GPA33: a Marker to Identify Stable Human Regulatory T Cells Rianne Opstelten, Sander De Kivit, Manon C

Total Page:16

File Type:pdf, Size:1020Kb

GPA33: a Marker to Identify Stable Human Regulatory T Cells Rianne Opstelten, Sander De Kivit, Manon C GPA33: A Marker to Identify Stable Human Regulatory T Cells Rianne Opstelten, Sander de Kivit, Manon C. Slot, Maartje van den Biggelaar, Dorota Iwaszkiewicz-Grzes, Mateusz This information is current as Gliwinski, Andrew M. Scott, Bianca Blom, Piotr of September 28, 2021. Trzonkowski, Jannie Borst, Eloy Cuadrado and Derk Amsen J Immunol published online 4 May 2020 http://www.jimmunol.org/content/early/2020/05/02/jimmun ol.1901250 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2020/05/02/jimmunol.190125 Material 0.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published May 4, 2020, doi:10.4049/jimmunol.1901250 The Journal of Immunology GPA33: A Marker to Identify Stable Human Regulatory T Cells Rianne Opstelten,* Sander de Kivit,†,1 Manon C. Slot,* Maartje van den Biggelaar,‡ Dorota Iwaszkiewicz-Grzes,x Mateusz Gliwin´ski,x Andrew M. Scott,{ Bianca Blom,‖ Piotr Trzonkowski,x Jannie Borst,†,1 Eloy Cuadrado,* and Derk Amsen* FOXP3-expressing regulatory T (Treg) cells safeguard immunological tolerance. Treg cells can be generated during thymic development (called thymic Treg [tTreg] cells) or derived from mature conventional CD4+ T cells that underwent TGF-b– mediated conversion in the periphery (called peripheral Treg [pTreg] cells). Murine studies have shown that tTreg cells exhibit strong lineage fidelity, whereas pTreg cells can revert into conventional CD4+ T cells. Their stronger lineage commitment makes tTreg cells the safest cells to use in adoptive cell therapy, increasingly used to treat autoimmune and inflammatory disorders. Markers to distinguish human tTreg cells from pTreg cells have, however, not been found. Based on combined proteomic and Downloaded from transcriptomic approaches, we report that the Ig superfamily protein GPA33 is expressed on a subset of human Treg cells. GPA33 is acquired late during tTreg cell development but is not expressed on TGF-b–induced Treg cells. GPA33 identifies Treg cells in human blood that lack the ability to produce effector cytokines (IL-2, IFN-g, IL-17), regardless of differentiation stage. GPA33high Treg cells universally express the transcription factor Helios that preferentially marks tTreg cells and can robustly and stably be expanded in vitro even without rapamycin. Expanded GPA33high Treg cells are suppressive, unable to produce proinflammatory cytokines, and exhibit the epigenetic modifications of the FOXP3 gene enhancer CNS2, necessary for indelible expression of this http://www.jimmunol.org/ critical transcription factor. Our findings thus suggest that GPA33 identifies human tTreg cells and provide a strategy to isolate such cells for safer and more efficacious adoptive cell therapy. The Journal of Immunology, 2020, 204: 000–000. orkhead box protein 3-expressing CD4+ regulatory T Treg cell types has, however, been identified. Whereas tTreg cells (Treg) cells inhibit undesirable immune responses through are thought to be irreversibly committed to the Treg cell lineage, F a variety of mechanisms and thereby limit immunopa- pTreg cells may have the capacity to revert into conventional T thology (1). Two lineages of Treg cells have been described, (Tconv) cells and can cause pathologic conditions upon adoptive which differ in their developmental origin. So-called thymic Treg transfer (6–8). by guest on September 28, 2021 (tTreg) cells develop from immature thymocytes in response to Adoptive cell therapy (ACT) with Treg cells is a powerful recognition of self-antigen (2). Mature conventional CD4+ T cells method to attenuate inflammation and promote acceptance of organ can, however, also differentiate into Treg cells, known as peripheral allografts in mice (9–14). Clinical trials are ongoing to mitigate Treg (pTreg) cells, in response to recognition of Ags derived from graft-versus-host disease (15–22), autoimmune diseases like type commensal organisms or food (3–5). tTreg