Nuclear Graphite Waste Management

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Graphite Waste Management Technical Committee meeting held in Manchester, United Kingdom, o 18-20 October 1999 o ro 00 CD O Nuclear Graphite Waste Management Foreword Copyright/Editorial note Contents Summary List of participants Related IAEA priced publications INTERNATIONAL ATOMIC ENERGY AGENCY Copyright © IAEA, 2001 Published by the IAEA in Austria May 2001 Individual papers may be downloaded for personal use; single printed copies may be made for use in research and teaching. Redistribution or sale of any material on the CD-ROM in machine readable or any other form is prohibited. EDITORIAL NOTE This publication has been prepared from the original material as submitted by the authors. The views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. The authors are responsible for having obtained the necessary permission for the IAEA to reproduce, translate or use material from sources already protected by copyrights. FOREWORD Graphite and carbon have been used as a moderator and reflector of neutrons in more than one hundred nuclear power plants, mostly in the United Kingdom (Magnox and AGRs), France (UNGGs), the former USSR (RBMK), the United States of America (HTR) and Spain. In addition many experimental and plutonium production reactors also use graphite as a neutron reflector or neutron moderator. Less frequently graphite is used for manufacturing fuel sleeves and other reactor core components. Many graphite reactors are relatively old, some of them have already been shut down. Therefore, dismantling, characterization and management of radioactive graphite waste are a problem for many IAEA Member States. Radioactive graphite management is not yet covered in IAEA publications. Only very general and limited information is available in publications dealing with decommissioning of nuclear reactors. Recognising this fact and reflecting the needs of Member States, the IAEA decided to initiate a project on characterization, treatment and conditioning of radioactive graphite from nuclear power plants. The aim is to prepare a publication dealing with all aspects of radioactive graphite waste handling, conditioning and disposal. The most significant scientific and technical information on the subject has been collected in a few countries operating nuclear power reactors with graphite components in the reactor core. Some other countries have recently been involved in an investigation of particular problems corresponding to their specific requirements. With the aim of collecting information available in various countries and reflecting it in a technical publication, the IAEA, in association with the British Nuclear Energy Society (BNES), convened a Seminar on Nuclear Graphite Waste Management. This publication contains presentations made during the seminar as well as a summary of the participants' discussions. The IAEA wishes to convey its thanks to the North West Branch of the British Nuclear Energy Society for hosting the seminar and to BJ. Marsden of AEA Technology for his principal contribution to the organization of the seminar and chairing of several principal sessions. The responsible IAEA officer was R. Burcl of the Division of Nuclear Fuel Cycle and Waste Technology. CONTENTS The uncertain future for nuclear graphite disposal: Crisis or opportunity? A.J. Wickham, G.B. Neighbour, M. Dubourg Technical assessment of the significance of Wigner energy for disposal of graphite wastes from the Windscale piles R.M. Guppy, J. McCarthy, S.J. Wisbey The description of Wigner energy and its release from Windscale pile graphite for application to waste packaging and disposal P.C. Minshall, A.J. Wickham Heat treatment of graphite and resulting tritium emissions J. Worner, W. Botzem, S.D. Preston Pyrolysis and its potential use in nuclear graphite disposal J.B. Mason, D. Bradbury Technical development of graphite waste treatment in NUPEC S. Saishu, T. Inoue Inert annealing of irradiated graphite by inductive heating W. Botzem, J. Worner Study on efficient methods for removal and treatment of graphite blocks in a gas cooled reactor S. Fujii, M. Shirakawa, T. Murakami A German research project about applicable graphite cutting techniques D. Holland, U. Quade, F. W. Bach, P. Wilk Thermal strain measurements in graphite using electronic speckle pattern interferometry S. Tamulevicius, L. Augulis, R. Augulis, V. Zabarskas, R. Levinskas, P. Poskas Investigation of graphite column bricks of Leningrad NPP unit 3 RBMK-1000 reactor after 18 years of operation P.A. Platonov, O.K. Chugunov, Ya.I. Shtrombakh, V.M. Alekseev, N.S. Lobanov, V.N. Manevski, V.IKarpukhin, IF. Novobratskaya, LA. Frolov, V.M. Semochkin, V.A. Denisov, A. V Borodin, A.A. Kalinnikov, D.E. Furkasov, Yu. V