Lesions of the Perirhinal and Parahippocampal Cottices in the Monkey Produce Long-Lasting Memory Impairment in the Visual and Tactual Modalities

Total Page:16

File Type:pdf, Size:1020Kb

Lesions of the Perirhinal and Parahippocampal Cottices in the Monkey Produce Long-Lasting Memory Impairment in the Visual and Tactual Modalities The Journal of Neuroscience, June 1993, 13(6): 2430-2451 Lesions of the Perirhinal and Parahippocampal Cottices in the Monkey Produce Long-lasting Memory Impairment in the Visual and Tactual Modalities Wendy A. Suzuki, I,* Stuart Zola-Morgan,1~3 Larry R. Squire,lv3 and David G. AmaraP* ‘Group in Neurosciences, University of California at San Diego, La Jolla, California 92093, “The Salk Institute, San Diego, California 92186, and 3Veterans Affairs Medical Center, San Diego, California 92161 and Department of Psychiatry, University of California at San Diego, La Jolla, California 92093 Compared to normal animals, monkeys with bilateral lesions man amnesia,the deficit associatedwith H+A+ lesionsin mon- of the perirhinal and parahippocampal cortices (PRPH lesion) keys is multimodal (Murray and Mishkin, 1984) and long-last- were impaired on both a visual and a tactual version of the ing (Zola-Morgan and Squire, 1985). In addition, animals with delayed nonmatching to sample task. In addition, the mem- H+A+ lesionsexhibit preserved short-term memory (Overman ory deficit was long-lasting, as indicated by the finding of a et al., 1990) intact skill-based memory, and intact habit-like significant deficit when the visual version of the delayed forms of memory (Malamut et al., 1984;Zola-Morgan and Squire, nonmatching to sample task was readministered approxi- 1984) in analogy to the preserved memory abilities of human mately 2 years after surgery. Animals with PRPH lesions amnesicpatients (for reviews, seeSquire and Zola-Morgan, 1991; performed normally on discrimination tasks in the visual and Squire, 1992). tactual modalities. Multimodal and long-lasting memory im- Although the importance of the medial temporal lobe for pairments are defining characteristics of human medial tem- memory function hasbeen known for sometime, a critical issue poral lobe amnesia. Accordingly, these results demonstrate for current research has been to determine the relative contri- important parallels between the memory deficit associated butions of the individual structures within the medial temporal with PRPH lesions and human medial temporal lobe amnesia. lobe. A large body of evidence in both monkeys and humans These data, taken together with previous findings, suggest supports the idea that the hippocampal formation is important that the perirhinal and parahippocampal cortices play an for memory function (Mahut et al., 1982; Zola-Morgan et al., important role in memory function and that these cortical 1986, 1989a; Squire et al., 1990; Victor and Agamanolis, 1990). areas are critical components of the medial temporal lobe The amygdala, however, does not appear to contribute to the memory system. same kind of memory (Zola-Morgan et al., 1989b; Squire and [Key words: memory, hippocampus, amnesia, medial tem- Zola-Morgan, 1991; Murray, 1992).An important recent finding poral lobe, delayed nonmatching to sample task, nonhuman has been that two additional medial temporal lobe structures, primate] the perirhinal and parahippocampal cortices, also contribute to memory function (Horel et al., 1987; Zola-Morgan et al., 1989~; It has been known since the 1950s due initially to the study of Meunier et al., 1990; Gaffan and Murray, 1992). In one study, the famous amnesic patient H.M., that the medial temporal a group of monkeys sustaining bilateral lesions limited to the lobe is essentialfor normal memory function (Scoville and Mil- perirhinal and parahippocampalcortices (referred to in the pres- ner, 1957). In the monkey, bilateral damageto medial temporal ent article as the PRPH I group from Zola-Morgan et al., 1989~) lobe structures including the hippocampal formation (made up exhibited a severe visual memory impairment on three tasks of the dentate gyrus, the hippocampus proper, the subicular sensitive to medial temporal lobe amnesia.In order to examine complex, and the entorhinal cortex), amygdala, and adjacent further how closely the deficit following PRPH lesionsresembles perirhinal and parahippocampal cortices (H+A+ lesion) pro- human medial temporal lobe amnesia, two major issueswere ducesa severe memory impairment (Mishkin, 1978; Zola-Mor- addressed. gan and Squire, 1985) that resembleshuman amnesia in many The first issueconcerns whether the memory deficit exhibited ways (Squire and Zola-Morgan, 1991). For example, as in hu- by animals with PRPH lesionsextends to more then one sensory modality. In the previous study, the PRPH I group was tested only in the visual modality. Yet, an important