alcohol hand sanitizers. While both product forms are FDA Monograph compliant for leave on products, fast acting and allow for use without water or towels, benzalkonium chloride-based products are non-flammable, less drying to skin, and will not stain clothing. Published studies report that benzalkonium chloride based hand sanitizers demonstrated greater sustained degerming activity than gelled alcohol gel hand sanitizers that actually became less effective with repeated use and made the skin dirtier, not cleaner due to removal of protective natural skin oils and entrapment of dead skin cells by the polymer thickeners used in the gelled alcohol products (AORN Journal, (68 August 1998), p. 239-251). Benzalkonium chloride, unlike benzethonium chloride, is the only quat active ingredient with a history of use in leave-on, FDA Monograph anti-bacterial skin treatment products. Leave-on Hand Sanitizers should not be used as a substitute for proper hand washing and hygiene practices. Patented Non-Alcohol Instant Foaming Hand Sanitizer produces a fast drying, non-sticky foam that contains unique non-drying, conditioning and moisturizing ingredients, leaves the skin with a soft, refreshing and silky after feel, and does not contain polymer thickeners or silicones. Multiple Instant Foam Hand Sanitizer, based on the active ingredient Benzalkonium chloride, featuring exceptional skin feel, conditioning and moisturizing properties. The efficacy of these product have been confirmed to reduce S. aureus 99.9999% in as little as 15 seconds. All of the Instant Foam Hand Sanitizer are in compliance with the FDA Final Tentative Monograph for OTC Hand Sanitizer preparations (leave-on sanitizers not requiring a rinse), and most are registered in Canada. -
Comparative Study of Bactericidal Activities of Six Different Disinfectants
Nagoya J. Mod. Sci. 47. 101 ~ 112. 1985 COMPARATIVE STUDY OF BACTERICIDAL ACTIVITIES OF SIX DIFFERENT DISINFECTANTS YOSHIMICHI NAMBA*, ASAKATSU SUZUKI*, NOBORU TAKESHIMA** and NOBUO KATO*** * Department of Surgical Center, Nagoya Universi/y Hospital, and ** Deparlment of Anes/hesiology and *** Depar/ment of BaCieriology, Nagoya Universi/y School of Medicine Nagoya 466, Japan ABSTRACT Bactericidal activities of six commonly used disinfectants against scven different species of clinically isolatcd hacteria, mainly glucose-nonfermentative Gram-negative hacilli, were compared. In terms of mean values of the minimum hactericidal concentration (M BC), henzethonium chloride showed the highest efficacy, followed in order hy chlorhexidine gluconate, alkyldiaminoethylglycine hydrochloride, glutaraldehyde, povidone-iodine, and phenol. However, mean MBCs of henzethonium chloride, alkyldiaminoethylglycine hydrochloride and chlorhexidine gluconate against individual species covered a far wider range from species to species compared with those of the other three disinfectants. In addition, hactericidal activities of the ahove-mentioned three disinfectants against Pseudomonas cepacia and Achrolllohaetcr xrlosoxidans ranged more widely from strain to strain than against other species. When the minimum concentrations of individual disinfectants recommended for hospital use hy the manufacturers were used, chlorhexidine gluconate (0.02%), alkyldiaminoethylglycine hydrochloride (0.1%), henzethonium chloride (0.1%) and povidone-iodine (0.75%) were not hactericidal to definite numhers of hacterial strains tested. Among them, chlorhexidine gluconate at the concentration recommended was ineffective against many strains of all hacterial species tested, especially against strains of glucose-nonfermentative Gram-negative hacilli except for PseW/O/llOllaS aerugillosa. Alkyldiamino ethylglycine hydrochloride was also remarkahly ineffective against Staphylococcus aI/reus and P. cepacia. Among all the species tested, P. -
Toxicological Evaluation of “PURIFOG Hypo” Page 1/30 Spett.Le FONDERIA MESTIERI Via Almese, 72 - 10093 Collegno (TO) - IT Tel