Garusov, M.A. Pavlov, A.N. Ananiev, A.V. Makushkin, V.N. Rogozin, V.P. Aleksandrov, V.D. Baldin Derivation of a radionuclide inventory for irradiated graphite-chlorine-36 inventory determination F.J. Brown, J.D. Palmer, P. Wood Radiochemical characterisation of graphite from Julich experimental reactor (AVR) B. Bisplinghoff, M. Lochny, J. Fachinger, H. Brucher Radionuclide characterization of graphite stacks from plutonium production reactors of the Siberian group of chemical enterprises A.V. Bushuev, Yu.M. Verzilov, V.N. Zubarev, A.E. Kachanovsky, I.M. Proshin, E.V. Petrova, T.B. Aleeva, A.A. Samarkin, B.G. Silin, A.M. Dmitriev, E.V Zakharova, S.I. Ushakov, I.I. Baranov, Yu.I Kabanov, E.N. Kolobova A.G Nikolaev Investigation of morphology and impurity of nuclear-grade graphite, and leaching mechanism of carbon-14 R. Takahashi, M. Toyahara, S. Maruki, H. Ueda, T. Yamamoto Management of UKAEA graphite liabilities M. Wise Radioactive graphite management at UK Magnox nuclear power stations G. Holt SUMMARY At the invitation of the British Nuclear Energy Society (BNES) the IAEA convened the seminar/workshop on nuclear graphite waste management as a part of the Technical Committee meeting (TCM) on Characterization, Treatment and Conditioning of Radioactive Graphite from Nuclear Power Plants. The seminar was held on 18-20 October 1999 in Manchester, United Kingdom and was attended by more than 55 participants from 11 countries (Austria, Japan, Russia, Ukraine, France, Germany, Spain, the United Kingdom, Lithuania, Indonesia, and the United States of America). Twenty technical papers were presented and discussed in five sessions covering various aspects of radioactive graphite waste management. Practical approaches to the solution of particular technical problems were demonstrated during the technical visit to the Sellafield site on 20 October. The seminar was followed up by a technical meeting attended by 11 participants nominated by the Member States. Information presented at the seminar was further reviewed and selected parts were incorporated in a draft technical document on characterization, treatment and conditioning of radioactive graphite from nuclear power plants. BACKGROUND Graphite has been used as a moderator and reflector of neutrons in more than 100 nuclear power plants as well as many experimental reactors and plutonium production reactors in various countries. Graphite is also used for fuel sleeves and other components, which are disposed of during operation and in some cases the volume of the graphite involved is of the same order as the core itself. Considering that the core of a typical graphite moderated reactor may contain 2000 tonnes of graphite, the volumes involved are considerable. Most of the older graphite moderated reactors are already shut down and therefore decommissioning planning and preparation represents a very serious matter. Radioactive graphite dismantling, handling, conditioning and disposal are a common part of the decommissioning activities. The radioactive graphite coming from nuclear installations has different characteristics than other radioactive waste due to its physical and chemical properties and also because of the presence of tritium and carbon-14. Even after many years of irradiation, graphite retains most of the good mechanical properties and is relatively insoluble and not otherwise particularly chemically reactive. It appears therefore to fulfil most of the general requirements for a solid radioactive waste form suitable for disposal. However, the evaluation of the radioactivity inventory of graphite moderators and other details of graphite used in nuclear reactors show that this graphite cannot be accepted by existing disposal sites without particular conditioning. Depending on the graphite source (moderator, fuel compartments details-sleeves), various radionuclides are present — mainly tritium, 14C, but also corrosion/activation products (57Co, 60Co; 54Mn; 59Ni, 63Ni; 22Na), fission products (134Cs, 137Cs; 90Sr; 152Eu, 154Eu, 155Eu; 144Ce) and small amounts of uranium and transuranium elements (238Pu, 239Pu; 241Am, 243Am). The graphite in some of the experimental and plutonium production low temperature reactors contains a considerable amount of stored Wigner energy. Unexpected
Recommended publications
  • Spent Nuclear Fuel Pools in the US
