The Multifaceted Functions of Neutrophils

Total Page:16

File Type:pdf, Size:1020Kb

The Multifaceted Functions of Neutrophils UCSF UC San Francisco Previously Published Works Title The multifaceted functions of neutrophils. Permalink https://escholarship.org/uc/item/9p7275kj Journal Annual review of pathology, 9(1) ISSN 1553-4006 Authors Mayadas, Tanya N Cullere, Xavier Lowell, Clifford A Publication Date 2014 DOI 10.1146/annurev-pathol-020712-164023 Peer reviewed eScholarship.org Powered by the California Digital Library University of California PM09CH09-Mayadas ARI 13 December 2013 14:45 The Multifaceted Functions of Neutrophils Tanya N. Mayadas,1 Xavier Cullere,1 and Clifford A. Lowell2 1Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 20115; email: [email protected] 2Department of Laboratory Medicine, University of California, San Francisco, California 94143; email: [email protected] Annu. Rev. Pathol. Mech. Dis. 2014. 9:181–218 Keywords First published online as a Review in Advance on recruitment, receptors, cytotoxic functions, adaptive immunity, September 16, 2013 disorders, chronic diseases The Annual Review of Pathology: Mechanisms of Disease is online at pathol.annualreviews.org Abstract This article’s doi: Neutrophils and neutrophil-like cells are the major pathogen-fighting 10.1146/annurev-pathol-020712-164023 immune cells in organisms ranging from slime molds to mammals. Cen- Copyright c 2014 by Annual Reviews. tral to their function is their ability to be recruited to sites of infection, All rights reserved to recognize and phagocytose microbes, and then to kill pathogens Annu. Rev. Pathol. Mech. Dis. 2014.9:181-218. Downloaded from www.annualreviews.org through a combination of cytotoxic mechanisms. These include the production of reactive oxygen species, the release of antimicrobial pep- Access provided by University of California - San Francisco UCSF on 08/18/15. For personal use only. tides, and the recently discovered expulsion of their nuclear contents to form neutrophil extracellular traps. Here we discuss these primor- dial neutrophil functions, which also play key roles in tissue injury, by providing details of neutrophil cytotoxic functions and congenital dis- orders of neutrophils. In addition, we present more recent evidence that interactions between neutrophils and adaptive immune cells estab- lish a feed-forward mechanism that amplifies pathologic inflammation. These newly appreciated contributions of neutrophils are described in the setting of several inflammatory and autoimmune diseases. 181 PM09CH09-Mayadas ARI 13 December 2013 14:45 INTRODUCTION In this article, we aim both to revisit well-established principles of neutrophil func- Multicellular organisms face a constant chal- tion during inflammation and host defense— lenge of surviving in an environment containing including their production, recruitment, and unicellular pathogens. Phagocytes have evolved killing capacities—and to illuminate many of as specialized cells that engulf and kill invad- the newer findings on the contribution of these ing pathogens to protect the host against mi- cells to other aspects of immunity. The purpose croorganisms. They are the major cellular arm of this exercise is to renew and stimulate dis- of the innate immune system, which is common cussion on how processes fundamental to neu- to species throughout the evolutionary tree. In- trophil function may uniquely influence disease deed, the survival of primitive organisms—for progression. We focus on those studies that re- example, insects, which lack adaptive immune veal the growing appreciation of the complex- cells such as lymphocytes—relies on the func- ity of neutrophil function both in normal im- tion of their innate immune