Beryllium – a Unique Material in Nuclear Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Materials and Fuels Testing Techniques in the Advanced Test Reactor – from Simple to Complex
Materials and Fuels Testing Techniques in the Advanced Test Reactor – From Simple to Complex Raymond V. Furstenau 1), Frederick W. Ingram 2), John E. Brasier 2), Mark B. Hendrickson 2) 1) Idaho National Engineering and Environmental Laboratory, U.S. Dept. of Energy, USA 2) Idaho National Engineering and Environmental Laboratory, Bechtel BWXT Idaho, USA ABSTRACT The Advanced Test Reactor (ATR) is the third generation of test reactors built at the Test Reactor Area (TRA), Idaho National Engineering and Environmental Laboratory (INEEL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. ATR has a maximum power of 250MW and can provide maximum thermal neutron fluxes of 1E15 neutrons per square centimeter per second. This allows considerable acceleration of accumulated neutron fluence to materials and fuels over what would be seen in a typical power reactor. Since power operation of the ATR began in 1969, numerous testing methods have been developed to take advantage of the capabilities of the ATR. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non- instrumented sealed capsule containing test specimens with no real-time monitoring and control capabilities. The Irradiation Test Vehicle, installed in 1999, is the newest testing apparatus in the ATR that accommodates up to fifteen separate tests, each with its own temperature control and monitoring capabilities as well as neutron spectral tailoring capability. More sophisticated testing facilities include pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. -
Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81. -
Preparing for Nuclear Waste Transportation
Preparing for Nuclear Waste Transportation Technical Issues that Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 U.S. Nuclear Waste Technical Review Board This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Preparing for Nuclear Waste Transportation Technical Issues That Need to Be Addressed in Preparing for a Nationwide Effort to Transport Spent Nuclear Fuel and High-Level Radioactive Waste A Report to the U.S. Congress and the Secretary of Energy September 2019 This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Jean M. Bahr, Ph.D., Chair University of Wisconsin, Madison, Wisconsin Steven M. Becker, Ph.D. Old Dominion University, Norfolk, Virginia Susan L. Brantley, Ph.D. Pennsylvania State University, University Park, Pennsylvania Allen G. Croff, Nuclear Engineer, M.B.A. Vanderbilt University, Nashville, Tennessee Efi Foufoula-Georgiou, Ph.D. University of California Irvine, Irvine, California Tissa Illangasekare, Ph.D., P.E. Colorado School of Mines, Golden, Colorado Kenneth Lee Peddicord, Ph.D., P.E. Texas A&M University, College Station, Texas Paul J. Turinsky, Ph.D. North Carolina State University, Raleigh, North Carolina Mary Lou Zoback, Ph.D. Stanford University, Stanford, California Note: Dr. Linda Nozick of Cornell University served as a Board member from July 28, 2011, to May 9, 2019. During that time, Dr. Nozick provided valuable contributions to this report. iii This page intentionally left blank. U.S. Nuclear Waste Technical Review Board Staff Executive Staff Nigel Mote Executive Director Neysa Slater-Chandler Director of Administration Senior Professional Staff* Bret W. -
When Sex Offenders Leave Prison
BECOMING SCROOGE AT HALE THEATRE UTES ESCAPE TO WIN 8TH 1 MAN’S 48-YEAR STRAIGHT AGAINST BYU JOURNEY TO STAR COUGARS JUMP OUT TO 20-POINT AS THE MISER IN ‘A LEAD BUT CAN’T HOLD OFF UTAH’S CHRISTMAS CAROL’ 2ND-HALF SURGE ARTS C1 SPORTS D1 SUNDAY, NOVEMBER 25, 2018 SALT LAKE CITY, UTAH DESERETNEWS.COM When sex Unlocking science offenders in Idaho leave prison MOST AREN’TINCARCERATED FOR LIFE;WHAT UTAHIS DOING TO KEEPYOU SAFE BY PAT REAVY · DESERET NEWS UTAH STATE PRISON — The sex offender population at the Utah State Prison continues to grow at a staggering pace. In 1996, there were 248 sex offenders incarcerated by the Utah Department of Corrections. To - day, there are 10 times that num- ber, in the neighborhood of 2,500 at both the Point of the Mountain and the prison in Gunnison, mak- ing it by far the fastest-growing population at the prison. An additional 2,200 sex offend- ers are under the watch of Adult Probation and Parole. A Pew study in 2014 found that 31 percent of all inmates in Utah were serving time for a sex offense — far more than in 2004. KORT DUCE, IDAHO NATIONAL LABORATORY According to a Utah Sentencing Rows of concentrated solar arrays dot the landscape at Tooele Army Depot in the military’s quest to become more Commission report, the percent- self-sustaining from the traditional power grid. The Idaho National Laboratory works with the military in this endeavor. age of inmates in prison for sex offenses grew to nearly 34 percent in 2016 to over 35 percent in WHY UTAHNS SHOULD CARE ABOUT MYSTERIES Idaho National Laboratory WILLNUCLEAR POWERPOWER 2017. -