    Spent Nuclear Fuel Pools in the U.S.: Reducing the Deadly Risks of Storage front cover WITH SUPPORT FROM: WITH SUPPORT FROM: By Robert Alvarez 1112 16th St. NW, Suite 600, Washington DC 20036 - www.ips-dc.org May 2011 About the Author Robert Alvarez, an Institute for Policy Studies senior scholar, served as a Senior Policy Advisor to the Secre- tary of Energy during the Clinton administration. Institute for Policy Studies (IPS-DC.org) is a community of public scholars and organizers linking peace, justice, and the environment in the U.S. and globally. We work with social movements to promote true democracy and challenge concentrated wealth, corporate influence, and military power. Project On Government Oversight (POGO.org) was founded in 1981 as an independent nonprofit that investigates and exposes corruption and other misconduct in order to achieve a more effective, accountable, open, and ethical federal government. Institute for Policy Studies 1112 16th St. NW, Suite 600 Washington, DC 20036 http://www.ips-dc.org © 2011 Institute for Policy Studies [email protected] For additional copies of this report, see www.ips-dc.org Table of Contents Summary ...............................................................................................................................1 Introduction ..........................................................................................................................4 Figure 1: Explosion Sequence at Reactor No. 3 ........................................................4 Figure 2: Reactor No. 3
    [Show full text]
  • Selection of Retrieval Techniques for Irradiated Graphite During Reactor Decommissioning - 11587
    WM2011 Conference, February 27 - March 3, 2011, Phoenix, AZ Selection of Retrieval Techniques for Irradiated Graphite during Reactor Decommissioning - 11587 D.J. Potter*, R.B. Jarvis*, A.W. Banford*, L. Cordingley*, and M. Grave** * National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire, WA3 6AE, UK ** Doosan Babcock, Baltic Business Centre, Gateshead, NE8 3DA, UK ABSTRACT Globally, around 230,000 tonnes of irradiated graphite requires retrieval, treatment, management and/or disposal. This waste has arisen from a wide range of reactors, predominantly from the use of graphite moderated reactors for base-load generation, but also from experimental research facilities. Much of the graphite is presently still in the reactor core while other graphite is stored in a variety of forms in waste stores. The first step in the management of this significant waste stream is retrieval of the graphite from its present location. Doosan Babcock and the UK National Nuclear Laboratory are participants in the CARBOWASTE European research project which brings together organisations from a range of countries with an irradiated graphite legacy to address the graphite waste management challenge. This paper describes the issues associated with retrieval of graphite from reactors, potential approaches to graphite retrieval and the information needed to select a particular retrieval method for a specified application. Graphite retrieval is viewed within the context of the wider strategy for the management of irradiated graphite waste streams. The paper identifies the challenges of graphite retrieval and provides some examples where modelling can be used to provide information to support retrievals design and operations. INTRODUCTION A four year collaborative European Project ‘Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste (CARBOWASTE)’ was launched in April 2008 under the 7th EURATOM Framework Programme [1].
    [Show full text]
  • Graphite Materials for the U.S
    ANRIC your success is our goal SUBSECTION HH, Subpart A Timothy Burchell CNSC Contract No: 87055-17-0380 R688.1 Technical Seminar on Application of ASME Section III to New Materials for High Temperature Reactors Delivered March 27-28, 2018, Ottawa, Canada TIM BURCHELL BIOGRAPHICAL INFORMATION Dr. Tim Burchell is Distinguished R&D staff member and Team Lead for Nuclear Graphite in the Nuclear Material Science and Technology Group within the Materials Science and Technology Division of the Oak Ridge National Laboratory (ORNL). He is engaged in the development and characterization of carbon and graphite materials for the U.S. Department of Energy. He was the Carbon Materials Technology (CMT) Group Leader and was manager of the Modular High Temperature Gas-Cooled Reactor Graphite Program responsible for the research project to acquire reactor graphite property design data. Currently, Dr. Burchell is the leader of the Next Generation Nuclear Plant graphite development tasks at ORNL. His current research interests include: fracture behavior and modeling of nuclear-grade graphite; the effects of neutron damage on the structure and properties of fission and fusion reactor relevant carbon materials, including isotropic and near isotropic graphite and carbon-carbon composites; radiation creep of graphites, the thermal physical properties of carbon materials. As a Research Officer at Berkeley Nuclear Laboratories in the U.K. he monitored the condition of graphite moderators in gas-cooled power reactors. He is a Battelle Distinguished Inventor; received the Hsun Lee Lecture Award from the Chinese Academy of Science’s Institute of Metals Research in 2006 and the ASTM D02 Committee Eagle your success is our goal Award in 2015.