phagocytes (1). In mune responses and during immune-mediated humans, neutrophils account for 50% to 70% disease states. of all circulating leukocytes, and they are the first line of host defense against a wide range of infectious pathogens including bacteria, fungi, and protozoa. Neutrophils are generated at a NEUTROPHIL HOMEOSTASIS rate of 1011 per day, which can increase to 1012 Neutrophils are formed within the bone per day during bacterial infection. Thus, not marrow during hematopoiesis in response surprisingly, 55% to 60% of the bone mar- to several cytokines, principally granulocyte row is dedicated to their production (2). Neu- colony–stimulating factor (G-CSF) (12). The trophils are terminally differentiated and rela- major determinants of the total number of neu- tively short lived. Traditional estimates based trophils in the body are their rate of production, on ex vivo survival in culture or on half-life af- their storage in and egress from the bone mar- ter adoptive transfer suggested that these cells row, and their survival in and clearance from the survive for only 8–12 h in the circulation and up blood. Entry into the tissues during inflamma- to 1–2 days in tissues, with their turnover de- tory responses can also affect overall neutrophil layed or accelerated during the inflammatory numbers. The ability of an organism to main- response (3–5). More modern approaches us- tain a balance between neutrophil production ing deuterium labeling methods in vivo sug- and turnover, while adapting to environmental gest that under homeostatic conditions, human challenge, implies that there must be a molec- neutrophils may have a circulatory life span up ular process for measuring neutrophil numbers to 5 days (6). Although this dramatically dif- at any given time. The existence of some form ferent view of neutrophil half-life is somewhat of a “neutrostat” that measures neutrophil controversial (7, 8), these types of more up- numbers and adjusts them accordingly remains Annu. Rev. Pathol. Mech. Dis. 2014.9:181-218. Downloaded from www.annualreviews.org dated immunological investigations are chang- very controversial (13). However, recently described feedback loops certainly contribute Access provided by University of California - San Francisco UCSF on 08/18/15. For personal use only. ing our overall perception of neutrophil func- tion in immunity. Whereas researchers once to neutrophil homeostasis under resting and believed that neutrophils were present only inflammatory disease conditions. during the acute phase of the inflammatory re- One such feedback loop was discovered in sponse, functioning only as pathogen killers, studies of adhesion molecule [CD18, E/P/L- we now appreciate that neutrophils can shape selectin, or CD11a (LFA-1)]–deficient mice. the immune landscape by communicating with In these animals, neutrophil egress from the macrophages, dendritic cells (DCs), and cells of peripheral blood is reduced; hence, the animals the adaptive immune response through direct display significant neutrophilia. Under steady- cell-cell contact or soluble mediators (9–11). state conditions, senescent neutrophils are 182 Mayadas · Cullere · Lowell PM09CH09-Mayadas ARI 13 December 2013 14:45 engulfed by tissue macrophages [primarily in sense low neutrophil numbers remains unclear. the liver, spleen and bone marrow (14)], which However, very recent results suggest that this then initiate anti-inflammatory signals via ex- sensing pathway depends on the innate immune Granulocyte pression of PPARγ (peroxisome proliferator– receptor Toll-like receptor (TLR) 4 and its macrophage activated receptor γ) and LXR (liver X recep- signaling adapter Toll/interleukin-1 receptor colony–stimulating tor) (15). These anti-inflammatory