and pTreg cells are both 1 diabetes mellitus (23, 24), and to prevent rejection of organ needed for full protection from (auto)inflammatory disease. Still, grafts (25). Despite encouraging preliminary results, mouse major functional differences between these cell types have not been studies suggest that greater efficacy must be possible (24), espe- found, suggesting that their complementarity may stem from their cially through the use of Treg cells with AgRs specific for peptides distinct Ag specificities. One important difference between these presented in the tissues that must be protected (26–34). *Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, R.O., M.C.S., and D.A. designed the study; R.O., M.C.S., and S.d.K. performed all Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; in vitro experiments and FACS staining; M.v.d.B. and E.C. performed the RNA †Division of Tumor Biology and Immunology, Netherlands Cancer Institute–Antoni sequencing and proteomics experiments; D.I.-G., M.G., and P.T. generated data in van Leeuwenhoek Hospital, 1066 CX Amsterdam, the Netherlands; ‡Department of regulatory T cell therapy products; A.M.S. provided the GPA33 Ab; B.B. provided Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, human thymic tissue and advice on thymic regulatory T cell development; J.B. Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; provided conceptual advice and contributed to the manuscript; R.O. and D.A. ana- xDepartment of Medical Immunology, Medical University of Gdansk, 80-210 lyzed data and wrote the manuscript. Gdansk, Poland; {Tumor Targeting Laboratory, Olivia Newton-John Cancer Research Address correspondence and reprint requests to Dr. Derk Amsen, Department of Institute and La Trobe School of Cancer Medicine, La Trobe University, Melbourne, ‖ Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Victoria, VIC 3086 Australia; and Department of Experimental Immunology, University of Amsterdam, Plesmanlaan 125, 1066 CX Amsterdam, Noord Holland, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands the Netherlands. E-mail address: [email protected] 1Current address: Department of Immunohematology and Blood Transfusion, Leiden The online version of this article contains supplemental material. University Medical Center, Leiden, the Netherlands. Abbreviations used in this article: ACT, adoptive cell therapy; Ct, cycle threshold; ORCIDs: 0000-0003-0148-7802 (S.d.K.); 0000-0001-9376-3231 (M.G.); 0000-0001- DN, double negative; DP, double positive; eTreg, effector Treg; Fr. III, Fraction 3; 5287-5210 (P.T.). HSD, honestly significant difference; iBAQ, intensity-based absolute protein quanti- Received for publication October 17, 2019. Accepted for publication April 16, 2020. fication; IM, ionomycin; iTreg, TGF-b–induced Treg; MS, methylation-specific; mTconv, memory Tconv; nTconv, naive Tconv; nTreg, naive Treg; pTreg, peripheral This work was supported by Landsteiner Foundation for Blood Transfusion Research Treg; qPCR, quantitative PCR; RTE, recent thymic emigrant; SP, single positive; Grant 1430 (to D.A.), an Institute for Chemical Immunology grant, Nederlanse Tconv, conventional T; Treg, regulatory T; TSDR, Treg cell–specific demethylated Organisatie voor Wetenschappelijk Ondersoek Gravitation Grant 000014 (to J.B.), region; tTreg, thymic Treg. and ZonMW Netherlands Organization for Health and Research Development Grant 9121307-1 (to J.B.). Copyright Ó 2020 by The American Association of Immunologists, Inc. 0022-1767/20/$37.50 www.jimmunol.org/cgi/doi/10.4049/jimmunol.1901250 2 GPA33 IDENTIFIES STABLE TREG CELLS There are several hurdles for ACT with Treg cells (35). First, Sample preparation and cell sorting + pure populations of human Treg cells are difficult to obtain. CD4 Blood samples and Treg cell isolation. Human materials were obtained in Treg cells express CD25 and lack CD127 (36–38), but these accordance with the Declaration of Helsinki and the Dutch rules with re- markers do not allow rigorous separation between Treg and spect to the use of human materials from volunteer donors. Umbilical cord Tconv cells. To limit the presence of contaminating Tconv cells, blood was obtained from the Sanquin cord blood bank, according to the + + – Eurocord guidelines, with informed consent from the mothers. Donors were CD4 CD25 CD127 cells are often expanded in vitro in the full-term infants of healthy mothers after uncomplicated pregnancy. Buffy presence of the drug rapamycin. This drug inhibits Tconv cells, coats from healthy anonymized donors were obtained after their written whereas Treg cells are relatively tolerant to it (39–42). None- informed consent, as approved by Sanquin
