Review of Stellarator Research: in Search of the "Magic Magnetic Bottle"
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stellarators. Present Status and Future Planning
STELLARATORS Present Status and Future Planning H. Wobig, Garching IMax-Planck-Institut für Plasmaphysikl magnetic axis Fig. 1 — Period of toroidally dosed magnetic surfaces. The stellarator is a closed toroidal device open-ended configurations like mirror ma designed to confine a hot plasma In a ma chines (see EN, 12 8/9) there are always gnetic field. It is one of the oldest concepts plasma particles which escape the confine magnetic surfaces is investigated by field to have been investigated in the search for ment volume along the magnetic field and line integration. The topology of the field controlled thermonuclear fusion. an isotropic distribution function cannot be lines is determined by the rotational trans The basic idea of the stellarator was maintained. If this anisotropy is too strong form or twist number 1/27t (or+), which is developed by Lyman Spitzer, Professor of it gives rise to instabilities and enhanced the number of revolutions of a field line Astronomy at Princeton in 19511). Experi plasma losses. It is mainly to avoid these around the magnetic axis during one toroi mental studies began in 1952 and after the disadvantages that toroidal confinement dal revolution. declassification of fusion research in 1958 has been preferred. The need for a helical field can be under the idea was picked up by other research In toroidal configurations, the currents stood from a look at the particle orbits. groups. In Europe, the first stellarators which generate the confining magnetic Charged particles tend to follow the field were built in the Max-Planck Institute for fields can be classified under three lines and unless these are helical, because Physics and Astrophysics in Munich and categories : of inhomogeneities, the particles will drift later at Culham, Moscow and Karkhov. -
STATUS of FUSION ENERGY Impact & Opportunity for Alberta Volume II
STATUS OF FUSION ENERGY Impact & Opportunity for Alberta Volume II Appendices Prepared by Alberta/Canada Fusion Energy Program March 2014 ALBERTA COUNCIL OF TECHNOLOGIES Gratefully acknowledges the support of: Alberta Energy Stantec Corporation University of Alberta Alberta/Canada Fusion Energy Advisory Committee Gary Albach Nathan Armstrong Brian Baudais Will Bridge Robert Fedosejevs Peter Hackett Chris Holly Jerry Keller Brian Kryska Axel Meisen Rob Pitcairn Klaas Rodenburg John Rose Glenn Stowkowy Martin Truksa Gary Woloshyniuk Perry Kinkaide Allan Offenberger A special thank you is extended to the institutions (identified in this report) that were visited and to the many persons who so graciously hosted our site visits, provided the briefing material presented in this status report and thereby assisted our fusion assessment. Report Authors Allan Offenberger Robert Fedosejevs Klaas Rodenburg Perry Kinkaide Contact: Dr. Perry Kinkaide [email protected] 780-990-5874 Dr. Allan Offenberger [email protected] 780-483-1740 i TABLE OF CONTENTS Page List of Acronyms ………………………………………………………………………….. iii List of Figures……………………………………………………………………………… iv Appendix A: Assessment of Major Global Fusion Technologies 1.0 Context - Global Energy Demand……………………………………………………… 1 1.0.1 Foreward ……………………………………………………………………… 1 1.0.2 Energy Trends………………………………………………………………… 2 1.0.3 Energy From Fusion Reactions……………………………………………… 4 1.1 Major Approaches to Fusion Energy………………………………………………….. 7 1.1.1 Introduction……………………………………………………………………. 7 1.1.2 Fusion Reactions & the Fuel Cycle………………………………………….. 8 1.1.3 IFE Approaches to Fusion…………………………………………………… 11 1.1.3.1 Introduction………………………………………………………….. 11 1.1.3.2 Indirect Drive…………………………………………………………14 1.1.3.3 Direct Drive…………………………………………………………. 16 1.1.3.4 Fast Ignition………………………………………………………… 17 1.1.3.5 Shock Ignition………………………………………………………..19 1.1.3.6 IFE Power Reactor Systems……………………………………….20 1.1.3.7 Modeling Codes……………………………………………………. -
Nuclear Energy: Fission and Fusion
