The Impact of the UK's Public Investments in UKAEA Fusion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selection of Retrieval Techniques for Irradiated Graphite During Reactor Decommissioning - 11587
WM2011 Conference, February 27 - March 3, 2011, Phoenix, AZ Selection of Retrieval Techniques for Irradiated Graphite during Reactor Decommissioning - 11587 D.J. Potter*, R.B. Jarvis*, A.W. Banford*, L. Cordingley*, and M. Grave** * National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire, WA3 6AE, UK ** Doosan Babcock, Baltic Business Centre, Gateshead, NE8 3DA, UK ABSTRACT Globally, around 230,000 tonnes of irradiated graphite requires retrieval, treatment, management and/or disposal. This waste has arisen from a wide range of reactors, predominantly from the use of graphite moderated reactors for base-load generation, but also from experimental research facilities. Much of the graphite is presently still in the reactor core while other graphite is stored in a variety of forms in waste stores. The first step in the management of this significant waste stream is retrieval of the graphite from its present location. Doosan Babcock and the UK National Nuclear Laboratory are participants in the CARBOWASTE European research project which brings together organisations from a range of countries with an irradiated graphite legacy to address the graphite waste management challenge. This paper describes the issues associated with retrieval of graphite from reactors, potential approaches to graphite retrieval and the information needed to select a particular retrieval method for a specified application. Graphite retrieval is viewed within the context of the wider strategy for the management of irradiated graphite waste streams. The paper identifies the challenges of graphite retrieval and provides some examples where modelling can be used to provide information to support retrievals design and operations. INTRODUCTION A four year collaborative European Project ‘Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)’ was launched in April 2008 under the 7th EURATOM Framework Programme [1]. -
Spherical Tokamak) on the Path to Fusion Energy
Spherical Torus (Spherical Tokamak) on the Path to Fusion Energy ST can support fast implementation of fusion Demo in unique, important ways 1) Opportunities to support the strategy of Demo after ITER 2) Important ways in which ST can do so 3) Component Test Facility for steady state integrated testing 4) Broad progress and the remaining CTF physics R&D needs Martin Peng, NSTX Program Director Fusion Power Associates Annual Meeting and Symposium Fusion: Pathway to the Future September 27-28, 2006, Washington D.C. EU-Japan plan of Broader Approach toward Demo introduces opportunities in physics and component EVEDA OAK RIDGE NATIONAL LABORATORY S. Matsuda, SOFT 2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 2 Korean fusion energy development plan introduces opportunities in accelerating fusion technology R&D OAK RIDGEGS NATIONAL Lee, US LABORATORY2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 3 We propose that ST research addresses issues in support of this strategy • Support and benefit from USBPO-ITPA activities in preparation for burning plasma research in ITER using physics breadth provided by ST. • Complement and extend tokamak physics experiments, by maximizing synergy in investigating key scientific issues of tokamak fusion plasmas • Enable attractive integrated Component Test Facility (CTF) to support Demo, by NSTX establishing ST database and example leveraging the advancing tokamak database for ITER burning plasma operation and control. ST (All) USBPO- ITPA (~2/5) Tokamak (~3/4) OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 4 World Spherical Tokamak research has expanded to 22 experiments addressing key physics issues MAST (UK) NSTX (US) OAK RIDGE NATIONAL LABORATORY U. -
MHD in the Spherical Tokamak
21 st IAEA Fusion Energy Conference, Chengdu, China, 2006 MHD in the Spherical Tokamak MAST authors: SD Pinches , I Chapman, MP Gryaznevich, DF Howell, SE Sharapov, RJ Akers, LC Appel, RJ Buttery, NJ Conway, G Cunningham, TC Hender, GTA Huysmans, EX/7-2Ra R Martin and the MAST and NBI Teams NSTX authors: A.C. Sontag, S.A. Sabbagh, W. Zhu, J.E. Menard, R.E. Bell, J.M. Bialek, M.G. Bell, D.A. Gates, A.H. Glasser, B.P. Leblanc, F.M. Levinton, K.C. Shaing, D. Stutman, K.L. Tritz, H. Yu, and the NSTX Research Team EX/7-2Rb Office of Supported by Science This work was jointly funded by the UK Engineering & Physical Sciences Research Council and Euratom MHD physics understanding to reduce performance risks in ITER and a CTF – Error field studies – RWM stability in high beta plasmas – Effects of rotation upon sawteeth – Alfvén cascades in reversed shear EX/7-2Ra EX/7-2Rb Error field studies in MAST EX/7-2Ra Error fields: slow rotation, induce instabilities, terminate discharge Mega Ampere Spherical Tokamak R = 0.85m, R/a ~ 1.3 Four ex-vessel (ITER-like) error field correction coils wired to produce odd-n spectrum, Imax = 15 kA·turns (3 turns) Locked mode scaling in MAST EX/7-2Ra Error fields contribute to βN limit: n=1 kink B21 is the m = 2, n = 1 field component normal to q = 2 surface: • Similar density scaling observed on NSTX • Extrapolating to a Spherical Tokamak Power Plant / Component Test Facility gives locked mode thresholds ≈ intrinsic error ⇒ prudent to include EFCCs [Howell et al . -