    [Show full text]
  • Thermal Hydraulics Analysis of the Distribution Zone in Small Modular Dual Fluid Reactor
    metals Article Thermal Hydraulics Analysis of the Distribution Zone in Small Modular Dual Fluid Reactor Chunyu Liu 1,* , Xiaodong Li 1 , Run Luo 1,2 and Rafael Macian-Juan 1 1 Chair of Nuclear Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany; [email protected] (X.L.); [email protected] or [email protected] (R.L.); [email protected] (R.M.-J.) 2 School of Resource & Environment and Safety Engineering, University of South China, No. 28, Changsheng West Road, Hengyang 421001, China * Correspondence: [email protected] or [email protected] Received: 29 June 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: The Small Modular Dual Fluid Reactor (SMDFR) is a novel molten salt reactor based on the dual fluid reactor concept, which employs molten salt as fuel and liquid lead/lead-bismuth eutectic (LBE) as coolant. A unique design of this reactor is the distribution zone, which locates under the core and joins the core region with the inlet pipes of molten salt and coolant. Since the distribution zone has a major influence on the heat removal capacity in the core region, the thermal hydraulics characteristics of the distribution zone have to be investigated. This paper focuses on the thermal hydraulics analysis of the distribution zone, which is conducted by the numerical simulation using COMSOL Multiphysics with the CFD (Computational Fluid Dynamics) module and the Heat Transfer module. The energy loss and heat exchange in the distribution zone are also quantitatively analyzed. The velocity and temperature distributions of both molten salt and coolant at the outlet of the distribution zone, as inlet of the core region, are produced.
    [Show full text]
  • KERNFORSCHUNGSANLA JULICH Gmbh
    KERNFORSCHUNGSANLA JULICH GmbH Proceedings of the Workshop on Structural Design Criteria for HTR Jiilich, 31. January - 1. February 1989 Editors: G. Breitbach F. Schubert H. Nickel Jiil-Conf-71 April 1989 ISSN 0344-5798 Als Manuskript gedruckt Berichte der Kernforschungsanlage Jülich - Jül-Conf-71 Zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jülich GmbH Postfach 1913 • D-5170 Jülich (Bundesrepublik Deutschland) Telefon: 02461/610 • Telex: 833556-0 kf d Proceedings of the Workshop on Structural Design Criteria for HTR Jiilich, 31. January - 1. February 1989 Editors: G. Breitbach F. Schubert H. Nickel Workshop on Structural Design Criteria for HTR Introductural remarks Most of the presentations given in this workshop are based on the German research and development project "HTR Design Criteria" carried out under the sponsorship of the Federal Ministry of Research and Technology. The main emphasis of this work was to acquire the fundamental principles and basic data for the establishment of German KTA-rules (KTA: Nuclear Safety Standards Commission) for the design of HTR-structural components. The project began in 1984 and the research work divided among several working groups and task forces, with participation from several institutions and companies. The role of coordination has been carried out by the Institute for Reactor Materials, Nuclear Research Centre Julien, headed by Prof. Dr. H. Nickel. The work has been organized into four working groups: a) Technical safety boundary conditions; b) Metallic structural components; c) Prestressed concrete pressure vessel; d) Graphitic structural components. The required work in each group was divided between a number of task forces. The membership of each group and task force is given in the appendix.