signals, in (TIR) domain–containing adapter-inducing factor (GM-CSF): turn, lower the steady-state production of inter- interferon-β (TRIF), because antibody- a classical cytokine leukin (IL)-23 by macrophages. IL-23 is a well- mediated depletion of neutrophils fails to cause that promotes granulopoiesis and established inflammatory cytokine that induces G-CSF elevation or progenitor proliferation primes neutrophils for IL-17 production by T lymphocytes, natural in mice lacking TLR4 or TRIF (20). enhanced cytotoxic killer (NK) cells, and natural killer T (NKT) Most studies have focused on G-CSF and responses cells, which, in turn, induces production of GM-CSF as the ultimate cytokines that reg- Toll-like receptors G-CSF and granulocyte macrophage colony– ulate neutrophil production, but this is clearly (TLRs): a family of stimulating factor (GM-CSF) by stromal cells, too simple a view, given that mice lacking one or intracellular and driving granulopoiesis and inflammation (16). both of these cytokines still have approximately extracellular PRRs that engage the Adhesion molecule–deficient mice have high 20% of the normal level of mature neutrophils intracellular steady-state levels of IL-23 and IL-17, due in their blood (22). Indeed, these cytokine- transcriptional to reduced egress of neutrophils out of the deficient animals can also mount increased machinery to promote blood and hence reduced neutrophil uptake by neutrophil production in response to inflam- synthesis and secretion macrophages, leading to elevated G-CSF (17). matory stimuli, a process termed emergency of pro-inflammatory cytokines Genetic depletion of IL-23 in CD18 knockout granulopoiesis (23). That hematopoietic pro- mice reverses their neutrophilia, supporting the genitors can ramp up production of granulo- model that the rate of phagocytosis of apoptotic cytes in response to inflammatory or pathogen neutrophils regulates their production via an challenge, even in the absence of canonical IL-23–IL-17 axis (18). Similarly, mice lacking granulopoiesis-stimulating cytokines, indicates the
Recommended publications
  • Original Article Tocilizumab Infusion Therapy Normalizes Inflammation in Sporadic ALS Patients
    Am J Neurodegener Dis 2013;2(2):129-139 www.AJND.us /ISSN:2165-591X/AJND1304002 Original Article Tocilizumab infusion therapy normalizes inflammation in sporadic ALS patients Milan Fiala1, Mathew T Mizwicki1, Rachel Weitzman1, Larry Magpantay2, Norihiro Nishimoto3 1Department of Surgery, David Geffen School of Medicine at UCLA, 100 UCLA Medical Plaza, Suite 220, Los Angeles, CA 90095-6970, USA; 2Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, 650 Charles E. Young Drive, Los Angeles, CA, 90095-1735, USA; 3Department of Molecular Regulation for Intractable Diseases, Institute of Medical Sciences, Tokyo Medical University, Minamisenba, Chuo- ku, Osaka, 542-0081, Japan Received April 8 2013; Accepted May 19 2013; Epub June 21, 2013; Published July 1, 2013 Abstract: Patients with sporadic amyotrophic lateral sclerosis (sALS) show inflammation in the spinal cord and pe- ripheral blood. The inflammation is driven by stimulation of macrophages by aggregated superoxide dismutase 1 (SOD1) through caspase1, interleukin 1 (IL1), IL6 and chemokine signaling. Inflammatory gene activation is inhibit- ed in vitro by tocilizumab, a humanized antibody to IL6 receptor (IL6R). Tocilizumab inhibits global interleukin-6 (IL6) signaling, a key mechanism in chronic rheumatoid disorders. Here we studied in vivo baseline inflammatory gene transcription in peripheral blood mononuclear cells (PBMCs) of 10 sALS patients, and the effects of tocilizumab (ActemraR) infusions. At baseline, one half of ALS subjects had strong inflammatory activation (Group 1) (8 genes up regulated >4-fold, P<0.05 vs. controls) and the other half (Group 2) had weak activation. All patients showed greater than four-fold up regulation of MMP1, CCL7, CCL13 and CCL24.