NRC Collection of Abbreviations
I Nuclear Regulatory Commission c ElLc LI El LIL El, EEELIILE El ClV. El El, El1 ....... I -4 PI AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 2. The Superintendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC 20402-9328 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee docu- ments and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference pro- ceedings, international agreement reports, grantee reports, and NRC booklets and bro- chures. Also available are regulatory guides, NRC regulations in the Code of Federal Regula- tions, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions. -
22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture #14: Real Tokamaks (With Bob Granetz)
22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture #14: Real Tokamaks (with Bob Granetz) 1. Today’s lecture presents a qualitative picture of various members of the tokamak family. These include: a. Ohmic tokamak - discussed in class b. High E tokamak - discussed in class (ITER) c. Advanced tokamak (AT operation – not so hot) d. Reversed shear tokamak (RS operation – good AT operation) e. Spherical tokamak (NSTX, MAST) 2. It will also include a discussion of the MHD behavior of Alcator C-Mod presented by Dr. Bob Granetz. 3. We begin with a brief discussion of elongation and why it is good as well as a short summary of the main instabilities of interest. These instabilities are discussed in more detail during the second part of the term. 4. Elongation – from an MHD point of view, elongation is desirable because it allows higher current I and higher E without sacrificing stability. High I also improves transport: WvI . 5. Recall that q* 1/I so that increasing I tends to decrease qa, therby decreasing stability. Elongation can compensate this effect. 6. The idea is as follows. If we assume that stability depends upon the value of q* or q,a regardless of plasma shape, then we can show that elongation allows higher I without changing q. 7. The assumption that stability depends largely on q* turns out to be approximately true for current driven kinks (that lead to disruption). Also, elongation uses the critical E for stability for a fixed q. 8. Let us determine an approximate relation between q, I, and elongation N . -
Nuclear Materials and Waste Management – RSRL Harwell Credible & Preferred Options (Gates a & B)
Exotic Fuels, Nuclear Materials and Waste Management – RSRL Harwell Credible & Preferred Options (Gates A & B) August 2011 Exotic Fuels, Nuclear Materials and Waste Management – RSRL Harwell – Credible and Preferred Options (Gates A & B) Issue 1 Doc Ref: SMS/TS/C3-EF/RSRL/001/A-B Exotic Fuels, Nuclear Materials and Waste Management – RSRL Harwell Credible & Preferred Options (Gates A & B) August 2011 Contents Contents.......................................................................................................................2 Executive Summary .....................................................................................................3 1 Background ..........................................................................................................4 1.1 Project Objective ..........................................................................................4 1.2 Harwell Fuel, Nuclear Materials and Wastes ...............................................4 1.4 What is Low-Enriched Uranium (LEU)? .......................................................5 1.5 What are concrete-lined drums? ..................................................................5 1.6 What are contact-handled Intermediate Level Waste (CHILW) drums?.......5 1.7 Hazard Potential and Reduction?.................................................................6 2 Strategic Case......................................................................................................6 2.1 Existing Situation..........................................................................................6 -
Compact Fusion Reactors