Idaho National Laboratory and Oak Ridge National Laboratory
United States Idaho National Laboratory and Oak Ridge National Laboratory ICERR Description 1. General Presentation of Idaho National Laboratory and Oak Ridge National Laboratory The International Atomic Energy Agency (IAEA) has established a designation for an International Centre based on Research Reactors (ICERR). The intention of this designation is to provide a vehicle for IAEA member-states to access international research reactor and ancillary nuclear research and development infrastructure. The U.S. Department of Energy (DOE) has made a commitment to world leadership in the development of advanced nuclear energy, science, and technology. To this end, DOE has established programs and initiatives to enhance this leadership role. The Idaho National Laboratory (INL), along with its partner laboratory Oak Ridge National Laboratory (ORNL) is leading these initiatives for DOE. Both INL and ORNL have a decades-long and storied history that supports nuclear research, development, and deployment both nationally and internationally. Both have a history of safe and efficient nuclear operations and have a demonstrated a track record of international collaboration and cooperation. 2. Short descriptions of facilities included in the U.S. ICERR designation INL’s Advanced Test Reactor (ATR): The Advanced Test Reactor supports nuclear science and engineering missions for the U.S. Department of Energy’s Office of Nuclear Energy research and development programs, Naval Reactors, universities, as well as other government and industry- sponsored commercial and international research. It is the only U.S. research reactor capable of providing large-volume, high-flux neutron irradiation in a prototypical (e.g. pressure, temperature and chemistry) environment. ATR makes it possible to study the effects of intense neutron and gamma radiation on reactor fuels and materials in a much shorter time frame, permitting accelerated research efforts. -
Nuclear Weapons Technology 101 for Policy Wonks Bruce T
NUCLEAR WEAPONS TECHNOLOGY FOR POLICY WONKS NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN BRUCE T. GOODWIN BRUCE T. Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS | 1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-11-3 LCCN-2021907474 LLNL-MI-823628 TID-61681 2 | BRUCE T. GOODWIN Table of Contents About the Author. 2 Introduction . .3 The Revolution in Physics That Led to the Bomb . 4 The Nuclear Arms Race Begins. 6 Fission and Fusion are "Natural" Processes . 7 The Basics of the Operation of Nuclear Explosives. 8 The Atom . .9 Isotopes . .9 Half-life . 10 Fission . 10 Chain Reaction . 11 Critical Mass . 11 Fusion . 14 Types of Nuclear Weapons . 16 Finally, How Nuclear Weapons Work . 19 Fission Explosives . 19 Fusion Explosives . 22 Staged Thermonuclear Explosives: the H-bomb . 23 The Modern, Miniature Hydrogen Bomb . 25 Intrinsically Safe Nuclear Weapons . 32 Underground Testing . 35 The End of Nuclear Testing and the Advent of Science-Based Stockpile Stewardship . 39 Stockpile Stewardship Today . 41 Appendix 1: The Nuclear Weapons Complex . -
March 4, 1999 Calculated Radionuclide Inventories
WM'99 CONFERENCE, FEBRUARY 28 - MARCH 4, 1999 CALCULATED RADIONUCLIDE INVENTORIES FOR STRUCTURAL CORE COMPONENTS IN THE ADVANCED TEST REACTOR by J. W. Sterbentz, M. L. Carboneau, J. A. Logan Lockheed Martin Idaho Technologies, Inc. P.O. Box 1625 Idaho Falls, Idaho 83415-3885 ABSTRACT Reactor core physics and depletion/activation calculations were performed to evaluate radionuclide inventories in a wide variety of structural core components from the Advanced Test Reactor. All components were located in or near the active core environment and received significant neutron exposure resulting in the production of radionuclides from neutron activation. The calculated radionuclide inventory estimates are strongly dependent on the Beginning-of-Life (BOL) elemental constituent and impurity concentrations in the component materials. Therefore, significant effort has been devoted to the determination of best-estimate concentrations for each of the component materials. Materials include stainless steel-304,-347,-348, aluminum-6061, Inconel-600, Inconel-X750, natural hafnium metal, and beryllium metal. Specific radioactive isotopes of interest include 14C, 59Ni, 63Ni, 60Co, 99Tc, 90Sr, and 94Nb. Radionuclide inventory estimates are presented for a select number of components representing a variety of materials. INTRODUCTION Located at the Idaho National Engineering and Environmental Laboratory (INEEL), the Advanced Test Reactor (ATR) is a 250 MWth light water reactor designed specifically to study the effects of intense radiation on reactor fuels and materials. For more than 30 years, the primary role of the ATR has been to serve experimental investigations for the development of advanced nuclear fuels. A variety of test facilities, versatile control systems, and intense neutron flux levels allow for accelerated irradiation tests for a wide range of test specimens. -