CHAPTER 5 NUCLEAR ENERGY: FISSION AND FUSION Many of the technologies that will help us to meet the new air quality standards in America can also help to address climate change. President Bill Clinton 1 Two distinct processes involving the nuclei of atoms can be harnessed, in principle, for energy production: fission—the splitting of a nucleus—and fusion—the joining together of two nuclei. For any given mass or volume of fuel, nuclear processes generate more energy than can be produced through any other fuel-based approach. Another attractive feature of these energy-producing reactions is that they do not produce greenhouse gases (GHG) or other forms of air pollution directly. In the case of nuclear fission—a mature though controversial energy technology—electricity is generated from the energy released when heavy nuclei break apart. In the case of nuclear fusion, much work remains in the quest to sustain the fusion reactions and then to design and build practical fusion power plants. Fusion’s fuel is abundant, namely, light atoms such as the isotopes of hydrogen, and essentially limitless. The most optimistic timetable for fusion development is half a century, because of the extraordinary scientific and engineering challenges involved, but fusion’s benefits are so globally attractive that fusion R&D is an important component of today’s energy R&D portfolio internationally. Fission power currently provides about 17 percent of the world’s electric power. As of December 1996, 442 nuclear power reactors were operating in 30 countries, and 36 more plants were under construction. If fossil plants were used to produce the amount of electricity generated by these nuclear plants, more than an additional 300 million metric tons of carbon would be emitted each year. -
NETS 2020 Template
بÀƵƧǘȁǞƧƊǶ §ȲȌǐȲƊǿ ƊƧDzɈȌɈǘƵwȌȌȁƊȁƮȌȁ ɈȌwƊȲȺɈǘȲȌɐǐǘƊƮɨƊȁƧǞȁǐ خȁɐƧǶƵƊȲɈƵƧǘȁȌǶȌǐǞƵȺƊȁƮ ǞȁȁȌɨƊɈǞȌȁ ǞȺ ȺȯȌȁȺȌȲƵƮ Ʀɯ ɈǘƵ ƊDz ªǞƮǐƵ yƊɈǞȌȁƊǶ ׁׂ׀ׂ y0À² ÀǘǞȺ ƧȌȁǏƵȲƵȁƧƵ خׁׂ׀ׂ ةɈǘ׀׃ƊȁƮ ɩǞǶǶƦƵ ǘƵǶƮ ǏȲȌǿȯȲǞǶ ׂ׆ɈǘٌةmƊƦȌȲƊɈȌȲɯ ɩǞǶǶ ƦƵ ǘƵǶƮ ɨǞȲɈɐƊǶǶɯ ȺȌ ɈǘƊɈ ɈǘƵ ƵȁɈǞȲƵ y0À² خƧȌǿǿɐȁǞɈɯǿƊɯȯƊȲɈǞƧǞȯƊɈƵǞȁɈǘǞȺƵɮƧǞɈǞȁǐǿƵƵɈǞȁǐ ǐȌɨخȌȲȁǶخخׁׂ׀ȁƵɈȺׂششبǘɈɈȯȺ Nuclear and Emerging Technologies for Space Sponsored by Oak Ridge National Laboratory, April 26th-30th, 2021. Available online at https://nets2021.ornl.gov Table of Contents Table of Contents .................................................................................................................................................... 1 Thanks to the NETS2021 Sponsors! ...................................................................................................................... 2 Nuclear and Emerging Technologies for Space 2021 – Schedule at a Glance ................................................. 3 Nuclear and Emerging Technologies for Space 2021 – Technical Sessions and Panels By Track ............... 6 Nuclear and Emerging Technologies for Space 2021 – Lightning Talk Final Program ................................... 8 Nuclear and Emerging Technologies for Space 2021 – Track 1 Final Program ............................................. 11 Nuclear and Emerging Technologies for Space 2021 – Track 2 Final Program ............................................. 14 Nuclear and Emerging Technologies for Space 2021 – Track 3 Final Program ............................................. 18 -
Spherical Tokamak) on the Path to Fusion Energy
Spherical Torus (Spherical Tokamak) on the Path to Fusion Energy ST can support fast implementation of fusion Demo in unique, important ways 1) Opportunities to support the strategy of Demo after ITER 2) Important ways in which ST can do so 3) Component Test Facility for steady state integrated testing 4) Broad progress and the remaining CTF physics R&D needs Martin Peng, NSTX Program Director Fusion Power Associates Annual Meeting and Symposium Fusion: Pathway to the Future September 27-28, 2006, Washington D.C. EU-Japan plan of Broader Approach toward Demo introduces opportunities in physics and component EVEDA OAK RIDGE NATIONAL LABORATORY S. Matsuda, SOFT 2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 2 Korean fusion energy development plan introduces opportunities in accelerating fusion technology R&D OAK RIDGEGS NATIONAL Lee, US LABORATORY2006 U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 3 We propose that ST research addresses issues in support of this strategy • Support and benefit from USBPO-ITPA activities