    [Show full text]
  • Supplementary Material
    Supplementary Material Supplementary Table 1. List of all 136 studied plasma proteins. Name Abbreviation Name Abbreviation Agouti-related protein AGRP Interleukin-6 IL6 Adrenomedullin AM Interleukin-6 receptor subunit alpha IL6RA Amphiregulin AR Interleukin-7 IL7 B-cell activating factor BAFF Interleukin-8 IL8 Ovarian cancer-related tumor marker CA125 Immunoglobulin-like transcript 3 ILT3 CA 125 Carbonic anhydrase IX CAIX Integrin alpha-1 ITGA1 Caspase-3 CASP3 Melusin ITGB1BP2 Caspase-8 CASP8 Kallikrein-6 KLK6 C-C motif chemokine 19 CCL19 Latency-associated peptide transforming LAPTGFbeta1 growth factor beta-1 C-C motif chemokine 20 CCL20 Leptin LEP C-C motif chemokine 3 CCL3 Lectin-like oxidized LDL receptor 1 LOX1 C-C motif chemokine 4 CCL4 Tyrosine-protein kinase Lyn LYN Tumor necrosis factor receptor CD40 Membrane-bound aminopeptidase P mAmP superfamily member 5 CD40 ligand CD40L Myoglobin MB Early activation antigen CD69 CD69 Monocyte chemotactic protein 1 MCP1 Cadherin-3 CDH3 Melanoma-derived growth regulatory MIA protein Cyclin-dependent kinase inhibitor 1 CDKN1A MHC class I polypeptide-related sequence A MICA Chitinase-3-like protein 1 CHI3L1 Midkine MK Macrophage colony-stimulating factor 1 CSF1 Matrix metalloproteinase-1 MMP1 Cystatin-B CSTB Matrix metalloproteinase-10 MMP10 Cathepsin D CTSD Matrix metalloproteinase-12 MMP12 Cathepsin L1 CTSL1 Matrix metalloproteinase-3 MMP3 Fractalkine CX3CL1 Matrix metalloproteinase-7 MMP7 C-X-C motif chemokine 1 CXCL1 Myeloperoxidase MPO C-X-C motif chemokine 10 CXCL10 NF-kappa-B essential
    [Show full text]
  • The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature
    International Journal of Molecular Sciences Review The Effect of Hypoxia on the Expression of CXC Chemokines and CXC Chemokine Receptors—A Review of Literature Jan Korbecki 1 , Klaudyna Kojder 2, Patrycja Kapczuk 1, Patrycja Kupnicka 1 , Barbara Gawro ´nska-Szklarz 3 , Izabela Gutowska 4 , Dariusz Chlubek 1 and Irena Baranowska-Bosiacka 1,* 1 Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] (J.K.); [email protected] (P.K.); [email protected] (P.K.); [email protected] (D.C.) 2 Department of Anaesthesiology and Intensive Care, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-281 Szczecin, Poland; [email protected] 3 Department of Pharmacokinetics and Therapeutic Drug Monitoring, Pomeranian Medical University in Szczecin, Powsta´nców Wielkopolskich 72 Av., 70-111 Szczecin, Poland; [email protected] 4 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powsta´nców Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-914661515 Abstract: Hypoxia is an integral component of the tumor microenvironment. Either as chronic or cycling hypoxia, it exerts a similar effect on cancer processes by activating hypoxia-inducible factor-1 (HIF-1) and nuclear factor (NF-κB), with cycling hypoxia showing a stronger proinflammatory influ- ence. One of the systems affected by hypoxia is the CXC chemokine system. This paper reviews all available information on hypoxia-induced changes in the expression of all CXC chemokines (CXCL1, CXCL2, CXCL3, CXCL4, CXCL5, CXCL6, CXCL7, CXCL8 (IL-8), CXCL9, CXCL10, CXCL11, CXCL12 Citation: Korbecki, J.; Kojder, K.; Kapczuk, P.; Kupnicka, P.; (SDF-1), CXCL13, CXCL14, CXCL15, CXCL16, CXCL17) as well as CXC chemokine receptors— Gawro´nska-Szklarz,B.; Gutowska, I.; CXCR1, CXCR2, CXCR3, CXCR4, CXCR5, CXCR6, CXCR7 and CXCR8.
    [Show full text]
  • Exploration of Prognostic Biomarkers and Therapeutic Targets in the Microenvironment of Bladder Cancer Based on CXC Chemokines