Reactor Physics Analysis of Air-Cooled Nuclear System
REACTOR PHYSICS ANALYSIS OF AIR-COOLED NUCLEAR SYSTEM A Thesis by HANNIEL JOUVAIN HONANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Pavel V. Tsvetkov Committee Members, Marc Holtzapple Sean McDeavitt Head of Department, Yassin Hassan May 2016 Major Subject: Nuclear Engineering Copyright 2016 Hanniel Jouvain Honang ABSTRACT The design of SACRé (Small Air-Cooled Reactor) fixated on evaluations of air as a potential coolant. The assessment offered in this thesis focused on reactor physic analyses, and materials review and incorporation in a system defined by a highly corrosive environment. The oxidizing nature of air at high-temperature warrants the need to examine and compare materials for their oxidation temperature, their melting and boiling temperature, and their thermal conductivity. Material choices for the fuel, the cladding, the system’s casing/structural material and the reflector were evaluated in this study. Survey of materials and literature lead to the selection of six different cladding materials which are FeCrAl, APMT, Inconel 718 and stainless steel of type 304, 316 and 310. A review of their thermal properties, for a high oxidation temperature and melting temperature and the exhibition of a hard neutron spectrum lead to the selection of APMT steel material. This material was not only be selected as the fuel cladding but also as a casing for reflector and shielding materials. The design of this 600 MWth system was investigated considering reflector materials for fast spectrum. Lead-based reflectors (lead bismuth eutectic, lead oxide and pure lead), magnesium-based reflectors (magnesium oxide and magnesium aluminum oxide), and aluminum oxide reflectors were evaluated in this thesis. -
The Hansen Letter
The Hansen Letter Introduction by Howard Morland, November 2003: This seven-thousand-word letter by Chuck Hansen, dated August 27, 1979, delivered a coup de grace to the government=s case for censorship of my Progressive magazine article on the H- bomb. It is a bit odd that Senator Charles Percy of Illinois was the intended recipient of the letter. He was never involved in The Progressive case, nor was he Chuck Hansen=s senator. He did not, apparently, request such a communication, and after receiving it he did not subsequently play a role in The Progressive case. However, copies of the letter immediately began to circulate among all persons concerned with the case. Hansen=s reason for writing the letter is not entirely clear, except as a vehicle for outlining his theory about the H-bomb secret. As he states in the letter, AThese... are some of the ideas I believe are presented in the Morland article (I have not seen the article).@ The defense attorneys in The Progressive case regarded him as an ally, of sorts, but wanted no part of his call for the punishment of Edward Teller, Theodore Taylor, and George Rathjens for security violations. Nonetheless, the defense was preparing to argue in court that the widespread distribution of this Hansen letter should moot The Progressive case. The letter clearly outlines the three H-bomb principles at issue in the case: separation of stages, compression, and radiation coupling. However it introduces two obvious technical flaws. Hansen describes the use of two primaries, or fission triggers, one at either end of the fusion secondary, which would explode simultaneously to compress the fusion secondary between them. -
Material Test Reactors and Other Irradiation Facilities