in preparation for burning plasma research in ITER using physics breadth provided by ST. • Complement and extend tokamak physics experiments, by maximizing synergy in investigating key scientific issues of tokamak fusion plasmas • Enable attractive integrated Component Test Facility (CTF) to support Demo, by NSTX establishing ST database and example leveraging the advancing tokamak database for ITER burning plasma operation and control. ST (All) USBPO- ITPA (~2/5) Tokamak (~3/4) OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY FPA Annual Mtg & Symp, 09/27-28/2006 4 World Spherical Tokamak research has expanded to 22 experiments addressing key physics issues MAST (UK) NSTX (US) OAK RIDGE NATIONAL LABORATORY U. -
Uranium (Nuclear)
Uranium (Nuclear) Uranium at a Glance, 2016 Classification: Major Uses: What Is Uranium? nonrenewable electricity Uranium is a naturally occurring radioactive element, that is very hard U.S. Energy Consumption: U.S. Energy Production: and heavy and is classified as a metal. It is also one of the few elements 8.427 Q 8.427 Q that is easily fissioned. It is the fuel used by nuclear power plants. 8.65% 10.01% Uranium was formed when the Earth was created and is found in rocks all over the world. Rocks that contain a lot of uranium are called uranium Lighter Atom Splits Element ore, or pitch-blende. Uranium, although abundant, is a nonrenewable energy source. Neutron Uranium Three isotopes of uranium are found in nature, uranium-234, 235 + Energy FISSION Neutron uranium-235, and uranium-238. These numbers refer to the number of Neutron neutrons and protons in each atom. Uranium-235 is the form commonly Lighter used for energy production because, unlike the other isotopes, the Element nucleus splits easily when bombarded by a neutron. During fission, the uranium-235 atom absorbs a bombarding neutron, causing its nucleus to split apart into two atoms of lighter mass. The first nuclear power plant came online in Shippingport, PA in 1957. At the same time, the fission reaction releases thermal and radiant Since then, the industry has experienced dramatic shifts in fortune. energy, as well as releasing more neutrons. The newly released neutrons Through the mid 1960s, government and industry experimented with go on to bombard other uranium atoms, and the process repeats itself demonstration and small commercial plants. -
1 Phys:1200 Lecture 36 — Atomic and Nuclear Physics
1 PHYS:1200 LECTURE 36 — ATOMIC AND NUCLEAR PHYSICS (4) This last lecture of the course will focus on nuclear energy. There is an enormous reservoir of energy in the nucleus and it can be released either in a controlled manner in a nuclear reactor, or in an uncontrolled manner in a nuclear bomb. The energy released in a nuclear reactor can be used to produce electricity. The two processes in which nuclear energy is released – nuclear fission and nuclear fusion, will be discussed in this lecture. The biological effects of nuclear radiation will also be discussed. 36‐1. Biological Effects of Nuclear Radiation.—Radioactive nuclei emit alpha, beta, and gamma radiation. These radiations are harmful to humans because they are ionizing radiation that have the ability to remove electrons from atoms and molecules in human cells. This can lead to the death or alterations of cells. Alteration of the cell can transform a healthy cell into a cancer cell. The hazards of radiation can be minimized by limiting ones overall exposure to radiation. However, there is still some uncertainty in the medical community about the possibility the effect of a single radioactive particle on the bottom. In other words, are the effects cumulative, or can a single exposure lead to cancer in the body. Exposure to radiation can produce either short term effects appearing within minutes of exposure, or long term effects that may appear in years or decades or even in future generations due to changes in DNA. The effects of absorbing ionizing radiation is measured in a unit called the rem. -
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey
The Stellarator Program J. L, Johnson, Plasma Physics Laboratory, Princeton University, Princeton, New Jersey, U.S.A. (On loan from Westlnghouse Research and Development Center) G. Grieger, Max Planck Institut fur Plasmaphyslk, Garching bel Mun<:hen, West Germany D. J. Lees, U.K.A.E.A. Culham Laboratory, Abingdon, Oxfordshire, England M. S. Rablnovich, P. N. Lebedev Physics Institute, U.S.3.R. Academy of Sciences, Moscow, U.S.S.R. J. L. Shohet, Torsatron-Stellarator Laboratory, University of Wisconsin, Madison, Wisconsin, U.S.A. and X. Uo, Plasma Physics Laboratory Kyoto University, Gokasho, Uj', Japan Abstract The woHlwide development of stellnrator research is reviewed briefly and informally. I OISCLAIWCH _— . vi'Tli^liW r.'r -?- A stellarator is a closed steady-state toroidal device for cer.flning a hot plasma In a magnetic field where the rotational transform Is produced externally, from torsion or colls outside the plasma. This concept was one of the first approaches proposed for obtaining a controlled thsrtnonuclear device. It was suggested and developed at Princeton in the 1950*s. Worldwide efforts were undertaken in the 1960's. The United States stellarator commitment became very small In the 19/0's, but recent progress, especially at Carchlng ;ind Kyoto, loeethar with «ome new insights for attacking hotii theoretics] Issues and engineering concerns have led to a renewed optimism and interest a:; we enter the lQRO's. The stellarator concept was borr In 1951. Legend has it that Lyman Spiczer, Professor of Astronomy at Princeton, read reports of a successful demonstration of controlled thermonuclear fusion by R. -
Highlights in Early Stellarator Research at Princeton
J. Plasma Fusion Res. SERIES, Vol.1 (1998) 3-8 Highlights in Early Stellarator Research at Princeton STIX Thomas H. Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540, USA (Received: 30 September 1997/Accepted: 22 October 1997) Abstract This paper presents an overview of the work on Stellarators in Princeton during the first fifteen years. Particular emphasis is given to the pioneering contributions of the late Lyman Spitzer, Jr. The concepts discussed will include equilibrium, stability, ohmic and radiofrequency plasma heating, plasma purity, and the problems associated with creating a full-scale fusion power plant. Brief descriptions are given of the early Princeton Stellarators: Model A, Model B, Model B-2, Model B-3, Models 8-64 and 8-65, and Model C, and also of the postulated fusion power plant, Model D. Keywords: Spitzer, Kruskal, stellarator, rotational transform, Bohm diffusion, ohmic heating, magnetic pumping, ion cyclotron resonance heating (ICRH), magnetic island, tokamak On March 31 of this year, at the age of 82, Lyman stellarator was brought to the headquarters of the U.S. Spitzer, Jr., a true pioneer in the fields of astrophysics Atomic Energy Commission in Washington where it re- and plasma physics, died. I wish to dedicate this presen- ceived a favorable reception. Spitzer chose the name tation to his memory. "Project Matterhorn" for the project which was to be Forty-six years ago, in early 1951, Spitzer, then sited in the Princeton area, on the newly acquired For- chair of the Department of Astronomy at Princeton restal tract, and funding began on July 1 of that year University, together with Princeton physicist John 121- Wheeler, had been thinking about the physics of ther- Spitzer's earliest stellarator papers comprise a truly monoclear processes. -
Significance of MHD Effects in Stellarator Confinement
Ms-313705 Final Paper Significance of MHD Effects in Stellarator Confinement A. Weller1, S. Sakakibara2, K.Y. Watanabe2, K. Toi2, J. Geiger1, M.C. Zarnstorff3, S.R. Hudson3, A. Reiman3, A. Werner1, C. Nührenberg1, S. Ohdachi2, Y. Suzuki2, H. Yamada2, W7-AS Team1, LHD Team2 1Max-Planck-Institut für Plasmaphysik, EURATOM-IPP Association, D-17491 Greifswald, Germany 2National Institute for Fusion Science, Toki 509-5292, Japan 3Princeton Plasma Physics Laboratory, Princeton, NJ 08543, USA Corresponding Author: Dr. Arthur Weller ( [email protected] ) Max-Planck-Institut für Plasmaphysik, EURATOM-IPP Association, Wendelsteinstr. 