Compact fusion reactors Tomas Lind´en Helsinki Institute of Physics 26.03.2015 Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lockheed Martin and LPP Fusion. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given. CERN Colloquium 26th of March 2015 Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 1 / 37 Contents Contents 1 Introduction 2 Funding of fusion research 3 Basics of fusion 4 The Polywell reactor 5 Lockheed Martin CFR 6 Dense plasma focus 7 MTF 8 Other fusion concepts or companies 9 Summary Tomas Lind´en (HIP) Compact fusion reactors 26.03.2015 2 / 37 Introduction Introduction Climate disruption ! ! Pollution ! ! ! Extinctions Ecosystem Transformation Population growth and consumption There is no silver bullet to solve these issues, but energy production is "#$%&'$($#!)*&+%&+,+!*&!! central to many of these issues. -.$&'.$&$&/!0,1.&$'23+! Economically practical fusion power 4$(%!",55*6'!"2+'%1+!$&! could contribute significantly to meet +' '7%!89 !)%&',62! the future increased energy :&(*61.'$*&!(*6!;*<$#2!-.=%6+! production demands in a sustainable way. -
R:\TEMP\Bobbi\RDD-8 3-16-04 Reprint.Wpd
OFFICIAL USE ONLY RESTRICTED DATA DECLASSIFICATION DECISIONS 1946 TO THE PRESENT (RDD-8) January 1, 2002 U.S. Department of Energy Office of Health, Safety and Security Office of Classification Contains information which may be exempt from public release under the Freedom of Information Act (5 U.S.C. 552), exemption number(s) 2. Approval by the Department of Energy prior to public release is required. Reviewed by: Richard J. Lyons Date: 3/20/2002 NOTICE This document provides historical perspective on the sequence of declassification actions performed by the Department of Energy and its predecessor agencies. It is meant to convey the amount and types of information declassified over the years. Although the language of the original declassification authorities is cited verbatim as much as possible to preserve the historical intent of the declassification, THIS DOCUMENT IS NOT TO BE USED AS THE BASIS FOR DECLASSIFYING DOCUMENTS AND MATERIALS without specific authorization from the Director, Information Classification and Control Policy. Classification guides designed for that specific purpose must be used. OFFICIAL USE ONLY OFFICIAL USE ONLY This page intentionally left blank OFFICIAL USE ONLY OFFICIAL USE ONLY FOREWORD This document supersedes Restricted Data Declassification Decisions - 1946 To The Present (RDD-7), January 1, 2001. This is the eighth edition of a document first published in June 1994. This latest edition includes editorial corrections to RDD-7, all declassification actions that have been made since the January 1, 2001, publication date of RDD-7 and any additional declassification actions which were subsequently discovered or confirmed. Note that the terms “declassification” or “declassification action,” as used in this document, refer to changes in classification policy which result in a specific fact or concept that was classified in the past being now unclassified. -
Tokamak Elongation – How Much Is Too Much? I Theory J. P. Freidbergι
Tokamak elongation – how much is too much? I Theory J. P. Freidberg1, A. Cerfon2 , J. P. Lee1,2 Abstract In this and the accompanying paper the problem of the maximally achievable elongation κ in a tokamak is investigated. The work represents an extension of many earlier studies, which were often focused on determining κ limits due to (1) natural elongation in a simple applied pure vertical field or (2) axisymmetric stability in the presence of a perfectly conducting wall. The extension investigated here includes the effect of the vertical stability feedback system which actually sets the maximum practical elongation limit in a real experiment. A basic resistive wall stability parameter γτ is introduced w to model the feedback system which although simple in appearance actually captures the essence of the feedback system. Elongation limits in the presence of feedback are then determined by calculating the maximum κ against n = 0 resistive wall modes for fixed γτ . The results are obtained by means of a general formulation culminating in a w variational principle which is particularly amenable to numerical analysis. The principle is valid for arbitrary profiles but simplifies significantly for the Solov'ev profiles, effectively reducing the 2-D stability problem into a 1-D problem. The accompanying paper provides the numerical results and leads to a sharp answer of “how much elongation is too much”? 1. Plasma Science and Fusion Center, MIT, Cambridge MA 2. Courant Institute of Mathematical Sciences, NYU, New York City NY 1 1. Introduction It has been known for many years that tokamak performance, as measured by pressure and energy confinement time, improves substantially as the plasma cross section becomes more elongated. -
Signature Redacted %