    [Show full text]
  • Nuclear and Energy Independence
    Meetings ANS WINTER MEETING Nuclear and energy independence HILE ORGANIZATIONS HAVE canceled or altered conferences in W the wake of the events of Sep- Major themes of the plenary: tember 11, the American Nuclear Society at- tracted more than 1100 attendants to its Win- N ter Meeting in November in Reno, Nev. “In H2 power can be an application light of recent events, that is a remarkable ac- complishment,” ANS President Gail Marcus of nuclear commented during the opening plenary. The large gathering was due perhaps to the upbeat mood of the industry in general, thanks N 50 years since first electricity with EBR-I in part to the Bush administration’s support of the continued use and further deployment of N nuclear power, and because any hope for re- A proposal for a continental supergrid ducing greenhouse gas emissions likely would include nuclear power in a national energy policy. oring the EBR-I and the nuclear pioneers who was associate project director of the EBR-I During the plenary Marcus paraphrased developed it. The proclamation recognized the and project manager for another reactor, the Charles Dickens by saying, “It is the best of environmental benefits of nuclear power and EBR-II. He later became director of the Re- times, it is the worst of times,” in reference feted those who worked to provide the world actor Engineering Division at Argonne Na- to the terrorist attacks on the United States with “clean, sustainable energy for the bene- tional Laboratory before moving on to Illinois and the opportunity for nuclear power to fit of humankind for centuries by making use Power Company.
    [Show full text]
  • Progress in Fusion-Driven Transmutation Research in China
    Progress in Fusion-Driven Transmutation Research in China Yican WU Institute of Plasma Physics, Chinese Academy of Sciences P.O. Box 1126, Hefei, Anhui, 230031, China E-mail: [email protected] Fax: +86 551 5591310 1. Introduction Although the recent experiments and associated theoretical studies of fusion energy development have proven the feasibility of fusion power, it's commonly realized that it needs hard work before pure fusion energy could commercially and economically utilized. On the other hand, the fission nuclear industry has been falling on hard times recently since so far there has been no conclusion about how to deal with the long-lived wastes produced from the nuclear spent fuel and about how to solve the shortage of natural uranium ore in addition to nuclear safety and proliferation. It's a natural way to develop fusion-fission hybrid reactors including fuel producing reactors and waste transmuting reactors as an alternate strategy to speed up the time for producing energy since a hybrid reactor as a subcritical system can operate with lower fusion energy gain ratios Q, therefore the design of the fusion core for a hybrid system is easier than for a pure fusion reactor. The fusion-fission hybrid concept dates back to the earliest days of the fusion project when it was recognized that using fusion neutrons to breed nuclear fuel would vastly increase the energy from fusion plant. It appears to receive almost no attention since the mid 80's in the world, except in China who has given very serious consideration and has strong hybrid reactor activities since 1986 in the framework of the National Hi’Tech Program supported by the State Science and Technology Commission (SSTC) of China.
    [Show full text]
  • Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
    Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81.
    [Show full text]
  • HTGR Dust Safety Issues and Needs for Research and Development
    INL/EXT-11-21097 HTGR Dust Safety Issues and Needs for Research and Development P. W. Humrickhouse June 2011 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-11-21097 HTGR Dust Safety Issues and Needs for Research and Development P. W. Humrickhouse June 2011 Idaho National Laboratory Next Generation Nuclear Plant Project Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 ABSTRACT This report presents a summary of high temperature gas-cooled reactor dust safety issues. It draws upon a literature review and the proceedings of the Very High Temperature Reactor Dust Assessment Meeting held in Rockville, MD in March 2011 to identify and prioritize the phenomena and issues that characterize the effect of carbonaceous dust on high temperature reactor safety.
    [Show full text]
  • Evaluation of Covert Plutonium Production from Unconventional Uranium Sources
    International Journal of Nuclear Security Volume 2 Number 3 Article 7 12-31-2016 Evaluation Of Covert Plutonium Production From Unconventional Uranium Sources Ondrej Chvala University of Tennessee Steven Skutnik University of Tennessee Tyrone Christopher Harris University of Tennessee Emily Anne Frame University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/ijns Part of the Defense and Security Studies Commons, Engineering Education Commons, International Relations Commons, National Security Law Commons, Nuclear Commons, Nuclear Engineering Commons, Radiochemistry Commons, and the Training and Development Commons Recommended Citation Chvala, Ondrej; Skutnik, Steven; Harris, Tyrone Christopher; and Frame, Emily Anne (2016) "Evaluation Of Covert Plutonium Production From Unconventional Uranium Sources," International Journal of Nuclear Security: Vol. 2: No. 3, Article 7. https://doi.org/10.7290/v7rb72j5 Available at: https://trace.tennessee.edu/ijns/vol2/iss3/7 This Article is brought to you for free and open access by Volunteer, Open Access, Library Journals (VOL Journals), published in partnership with The University of Tennessee (UT) University Libraries. This article has been accepted for inclusion in International Journal of Nuclear Security by an authorized editor. For more information, please visit https://trace.tennessee.edu/ijns. Chvala et al.: Evaluation Of Covert Plutonium Production From Unconventional Uranium Sources International Journal of Nuclear Security, Vol. 2, No. 3, 2016 Evaluation of Covert Plutonium Production from Unconventional Uranium Sources Tyrone Harris, Ondrej Chvala, Steven E. Skutnik, and Emily Frame University of Tennessee, Knoxville, Department of Nuclear Engineering, USA Abstract The potential for a relatively non-advanced nation to covertly acquire a significant quantity of weapons- grade plutonium using a gas-cooled, natural uranium-fueled reactor based on relatively primitive early published designs is evaluated in this article.