1, D-17491 Greifswald, Germany Fax: +49 (0)3834 88 2509 Content of Paper: Main Text: 27 pages (including references and figure captions) 12 Figures, no Table - 1 - Ms-313705 Final Paper Abstract Substantial progress has been achieved to raise the plasma beta in stellarators and helical systems by high power neutral beam heating, approaching reactor relevant values [1-3]. The achievement of high-β operation is closely linked with configuration effects on the confinement and with magnetohydrodynamic (MHD) stability. The magnetic configurations of the Wendelstein W7-AS stellarator and of the Large Helical Device (LHD) and their optimization for high-β operation within the flexibility of the devices are characterized. A comparative description of the accessible operational regimes in W7-AS and LHD is given. The finite-β effects on the flux surfaces depend on the degree of configuration optimization. In particular, a large Shafranov shift is accompanied by formation of islands and stochastic field regions as found by numerical equilibrium studies [2,4]. However, the observed pressure gradients indicate some mitigation of the effects on the plasma confinement, presumably because of the high collisionality of high-β plasmas and island healing effects (LHD [5-7]). -
Physicists Propose New Way to Stabilize Next-Generation Fusion
PRINCETON PLASMA PHYSICS LABORATORY A Collaborative National Center for Fusion & Plasma Research WEEKLY October 16, 2017 THIS WEEK WEDNESDAY, OCT. 18 Council Café Lunch Physicists propose new way 12 p.m. u Cafeteria Andrea Moten, Interim Head of HR to stabilize next-generation PPPL Colloquium 4:15 p.m. u MBG Auditorium fusion plasmas Properties and Degradation By Raphael Rosen of Polyimide in Extreme Hygrothermal Environments Alan Zehnder, Cornell University key issue for next-generation fusion reactors is the possible impact of many unsta- A ble Alfvén eigenmodes, wave-like disturbances produced by the fusion reac- THURSDAY, OCT. 19 tions that ripple through the plasma in doughnut-shaped fusion facilities called toka- maks. Deuterium and tritium fuel react when heated to temperatures near 100 million Open Forum with Dave McComas degrees Celsius, producing high-energy helium ions called alpha particles that heat 2 p.m. the plasma and sustain the fusion reactions. See page 6 for details. These alpha particles are even hotter than the fuel and have so much energy that FRIDAY, OCT. 20 they can drive Alfvén eigenmodes that allow the particles to escape from the reac- Public Tour tion chamber before they can heat the plasma. Understanding these waves and how 10 a.m. they help alpha particles escape is a key research topic in fusion science. Email [email protected] for info. continued on page 4 UPCOMING OCT. 23–27 Project Matterhorn physicist Rolf Sinclair 59th Annual Meeting of the APS Division of Plasma Physics returns to PPPL 45 years after he left Milwaukee, Wisconsin By Jeanne Jackson DeVoe THURSDAY, OCT. -
MHD in the Spherical Tokamak
21 st IAEA Fusion Energy Conference, Chengdu, China, 2006 MHD in the Spherical Tokamak MAST authors: SD Pinches , I Chapman, MP Gryaznevich, DF Howell, SE Sharapov, RJ Akers, LC Appel, RJ Buttery, NJ Conway, G Cunningham, TC Hender, GTA Huysmans, EX/7-2Ra R Martin and the MAST and NBI Teams NSTX authors: A.C. Sontag, S.A. Sabbagh, W. Zhu, J.E. Menard, R.E. Bell, J.M. Bialek, M.G. Bell, D.A. Gates, A.H. Glasser, B.P. Leblanc, F.M. Levinton, K.C. Shaing, D. Stutman, K.L. Tritz, H. Yu, and the NSTX Research Team EX/7-2Rb Office of Supported by Science This work was jointly funded by the UK Engineering & Physical Sciences Research Council and Euratom MHD physics understanding to reduce performance risks in ITER and a CTF – Error field studies – RWM stability in high beta plasmas – Effects of rotation upon sawteeth – Alfvén cascades in reversed shear EX/7-2Ra EX/7-2Rb Error field studies in MAST EX/7-2Ra Error fields: slow rotation, induce instabilities, terminate discharge Mega Ampere Spherical Tokamak R = 0.85m, R/a ~ 1.3 Four ex-vessel (ITER-like) error field correction coils wired to produce odd-n spectrum, Imax = 15 kA·turns (3 turns) Locked mode scaling in MAST EX/7-2Ra Error fields contribute to βN limit: n=1 kink B21 is the m = 2, n = 1 field component normal to q = 2 surface: • Similar density scaling observed on NSTX • Extrapolating to a Spherical Tokamak Power Plant / Component Test Facility gives locked mode thresholds ≈ intrinsic error ⇒ prudent to include EFCCs [Howell et al .