    Exploration of Prognostic Biomarkers and Therapeutic Targets in The Microenvironment of Bladder Cancer Based on CXC Chemokines Xiaoqi Sun Department of Urology, Kaiping Central Hospital, Kaiping, 529300, China Qunxi Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Lihong Zhang Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Jiewei Chen Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China Xinke Zhang ( [email protected] ) Sun Yat-sen University Cancer Center Research Keywords: Bladder cancer, Biomarkers, CXC Chemokines, Microenvironment Posted Date: February 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-223127/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background: Bladder cancer (BLCA) has a high rate of morbidity and mortality, and is considered as one of the most malignant tumors of the urinary system. Tumor cells interact with surrounding interstitial cells, playing a key role in carcinogenesis and progression, which is partly mediated by chemokines. CXC chemokines exert anti‐tumor biological roles in the tumor microenvironment and affect patient prognosis. Nevertheless, their expression and prognostic values patients with BLCA remain unclear. Methods: We used online tools, including Oncomine, UALCAN, GEPIA, GEO databases, cBioPortal, GeneMANIA, DAVID 6.8, Metascape, TRUST (version 2.0), LinkedOmics, TCGA, and TIMER2.0 to perform the relevant analysis. Results: The mRNA levels of C-X-C motif chemokine ligand (CXCL)1, CXCL5, CXCL6, CXCL7, CXCL9, CXCL10, CXCL11, CXCL13, CXCL16, and CXCL17 were increased signicantly increased, and those of CXCL2, CXCL3, and CXCL12 were decreased signicantly in BLCA tissues as assessed using the Oncomine, TCGA, and GEO databases.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Bio-Plex Pro™ Human Chemokine Panel
    Acute Phase Response Cancer Cardiovascular Disease Cytokines, Chemokines, Growth Factors Diabetes Toxicology ™ Genotyping Bio-Plex Pro Immunoglobulin Isotyping Signal Transduction Human Chemokine Panel 6Ckine / CCL21, BCA-1 / CXCL13, CTACK / CCL27, ENA-78 / CXCL5, Eotaxin / CCL11, Eotaxin-2 / CCL24, Eotaxin-3 / CCL26, Fractalkine / CX3CL1, GCP-2 / CXCL6, GM-CSF, Gro-a / CXCL1, Gro-b / CXCL2, I-309 / CCL1, MAGNETIC SEPARATION ENABLED IFN-g, IL-1b, IL-2, IL-4, IL-6, IL-8 / CXCL8, IL-10, IL-16, IP-10 / CXCL10, I-TAC / CXCL11, MCP-1 / CCL2, MCP-2 / CCL8, MCP-3 / CCL7, MCP-4 / CCL13, MDC / CCL22, MIF, MIG / CXCL9, MIP-1a / CCL3, MIP-1d / CCL15, MIP-3a / CCL20, MIP-3b / CCL19, MPIF-1 / CCL23, SCYB16 / CXCL16, SDF-1a+b / CXCL12, TARC / CCL17, TECK / CCL25, TNF-a ■ All-in-one 40-plex kit High-Performance Multiplex Rigorous Assay Validation ■ Custom Immunoassays for Research All Bio-Plex Pro Assays undergo rigorous configurations The Bio-Plex Pro Human Chemokine evaluation that includes the following ■ Single level quality Panel features 40 magnetic bead–based parameters: control immunoassays to measure chemokines and ■■ Specificity (cross-reactivity) ■ Magnetic workflow chemotaxis-relevant analytes. The assays ■■ Accuracy (recovery) in key sample matrices have undergone rigorous evaluation to provide ■■ Inter- and intra-assay precision reliable performance for your research needs ■■ Sensitivity (limit of detection, LOD) and are available in flexible, customized formats. ■■ Assay working range (LLOQ/ULOQ) Chemokines are typically associated with the ■■ Linearity of dilution following areas of research: ■■ Parallelism and matrix effect ■■ Cancer/angiogenesis ■■ Performance characteristics in real samples ■■ Cardiovascular disease Assay Performance Definitions ■■ Autoimmune disorders The following parameters are indicative of ■■ Allergy/asthma assay performance, as shown in Table 1.