M A T E R I A L T E S T R EACTORS AND OTHER I RRADIATION F ACILITIES Material Test Reactors and other Irradiation Facilities Authors Tahir Mahmood Pleasanton, CA, USA Malcolm Griffiths Deep River, ON, Canada Clément Lemaignan Voreppe, France Ron Adamson Fremont, CA, USA © November 2018 Advanced Nuclear Technology International Spinnerivägen 1, Mellersta Fabriken plan 4, 448 50 Tollered, Sweden [email protected] www.antinternational.com M A T E R I A L T E S T R EACTORS AND OTHER I RRADIATION F ACILITIES Disclaimer The information presented in this report has been compiled and analysed by Advanced Nuclear Technology International Europe AB (ANT International®) and its subcontractors. ANT International has exercised due diligence in this work, but does not warrant the accuracy or completeness of the information. ANT International does not assume any responsibility for any consequences as a result of the use of the information for any party, except a warranty for reasonable technical skill, which is limited to the amount paid for this report. Quality-checked and authorized by: Mr Peter Rudling, President of ANT International Copyright © Advanced Nuclear Technology International Europe AB, ANT International, 2018. I(V) M A T E R I A L T E S T R EACTORS AND OTHER I RRADIATION F ACILITIES Contents Introduction IV 1 Material Test Reactors (MTRs) (Tahir Mahmood) 1-1 1.1 Introduction 1-1 1.1.1 Research reactors 1-1 1.1.2 Types of research reactors 1-2 1.1.3 Material test reactors 1-3 1.2 Material test reactors – IAEA database 1-5 1.3 Characteristics -
The Influence of the Presence Or Absence of a Neutron Reflector on the Critical Mass of Uranium
Archive of SID The influence of the presence or absence of a neutron reflector on the critical mass of uranium Maryam Noorani Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran [email protected] Farhad Zolfagharpour Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran [email protected] Sara Azimkhani Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran [email protected] Abstract To increase productivity and improve the neutron economy in the reactor, neutron reflection is used. This reflectors cause lack of neutron leakage and reactor fuel can reach critical mass faster. Various materials such as beryllium, neutron, carbon, water, lead and so on could satisfy this property. In this paper, by using the MCNP code, critical mass of uranium in the term of percent of enrichment for different reflectors is obtained. The results show beryllium, carbon and deuterium are an excellent choice for this purpose. Also increasing the thickness of the neutron reflector causes an increase in neutron multiplication factor. Keywords: Neutron reflector, Critical mass, Uranium. www.SID.ir Archive of SID Introduction Initial calculations of critical mass or the amount of fissile material needed to continue nuclear fission refers to Heisenberg works on it (Logan, 1995). Heisenberg expresses that by using fissile material and calculating the critical mass can manufacture nuclear weapon (Serber, 1992) but calculations of nuclear reactors for energy production in 1950s was pursued with greater intensity. Nowadays the calculation of critical mass takes place by computing codes and simulation and codes for neutron transport (Kastanya, 2015). For a nuclear reactor that is working with a constant potential over the time, it is needed that neutron chain reaction takes place inside with the multiplication factor K=1, it means that number of neutrons produced by fission is equal to the total number of neutrons absorbed and leaked out of the reactor core (Krane, 1995). -
The Advanced Test Reactor Capabilities and Experiments
The Advanced Test Reactor Capabilities and Experiments Frances M. Marshall Irradiation Test Programs August 6, 2008 ATR Vessel & Internals Reactor Type Pressurized, light-water moderated and cooled; beryllium reflector Reactor Vessel 12 ft diameter, 36 ft high Stainless steel Reactor Core 4 ft (diameter & height) 40 fuel elements, high enriched U-235 Coolant Temperatures and Pressure 125°F Inlet, 160ºF Outlet 390 psig Peak Flux -5 x 1014 n/cm2-sec fast -1 x 1015 n/cm2-sec thermal ATR Operations • Operating Cycles – Standard operating cycle is 6 to 8 weeks – Occasionally short high power cycles of 2 weeks – Standard reactor outages are 1 or 2 weeks – Operations for approximately 270 days per year • Core Internals Changeout every 7 to 10 years Small B Position ATR Core Cross (2.22 cm) Fuel Element Neck Shim Rod Section I Large Loop I 20 I Small I Position Irradiation I I 2 Facility 19 1 3 (3.81 cm) Northeast Flux H Position I24 I21 Trap Irradiation (1.59 cm) Facility (12.7 cm or 5 B9 ″ 77 irradiation positions Small B 7 diameter) Shuttle B8 B1 – 4 flux traps Position I NW N NE I – 5 in-pile tubes 18 4 Large B Beryllium Position I I Reflector – 68 in reflector (3.81 cm) 17 5 B7 B2 Neck Large I B12 B10 W Shim Rod Position I I 16 6 Housing (12.7 cm) B6 B3 NR I I 15 7 Outboard Currently in use A Position I I 14 SWS SE 8 Planned future use (1.59 cm) (within 18 months) B5 B4 Inboard A Safety Rod B11 Position Unused for (1.59 cm) foreseeable future Outer Shim I23 I22 Core Reflector Control Cylinder Tank I I Standard Loop 13 I I I 9 Irradiation