Università degli Studi di Torino Prof Valter Maurino Dipartimento di Chimica phone: +39 0116705218 fax: +39 0116707615 Via P. Giuria, 7 10125 Torino Italy e-mail: [email protected] Toxicological evaluation of “PURIFOG Hypo” Page 1/30 Spett.le FONDERIA MESTIERI via Almese, 72 - 10093 Collegno (TO) - IT Tel. +393355977772 / +393494388929 [email protected] Toxicological evaluation of “PURIFOG Hypo” INDEX EXECUTIVE SUMMARY ....................................................................................................................................... 3 PRODUCT TO BE EVALUATED ........................................................................................................................ 3 TOXICOLOGICAL EVALUATION OF “PURIFOG HYPO” ......................................................................... 3 DIPROPYLENE GLYCOL (CAS# 25265-71-8) ........................................................................................................ 4 2, TOXICITY SUMMARY .......................................................................................................................................... 4 3 SKIN IRRITATING AND SENSITIZING EFFECTS ....................................................................................................... 5 3 REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY ......................................................................................... 5 3 SKIN, EYE, AND RESPIRATORY IRRITATIONS ....................................................................................................... -
Pharmacy Data Management Drug Exception List
Pharmacy Data Management Drug Exception List Patch PSS*1*127 updated the following drugs with the listed NCPDP Multiplier and NCPDP Dispense Unit. These two fields were added as part of this patch to the DRUG file (#50). Please refer to the Release notes for ePharmacy/ECME Enhancements for Pharmacy Release Notes (BPS_1_5_EPHARMACY_RN_0907.PDF) on the VistA Documentation Library (VDL). The IEN column reflects the IEN for the VA PRODUCT file (#50.68). The ePharmacy Change Control Board provided the following list of drugs with the specified NCPDP Multiplier and NCPDP Dispense Unit values. This listing was used to update the DRUG file (#50) with a post install routine in the PSS*1*127 patch. NCPDP File 50.68 NCPDP Dispense IEN Product Name Multiplier Unit 2 ATROPINE SO4 0.4MG/ML INJ 1.00 ML 3 ATROPINE SO4 1% OINT,OPH 3.50 GM 6 ATROPINE SO4 1% SOLN,OPH 1.00 ML 7 ATROPINE SO4 0.5% OINT,OPH 3.50 GM 8 ATROPINE SO4 0.5% SOLN,OPH 1.00 ML 9 ATROPINE SO4 3% SOLN,OPH 1.00 ML 10 ATROPINE SO4 2% SOLN,OPH 1.00 ML 11 ATROPINE SO4 0.1MG/ML INJ 1.00 ML 12 ATROPINE SO4 0.05MG/ML INJ 1.00 ML 13 ATROPINE SO4 0.4MG/0.5ML INJ 1.00 ML 14 ATROPINE SO4 0.5MG/ML INJ 1.00 ML 15 ATROPINE SO4 1MG/ML INJ 1.00 ML 16 ATROPINE SO4 2MG/ML INJ 1.00 ML 18 ATROPINE SO4 2MG/0.7ML INJ 0.70 ML 21 ATROPINE SO4 0.3MG/ML INJ 1.00 ML 22 ATROPINE SO4 0.8MG/ML INJ 1.00 ML 23 ATROPINE SO4 0.1MG/ML INJ,SYRINGE,5ML 5.00 ML 24 ATROPINE SO4 0.1MG/ML INJ,SYRINGE,10ML 10.00 ML 25 ATROPINE SO4 1MG/ML INJ,AMP,1ML 1.00 ML 26 ATROPINE SO4 0.2MG/0.5ML INJ,AMP,0.5ML 0.50 ML 30 CODEINE PO4 30MG/ML -
Assessment of Spermicides by a Stripping Technique Against Human
Assessment of spermicides by a stripping technique against human spermatozoa Janet Brotherton Department of Gynaecological Endocrinology, Sterility and Family Planning, Klinikum Steglitz of the Free University Berlin, Hindenburgdamm 30,1000 Berlin 45, Germany Summary. Fifty-two (52) compounds were tested for spermicidal activity by titration against human spermatozoa. The gradual decrease in mean sperm size was measured against increasing concentration of spermicide and the end-point was taken as the point at which all the peripheral cytoplasm had been removed and only the sperm core of nucleus and tail fibres remained. There were 14 compounds that produced this total effect. All were detergents, of various types, and the effect was purely physical. The most potent compounds caused complete stripping at 0\m=.\5\p=n-\50pmol/cell and most are already used in spermicidal preparations. A further 11 compounds, including sodium hypochlorite and some phenols, caused partial stripping, while 4 compounds caused sperm swelling. The test was not suitable for assessment of metabolic cell poisons. Introduction The methods of assessment and the types of potent spermicides have been reviewed by Bernstein (1974). The usual method of measuring the cytotoxic potencies of compounds against specific cell types is to measure the degree of inhibition of growth, i.e. of cell division. This method cannot be used to assess the potency of spermicides and it has been usual to measure some morphological or biochemical sperm characteristic as the end-point, e.g. the decrease in percentage of motile sperma¬ tozoa after a set time or the time taken for all the spermatozoa to become immotile.