    [Show full text]
  • Interview: the Dual Fluid Reactor the Public Is Ready for Nuclear Power
    Interview: The Dual Fluid Reactor The Public is Ready for Nuclear Power Dr. Ahmed Hussein is Professor Emeritus of physics at University of Northern British Columbia currently stationed at TRIUMF, Canada’s National Laboratory for particle and nuclear physics in Vancouver, British Columbia. He is also an Associate Member of the Institute for Solid State Nuclear Physics (IFK) in Berlin, Germany. He was interviewed on September 16, 2014 by Robert Hux for 21st Century Science & Technology. Robert Hux – Dr. Hussein, we met you recently at the millions of tons of green house gases and the 320,000 Pacific Basin Nuclear Conference here in Vancouver, tonnes of ash containing toxic heavy metals and tens of where you presented a very interesting new design for thousands of tonnes of sulfur and nitrogen oxides that a nuclear fission reactor.1 How does your design differ are produced by fossil fuel power stations. Furthermore, from the nuclear fission reactors which have been de- nuclear power reactors do not emit any radioactive ma- veloped since the 1950s? terials into the atmosphere during operation, while coal- Dr. Ahmed Hussein – Our reactor, called the Dual fired stations emit radioactive materials that are mixed Fluid Reactor (DFR)2, was designed to solve many of the naturally with coal. problems which exist now with the current reactors that Our reactor concept has a simpler design that avoids people are afraid of. Current reactors have some designs most of the problems that we have right now. And it will that actually originated in the military use of nuclear actually make nuclear power a lot cheaper, safer, most- power in the old days of the Manhattan Project, and they ly carbon-free, and better to use than any other energy were adapted to civilian use.
    [Show full text]
  • Monica Mwanje on How Inclusion and Diversity Will Shape the Future of the Industry
    www.nuclearinst.com The professional journal of the Nuclear Institute Vol. 16 #6 u November/December 2020 u ISSN 1745 2058 Monica Mwanje on how inclusion and diversity will shape the future of the industry BRANCH The latest updates from your region ROBOT WARS The future of contamination testing YGN Staying connected in a virtual world FOCUS ANALYSIS NET ZERO Why glossy marketing won’t New capabilities in radioactive Could nuclear-produced fix the gender diversity materials research hydrogen be the answer problem to climate change? u Network u Learn u Contribute u CNL oers exciting opportunities in the burgeoning nuclear and environmental clean-up eld. CNL’s Chalk River campus is undergoing a major transformation that requires highly skilled engineers, scientists and technologists making a dierence in the protection of our environment and safe management of wastes. PRESIDENT’S PERSPECTIVE 4 Gwen Parry-Jones on building a new normal NEWS, COLUMNS & INSIGHT 6-7 News 23 8-9 Branch news 10-11 BIG PICTURE: Robot Wars 12 Letters to the Editor 13 BY THE NUMBERS: Russia’s nuclear plans 14-15 MEMBER VALUE: Supporting diversity 18 News 19 Supply chains in the nuclear industry FEATURES 20-22 FOCUS: Fixing the gender diversity problem – by Jill Partington of Assystem 23-25 ANALYSIS: New capabilities in radioactive material research - by Malcolm J Joyce, Chris Grovenor and Francis Livens 26-27 NUCLEAR FOR NET ZERO: Could nuclear-produced hydrogen solve climate issues? - by Eric Ingersoll and Kirsty Gogan of LucidCatalyst 20 YOUNG GENERATION NETWORK
    [Show full text]