Recommended publications
  • Chromosomal Aberrations in Head and Neck Squamous Cell Carcinomas in Norwegian and Sudanese Populations by Array Comparative Genomic Hybridization
    825-843 12/9/08 15:31 Page 825 ONCOLOGY REPORTS 20: 825-843, 2008 825 Chromosomal aberrations in head and neck squamous cell carcinomas in Norwegian and Sudanese populations by array comparative genomic hybridization ERIC ROMAN1,2, LEONARDO A. MEZA-ZEPEDA3, STINE H. KRESSE3, OLA MYKLEBOST3,4, ENDRE N. VASSTRAND2 and SALAH O. IBRAHIM1,2 1Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91; 2Department of Oral Sciences - Periodontology, Faculty of Medicine and Dentistry, University of Bergen, Årstadveien 17, 5009 Bergen; 3Department of Tumor Biology, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Center, Montebello, 0310 Oslo; 4Department of Molecular Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway Received January 30, 2008; Accepted April 29, 2008 DOI: 10.3892/or_00000080 Abstract. We used microarray-based comparative genomic logical parameters showed little correlation, suggesting an hybridization to explore genome-wide profiles of chromosomal occurrence of gains/losses regardless of ethnic differences and aberrations in 26 samples of head and neck cancers compared clinicopathological status between the patients from the two to their pair-wise normal controls. The samples were obtained countries. Our findings indicate the existence of common from Sudanese (n=11) and Norwegian (n=15) patients. The gene-specific amplifications/deletions in these tumors, findings were correlated with clinicopathological variables. regardless of the source of the samples or attributed We identified the amplification of 41 common chromosomal carcinogenic risk factors. regions (harboring 149 candidate genes) and the deletion of 22 (28 candidate genes). Predominant chromosomal alterations Introduction that were observed included high-level amplification at 1q21 (harboring the S100A gene family) and 11q22 (including Head and neck squamous cell carcinoma (HNSCC), including several MMP family members).
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0072349 A1 Diamandis Et Al
    US 201500 72349A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0072349 A1 Diamandis et al. (43) Pub. Date: Mar. 12, 2015 (54) CANCER BOMARKERS AND METHODS OF (52) U.S. Cl. USE CPC. G0IN33/57484 (2013.01); G0IN 2333/705 (2013.01) (71) Applicant: University Health Network, Toronto USPC ......................................... 435/6.12: 435/7.94 (CA) (57) ABSTRACT A method of evaluating a probability a Subject has a cancer, (72) Inventors: Eleftherios P. Diamandis, Toronto diagnosing a cancer and/or monitoring cancer progression (CA); Ioannis Prassas, Toronto (CA); comprising: a. measuring an amount of a biomarker selected Shalini Makawita, Toronto (CA); from the group consisting of CUZD1 and/or LAMC2 and/or Caitlin Chrystoja, Toronto (CA); Hari the group CUZD1, LAMC2, AQP8, CELA2B, CELA3B, M. Kosanam, Maple (CA) CTRB1, CTRB2, GCG, IAPP, INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, KLK3, NPY, (21) Appl. No.: 14/385,449 PSCA, RLN1, SLC45A3, DSP GP73, DSG2, CEACAM7, CLCA1, GPA33, LEFTY1, ZG16, IRX5, LAMP3, MFAP4, (22) PCT Fled: Mar. 15, 2013 SCGB1A1, SFTPC, TMEM100, NPY, PSCA RLN1 and/or SLC45A3 in a test sample from a subject with cancer; (86) PCT NO.: PCT/CA2O13/OOO248 wherein the cancer is pancreas cancer if CUZD1, LAMC2, S371 (c)(1), AQP8, CELA2B, CELA3B, CTRB1, CTRB2, GCG, LAPP (2) Date: Sep. 23, 2014 INS, KLK1, PNLIPRP1, PNLIPRP2, PPY, PRSS3, REG3G, SLC30A8, DSP GP73 and/or DSG2 is selected; the cancer is colon cancer if CEACAM7, CLCA1, GPA33, LEFTY 1 and/ Related U.S. Application Data or ZG16 is selected, the cancer is lung cancer if IRX5, (60) Provisional application No.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • PMC6851141.Pdf