    [Show full text]
  • Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Importa
    cells Article Cytokines Explored in Saliva and Tears from Radiated Cancer Patients Correlate with Clinical Manifestations, Influencing Important Immunoregulatory Cellular Pathways Lara A. Aqrawi 1,2 , Xiangjun Chen 1, Håvard Hynne 1, Cecilie Amdal 3, Sjur Reppe 4 , Hans Christian D. Aass 4, Morten Rykke 5, Lene Hystad Hove 5, Alix Young 5, Bente Brokstad Herlofson 1,6, Kristine Løken Westgaard 1,6, Tor Paaske Utheim 4,7,8,9, Hilde Kanli Galtung 8,* and Janicke Liaaen Jensen 1 1 Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway; [email protected] (L.A.A.); [email protected] (X.C.); [email protected] (H.H.); [email protected] (B.B.H.); [email protected] (K.L.W.); [email protected] (J.L.J.) 2 Department of Health Sciences, Kristiania University College, 0153 Oslo, Norway 3 Section for Head and Neck Oncology, Oslo University Hospital, 0379 Oslo, Norway; [email protected] 4 Department of Medical Biochemistry, Oslo University Hospital, 0450 Oslo, Norway; [email protected] (S.R.); [email protected] (H.C.D.A.); [email protected] (T.P.U.) 5 Department of Cariology and Gerodontology, Faculty of Dentistry, University of Oslo, 0455 Oslo, Norway; [email protected] (M.R.); [email protected] (L.H.H.); [email protected] (A.Y.) 6 Department of Otorhinolaryngology-Head and Neck Surgery Division for Head, Neck and Reconstructive Surgery, Oslo University Hospital, 0450 Oslo, Norway 7 Department of Plastic and Reconstructive
    [Show full text]
  • And Nuclear Factor-Κb–Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis
    Cancer Prevention Research Cyclic AMP-Responsive Element Binding Protein– and Nuclear Factor-κB–Regulated CXC Chemokine Gene Expression in Lung Carcinogenesis Hongxia Sun, Wen-Cheng Chung, Seung-Hee Ryu, Zhenlin Ju, Hai T. Tran, Edward Kim, Jonathan M. Kurie and Ja Seok Koo Abstract The recognition of the importance of angiogenesis in tumor progression has led to the development of antiangiogenesis as a new strategy for cancer treatment and prevention. By modulating tumor microenvironment and inducing angiogenesis, the proinflammatory cytokine interleukine (IL)-1β has been reported to promote tumor development. However, the factors mediating IL-1β–induced angiogenesis in non–small cell lung cancer (NSCLC) and the regulation of these angiogenicfactorsby IL-1 β are less clear. Here, we report that IL-1β up-regulated an array of proangiogenic CXC chemokine genes in the NSCLC cell line A549 and in normal human tracheobronchial epithelium cells, as determined by microarray analysis. Further analysis revealed that IL-1β induced much higher protein levels of CXC chemokines in NSCLC cells than in normal human tracheobronchial epithelium cells. Con- ditioned medium from IL-1β–treated A549 cells markedly increased endothelial cell migra- tion, which was suppressed by neutralizing antibodies against CXCL5 and CXCR2. We also found that IL-1β–induced CXC chemokine gene overexpression in NSCLC cells was abro- gated with the knockdown of cyclic AMP-responsive element binding protein (CREB) or nuclear factor κB (NF-κB). Moreover, the expression of the CXC chemokine genes as well as CREB and NF-κB activities was greatly increased in the tumorigenic NSCLC cell line compared with normal, premalignant immortalized or nontumorigenic cell lines.
    [Show full text]
  • Receptor CCR3 on Airway Epithelial Cells Functional Analysis of The
    Functional Analysis of the Chemokine Receptor CCR3 on Airway Epithelial Cells Lisa A. Beck, Brian Tancowny, Mary E. Brummet, S. Yukiko Asaki, Stephanie L. Curry, Margaret B. Penno, This information is current as Martyn Foster, Ash Bahl and Cristiana Stellato of September 29, 2021. J Immunol 2006; 177:3344-3354; ; doi: 10.4049/jimmunol.177.5.3344 http://www.jimmunol.org/content/177/5/3344 Downloaded from References This article cites 55 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/177/5/3344.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Functional Analysis of the Chemokine Receptor CCR3 on Airway Epithelial Cells Lisa A. Beck,*† Brian Tancowny,* Mary E. Brummet,* S. Yukiko Asaki,* Stephanie L. Curry,* Margaret B. Penno,‡ Martyn Foster,§ Ash Bahl,§ and Cristiana Stellato1,2* The function of chemokine receptors on structural cells is only partially known.
    [Show full text]
  • CXCL8) Signaling in Cancer
    Pharmaceuticals 2013, 6, 929-959; doi:10.3390/ph6080929 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8) Signaling in Cancer Laura M. Campbell, Pamela J. Maxwell and David J.J. Waugh * Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, Northern Ireland, BT9 7BL, UK; E-Mails: [email protected] (L.M.C.); [email protected] (P.J.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-(0)2890-972-763; Fax: +44-(0)2890-972-776. Received: 9 May 2013; in revised form: 3 July 2013 / Accepted: 29 July 2013 / Published: 6 August 2013 Abstract: It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors) and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies).