EXAMINATION OF THE UNITED STATES DOMESTIC FUSION PROGRAM ARCHW.$ By MASS ACHUSETTS INSTITUTE Lauren A. Merriman I OF IECHNOLOLGY MAY U6 2015 SUBMITTED TO THE DEPARTMENT OF NUCLEAR SCIENCE AND ENGINEERING I LIBR ARIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE IN NUCLEAR SCIENCE AND ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY FEBRUARY 2015 Lauren A. Merriman. All Rights Reserved. - The author hereby grants to MIT permission to reproduce and to distribute publicly Paper and electronic copies of this thesis document in whole or in part. Signature of Author:_ Signature redacted %. Lauren A. Merriman Department of Nuclear Science and Engineering May 22, 2014 Signature redacted Certified by:. Dennis Whyte Professor of Nuclear Science and Engineering I'l f 'A Thesis Supervisor Signature redacted Accepted by: Richard K. Lester Professor and Head of the Department of Nuclear Science and Engineering 1 EXAMINATION OF THE UNITED STATES DOMESTIC FUSION PROGRAM By Lauren A. Merriman Submitted to the Department of Nuclear Science and Engineering on May 22, 2014 In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science in Nuclear Science and Engineering ABSTRACT Fusion has been "forty years away", that is, forty years to implementation, ever since the idea of harnessing energy from a fusion reactor was conceived in the 1950s. In reality, however, it has yet to become a viable energy source. Fusion's promise and failure are both investigated by reviewing the history of the United States domestic fusion program and comparing technological forecasting by fusion scientists, fusion program budget plans, and fusion program budget history. -
Helicity-Injected Current Drive and Open Flux Instabilities in Spherical
Helicity-injected current drive and open flux instabilities in spherical tokamaks D.P. Brennan1, P.K.Browning2, J. Gates1, R.A.M. Van der Linden3 1 University of Tulsa 2 University of Manchester 3 Royal Observatory of Belgium Presented at the Sherwood Fusion Theory Conference Denver, CO, May 1, 2009 ABSTRACT The toroidal current driven by relaxation processes in a cylindrical spherical tokamak (ST) geometry with coaxial injected flux is estimated by use of the linear ideal stability boundary of equilibria with a high current on the open driven flux and a lower current on the closed flux. Instabilities with toroidal mode number n = 1 have been shown to play a vital role in the helicity injection current drive, being closely associated with the relaxation process which distributes current from a directly driven open flux to a closed flux. Previous results for spheromaks (1D and 2D equilibria) and STs (1D equilibria) have predicted stabilization, for a given open flux current, if the closed flux plasma current is sufficiently large, suggesting that the current drive mechanism is self-limiting. New results presented here for 2D ST equilibria are consistent with the 1D results, but new features appear in the stability maps as the axial length and toroidal field (TF) strength are varied in the equilibria. These include changes in the shape of stability boundaries and the estimated driven current, changes in the mode structure due to equilibrium changes and resonance effects which extend stability boundaries into the stable region. As the minimum and maximum of the safety factor q profile cross integer rational values, the resonant mode is destabilized, causing regions of enhanced instability in the current profile parameter space. -
A Short History of Reactors : the First Generation
AA shortshort HistoryHistory ofof ReactorsReactors :: TheThe firstfirst GenerationGeneration Bertrand BARRÉ Scientific Advisor AREVA Pr. Emeritus INSTN Oklo, Gabon : Generation 0 Nuclear Power – B. Barré - Garching – February 2010. - p.2 Nuclear reactors « Generations » Future Advanced Operating Nuclear Systems Reactors Reactors Pionner Facilities 1950 1970 1990 2010 2030 2050 2070 2090 Generation I Generation II Generation III Generation IV Nuclear Power – B. Barré - Garching – October 2010. - p.3 Fission 1938 - 1942 1938 : Fermi plays with neutrons & U. Hahn-Meitner say «fission !» 1939 : Joliot et al. «chain reaction» 1942 : Staggs Field Nuclear Power – B. Barré - Garching – February 2010. - p.4 December 2, 1942 Prospects & Prerequisites to Renaissance – B. Barré Gassummit 2009 The 50s : Nuclear Electricity 1956 : Inauguration of Calder Hall by Elisabeth II 1951 : EBR 1 lits 4 Bulbs) 1954 : Obninsk, 5 MWe Nuclear Power – B. Barré - Garching – February 2010. - p.6 Obninsk 5 MWe NPP Calder Hall : from Opening to Decommissioning Prospects & Prerequisites to Renaissance – B. Barré Gassummit 2009 Paleontology Nuclear Power – B. Barré - Garching – February 2010. - p.8 Many Possible Combinations Fissile Material U235, Pu, U233 Fertile Material U238, Th232 Moderator D2O, Graphite, H2O, or none Fuel Composition Metal, oxide, carbide, nitride, salt, solid, liquid, suspension Fuel Geometry Cylinder, rod, pin, sphere, particle Coolant Air, H2O, D2O, CO2, He, Na, Pb Cycle Direct, indirect Nuclear Power – B. Barré - Garching – February 2010. - p.9