    ARTICLE https://doi.org/10.1038/s41467-019-12515-9 OPEN Genome-wide association study of eosinophilic granulomatosis with polyangiitis reveals genomic loci stratified by ANCA status Paul A Lyons et al.# Eosinophilic granulomatosis with polyangiitis (EGPA) is a rare inflammatory disease of unknown cause. 30% of patients have anti-neutrophil cytoplasmic antibodies (ANCA) spe- 1234567890():,; cific for myeloperoxidase (MPO). Here, we describe a genome-wide association study in 676 EGPA cases and 6809 controls, that identifies 4 EGPA-associated loci through conventional case-control analysis, and 4 additional associations through a conditional false discovery rate approach. Many variants are also associated with asthma and six are associated with eosi- nophil count in the general population. Through Mendelian randomisation, we show that a primary tendency to eosinophilia contributes to EGPA susceptibility. Stratification by ANCA reveals that EGPA comprises two genetically and clinically distinct syndromes. MPO+ ANCA EGPA is an eosinophilic autoimmune disease sharing certain clinical features and an HLA-DQ association with MPO+ ANCA-associated vasculitis, while ANCA-negative EGPA may instead have a mucosal/barrier dysfunction origin. Four candidate genes are targets of therapies in development, supporting their exploration in EGPA. *email: [email protected] #A full list of authors and their affiliations appears at the end of the paper. NATURE COMMUNICATIONS | (2019) 10:5120 | https://doi.org/10.1038/s41467-019-12515-9 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-12515-9 osinophilic granulomatosis with polyangiitis (EGPA), once 176 (33%) were positive for ANCA, and of the 164 who were Enamed Churg-Strauss syndrome, has a unique combination positive for specific ANCA by ELISA, 159 (97%) had MPO+ of clinical features that have some overlap with the other ANCA and five PR3 + ANCA.
    [Show full text]
  • GPA33 Antibody
    Efficient Professional Protein and Antibody Platforms GPA33 Antibody Basic information: Catalog No.: UPA61087 Source: Rabbit Size: 50ul/100ul Clonality: polyclonal Concentration: 1mg/ml Isotype: Rabbit IgG Purification: affinity purified by Protein A Useful Information: WB:1:500-2000 Applications: IHC-P:1:400-800 Reactivity: Human, Mouse, Rat Specificity: This antibody recognizes GPA33 protein. Immunogen: KLH conjugated synthetic peptide derived from human GPA33 151-280/319 Description: May play a role in cell-cell recognition and signaling. Uniprot: Q9JKA5 Human BiowMW: 33 KDa Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Storage: Store at 4°C short term and -20°C long term. Avoid freeze-thaw cycles. Note: For research use only, not for use in diagnostic procedure. Data: Tissue/cell: human gastric carcinoma; 4% Para- formaldehyde-fixed and paraffin-embedded; An- tigen retrieval: citrate buffer at 37℃ for 20 min; Incubation: Anti-GPA33 Polyclonal Antibody, Un- conjugated 1:200, overnight at 4℃, followed by conjugation to the secondary antibody and DAB- staining Tissue/cell: human gastric carcinoma; 4% Para- formaldehyde-fixed and paraffin-embedded; An- tigen retrieval: citrate buffer at 37℃ for 20 min; Incubation: Anti-GPA33 Polyclonal Antibody, Un- conjugated 1:200, overnight at 4℃, followed by conjugation to the secondary antibody and DAB- staining Gene Universal Technology Co. Ltd www.universalbiol.com Tel: 0550-3121009 E-mail: [email protected] Efficient Professional Protein and Antibody Platforms Sample: Stomach (Rat) Lysate at 40 ug Primary: Anti-GPA33 at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 33 kD Observed band size: 30 kD Paraformaldehyde-fixed, paraffin embedded at 37 ℃ for 30min; Antibody incubation with (GPA33) Polyclonal Antibody, Unconjugated at 1:400 overnight at 4℃, followed by operating according to SP Kit(Rabbit) instructionsand DAB staining.