    [Show full text]
  • Specific Receptors for the Chemokines CXCR2 and CXCR4
    International Journal of Molecular Sciences Article Specific Receptors for the Chemokines CXCR2 and CXCR4 in Pancreatic Cancer Ala Litman-Zawadzka 1,*, Marta Łukaszewicz-Zaj ˛ac 2 , Mariusz Gryko 3, Agnieszka Kulczy ´nska-Przybik 1, Bogusław K˛edra 3 and Barbara Mroczko 1,2 1 Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; [email protected] (A.K.-P.); [email protected] (B.M.) 2 Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland; [email protected] 3 Second Department of General Surgery, Medical University of Bialystok, 15-276 Bialystok, Poland; [email protected] (M.G.); [email protected] (B.K.) * Correspondence: [email protected]; Tel.: +48-85-8318785; Fax: +48-85-8318585 Received: 11 August 2020; Accepted: 25 August 2020; Published: 27 August 2020 Abstract: Background: The mortality rate of pancreatic cancer (PC) is equal to its incidence and the majority of PC patients die within a few months of diagnosis. Therefore, a search for new biomarkers useful in the diagnosis and prognosis of PC is ongoing. Objectives: The aim of our study was to compare the utility of CXCR2 and CXCR4 in the diagnosis and prediction of PC with classical tumor marker (carcinoembryonic antigen, CEA) and marker of inflammation–C-reactive protein (CRP). Patients and Methods: The study comprised 64 subjects — 32 PC patients and 32 healthy volunteers. Serum concentrations of tested proteins were analysed using immunological methods. Results: Serum CXCR2 and CXCR4 concentrations, similarly to those of CEA and CRP, were significantly elevated in PC patients compared to healthy controls.
    [Show full text]
  • AXIN1 in Plasma Or Serum Is a Potential New Biomarker for Endometriosis
    Supplementary Materials AXIN1 in Plasma or Serum Is a Potential New Biomarker for Endometriosis Table S1. Inflammation-related proteins measured by Proximity Extension Assay. Protein Abbreviation Interleukin-8 IL-8 Vascular endothelial growth factor A VEGF-A Brain-derived neurotrophic factor BDNF Monocyte chemotactic protein 3 MCP-3 Glial cell line-derived neurotrophic factor hGDNF CUB domain-containing protein 1 CDCP1 Natural killer cell receptor 2B4 CD244 Interleukin-7 IL-7 Osteoprotegerin OPG Latency-associated peptide transforming growth factor beta 1 LAP TGF-beta-1 Urokinase-type plasminogen activator uPA Interleukin-6 IL-6 Interleukin-17C IL-17C Monocyte chemotactic protein 1 MCP-1 Interleukin-17A IL-17A C-X-C motif chemokine 11 CXCL11 Axin-1 AXIN1 TNF-related apoptosis-inducing ligand TRAIL Interleukin-20 receptor subunit alpha IL-20RA C-X-C motif chemokine 9 CXCL9 Cystatin D CST5 Interleukin-2 receptor subunit beta IL-2RB Interleukin-1 alpha IL-1 alpha Oncostatin-M OSM Interleukin-2 IL-2 C-X-C motif chemokine 1 CXCL1 Thymic stromal lymphopoietin TSLP C-C motif chemokine 4 CCL4 T cell surface glycoprotein CD6 isoform CD6 Stem cell factor SCF Interleukin-18 IL-18 Signaling lymphocytic activation molecule SLAMF1 Transforming growth factor alpha TGF-alpha Monocyte chemotactic protein 4 MCP-4 Eotaxin-1 CCL11 Tumor necrosis factor ligand superfamily member 14 TNFSF14 Fibroblast growth factor 23 FGF-23 Interleukin-10 receptor subunit alpha IL-10RA Fibroblast growth factor 5 FGF-5 Matrix metalloproteinase-1 MMP-1 Leukemia inhibitory factor
    [Show full text]