    [Show full text]
  • Rna-Sequencing Applications: Gene Expression Quantification and Methylator Phenotype Identification
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2013 RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION Guoshuai Cai Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Cai, Guoshuai, "RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 386. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/386 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION
    [Show full text]
  • Precise Integration of Inducible Transcriptional Elements (Priite
    Published online 4 May 2017 Nucleic Acids Research, 2017, Vol. 45, No. 13 e123 doi: 10.1093/nar/gkx371 Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression Rita Pinto1,2,3,4, Lars Hansen4, John Hintze4, Raquel Almeida1,2,3,5, Sylvester Larsen6,7, Mehmet Coskun8,9, Johanne Davidsen6, Cathy Mitchelmore6, Leonor David1,2,3, Jesper Thorvald Troelsen6 and Eric Paul Bennett4,* 1i3S, Instituto de Investigac¸ao˜ e Inovac¸ao˜ em Saude,´ Universidade do Porto, Porto, Portugal, 2Ipatimup, Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal, 3Faculty of Medicine of the University of Porto, Porto, Portugal, 4Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark, 5Department of Biology, Faculty of Sciences of the University of Porto, Porto, Portugal, 6Department of Science and Environment, Roskilde University, Roskilde, Denmark, 7Department of Clinical Immunology, Naestved Hospital, Naestved, Denmark, 8Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark and 9The Bioinformatics Centre, Department of Biology & Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark Received October 03, 2016; Revised March 30, 2017; Editorial Decision April 10, 2017; Accepted April 27, 2017 ABSTRACT INTRODUCTION Tetracycline-based inducible systems provide pow- Historically, analysis of the molecular genetic mechanisms erful methods for functional studies where gene ex- underlying cell fate and animal phenotypes has been studied pression can be controlled. However, the lack of tight by abrogating gene function in cellular and animal model control of the inducible system, leading to leakiness systems.
    [Show full text]
  • Anti-GPA33 Antibody
    D220703 Anti-GPA33 antibody Cat. No. D220703 Package 25 μl/100 μl/200 μl Storage -20°C, pH7.4 PBS, 0.05% NaN3, 40% Glycerol Product overview Description A n ti-GPA33 rabbit polyclonal antibody Applications ELISA, WB, IHC Immunogen Fusion protein of human GPA33 Reactivity Human Content 0 .2 mg/ml Host species Rabbit Ig class Immunogen-specific rabbit IgG Purification Antigen affinity purification Target information Symbol GPA33 Full name glycoprotein A33 (transmembrane) Synonyms A33 Swissprot Q99795 Target Background The glycoprotein encoded by this gene is a cell surface antigen that is expressed in greater than 95% of human colon cancers. The open reading frame encodes a 319-amino acid polypeptide having a putative secretory signal sequence and 3 potential glycosylation sites. The predicted mature protein has a 213-amino acid extracellular region, a single transmembrane domain, and a 62-amino acid intracellular tail. The sequence of the extracellular region contains 2 domains characteristic of the CD2 subgroup of the immunoglobulin (Ig) superfamily. Sangon Biotech Applications Immunohistochemistry Predicted cell location: Cytoplasm and membrane Predicted cell location: Cytoplasm and membrane Positive control: Human colon cancer Positive control: Human thyroid cancer Recommended dilution: 50-200 Recommended dilution: 50-200 The image on the left is immunohistochemistry of paraffin-embedded The image on the left is immunohistochemistry of paraffin-embedded Human colon cancer tissue using D220703(GPA33 Antibody) at Human thyroid cancer
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • The Pdx1 Bound Swi/Snf Chromatin Remodeling Complex Regulates Pancreatic Progenitor Cell Proliferation and Mature Islet Β Cell
    Page 1 of 125 Diabetes The Pdx1 bound Swi/Snf chromatin remodeling complex regulates pancreatic progenitor cell proliferation and mature islet β cell function Jason M. Spaeth1,2, Jin-Hua Liu1, Daniel Peters3, Min Guo1, Anna B. Osipovich1, Fardin Mohammadi3, Nilotpal Roy4, Anil Bhushan4, Mark A. Magnuson1, Matthias Hebrok4, Christopher V. E. Wright3, Roland Stein1,5 1 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 2 Present address: Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 3 Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 4 Diabetes Center, Department of Medicine, UCSF, San Francisco, California 5 Corresponding author: [email protected]; (615)322-7026 1 Diabetes Publish Ahead of Print, published online June 14, 2019 Diabetes Page 2 of 125 Abstract Transcription factors positively and/or negatively impact gene expression by recruiting coregulatory factors, which interact through protein-protein binding. Here we demonstrate that mouse pancreas size and islet β cell function are controlled by the ATP-dependent Swi/Snf chromatin remodeling coregulatory complex that physically associates with Pdx1, a diabetes- linked transcription factor essential to pancreatic morphogenesis and adult islet-cell function and maintenance. Early embryonic deletion of just the Swi/Snf Brg1 ATPase subunit reduced multipotent pancreatic progenitor cell proliferation and resulted in pancreas hypoplasia. In contrast, removal of both Swi/Snf ATPase subunits, Brg1 and Brm, was necessary to compromise adult islet β cell activity, which included whole animal glucose intolerance, hyperglycemia and impaired insulin secretion. Notably, lineage-tracing analysis revealed Swi/Snf-deficient β cells lost the ability to produce the mRNAs for insulin and other key metabolic genes without effecting the expression of many essential islet-enriched transcription factors.
    [Show full text]
  • Stomach-Specific Activation of Oncogenic KRAS and STAT3-Dependent Inflammation Cooperatively Promote Gastric Tumorigenesis in a Preclinical Model
    Published OnlineFirst February 2, 2016; DOI: 10.1158/0008-5472.CAN-15-3089 Cancer Molecular and Cellular Pathobiology Research Stomach-Specific Activation of Oncogenic KRAS and STAT3-Dependent Inflammation Cooperatively Promote Gastric Tumorigenesis in a Preclinical Model Stefan Thiem1, Moritz F. Eissmann1, Joachim Elzer1, Anna Jonas2, Tracy L. Putoczki3, Ashleigh Poh1,3, Paul Nguyen1,3, Adele Preaudet3, Dustin Flanagan4, Elizabeth Vincan4, Paul Waring5, Michael Buchert1, Andrew Jarnicki1,6, and Matthias Ernst1 Abstract About 5% to 10% of human gastric tumors harbor oncogenic terized by excessive STAT3 activity. To assess the contribution of mutations in the KRAS pathway, but their presence alone is often STAT3 to the spontaneously developing gastric adenomas in insufficient for inducing gastric tumorigenesis, suggesting a gp130F/F mice, which carry a knockin mutation in the Il6 requirement for additional mutagenic events or microenviron- signal transducer (Il6st), we generated Tg(Tff1-CreERT2); fl fl mental stimuli, including inflammation. Assessing the contribu- Stat3 / ;gp130F/F mice that also harbor a conditional Stat3 knock- tion of such events in preclinical mouse models requires Cre out allele and found that tamoxifen administration conferred a recombinase–mediated conditional gene expression in stem or significant reduction in their tumor burden. Conversely, excessive þ progenitor cells of normal and transformed gastric epithelium. Kras activity in Tg(Tff1-CreERT2);KrasLSL-G12D/ ;gp130F/F mice We therefore constructed a bacterial artificial chromosome con- promoted more extensive gastric inflammation, metaplastic taining transgene (Tg), comprising the regulatory elements of the transformation, and tumorigenesis than observed in Tg(Tff1- þ trefoil factor 1 (Tff1) gene and the tamoxifen-inducible Cre CreERT2);KrasLSL-G12D/ mice.
    [Show full text]