characteristic of Received June 4, 1992; revised Nov. 23, 1992; accepted Dec. 9, 1992. human amnesiais that it is modality general. The secondissue This work was supported by the Medical Research Service of the Department of Veterans Affairs, NIH Grants 19063 and 16980, the Office of Naval Research, concerns whether or not the memory impairment associated and the M&night Foundation. W.A.S. was supported by the Systems and Inte- with the PRPH lesion is enduring. In the previous study, because grative Neurobiology Training Grant GM08107-06, and by NIMH Predoctoml Fellowship MH10033-02. We thank Pablo Alvarez-Royo, Cecelia Leclair, and the PRPH I group was never retested on the earlier tasks, no Melodee Strukelj for behavioral testing, Robert P. Clower and Janet Weber for estimate of the stability of the impairment was obtained. If the surgical assistance, Mary Ann Lawrence for histological assistance, and Kris Tru- memory deficit exhibited by the PRPH group is similar to the lock for photographic processing. Correspondence should be addressed to Dr. Stuart &la-Morgan, Department human amnesicsyndrome, it should be long-lasting. In the pres- of Psychiatry, M-003, U.C.S.D. School of Medicine, La Jolla, CA 92093. ent study, we evaluated the memory impairment in a group of Copyright 0 1993 Society for Neuroscience 0270-6474/93/132430-22$05.00/O monkeys that received conjoint bilateral lesionslimited to the The Journal of Neuroscience, June 1993, U(6) 2431 perirhinal and parahippocampal cortices (PRPH II group). To Behavioral testing determine if the memory deficit extended to more than one A total of seven tasks were administered, five in the visual modality modality, the PRPH II group and a normal control group were and two in the tactual modality as described below. Detailed descrip- tested on several tasks in both the visual and tactual modalities. tions of the five visual tasks have been published previously (Zola- To determine if the memory deficit was long-lasting, the PRPH Morgan and Squire, 1984, 1985; Zola-Morgan et al., 1989b). Admin- istration of the first visual task was preceded by pretraining procedures II group and the normal control group were tested on the visual for the visual tasks, and the two tactual tasks were directly preceded by version of the delayed nonmatching to sample (DNMS) task tactual pretraining procedures. The pretraining sessions and behavioral shortly after surgery and then again approximately 2 years later. tasks were administered in the order given below. In addition, the PRPH II group and the normal group were tested on two additional amnesia-sensitive tasks. Also, in order Pretraining procedure for the visual tasks to examine discrimination learning in the visual and tactual Monkeys were allowed 6-8 weeks of recovery after surgery before the modalities, the two groups were tested on a visual pattern dis- start of pretraining for the visual tasks. Pretraining for the visual tasks crimination task and a tactual discrimination task. consisted of four to six daily sessions in the WGTA where monkeys learned to obtain raisin rewards by displacing objects that covered any of three food wells located on a stimulus tray in front of the testing Materials and Methods chamber. When the monkeys readily displaced objects presented over any of the three wells, testing began on the visual version of the delayed Subjects nonmatching to sample (DNMS) task. Seven male cynomolgus monkeys (Mucucu fascicu/aris) were used, all weighing between 3.7 and 4.5 kg. Four monkeys received bilateral le- sions of the perirhinal and parahippocampal cortices (PRPH II group). Visual trial-unique delayed nonmatching to sample with The remainingthree monkeyscomprised an unoperatedcontrol group double-sample presentation (N group)and weretested concurrently with the PRPH II group. For purposesof clarity, the four monkeysin the previousstudy of the effects The DNMS task is known to be sensitive to human amnesia (Squire et of PRPH lesions (Zola-Morgan et al., 1989~) will be referred to as the al., 1988) and to medial temporal lobe damage in the monkey (Zola- PRPH I group and the animals will be designated as animals PRPH 1, Morgan and Squire, 1986). The task was administered as described in 2, 3, and 4. In the present study, the four monkeys in the PRPH II Zola-Morgan and Squire (1984), with the following modifications. In- group will be designated as animals PRPH 5, 6, 7, and 8. stead of receiving a single presentation of the sample object over the central well, which is the standard way of administering the task, both Surgery the PRPH II group and the N group received two successive presen- tations of the sample object (double-sample presentation procedure; The surgical procedures used for the PRPH lesion have been described Aggleton and Mishkin, 1983). One of the two sample presentations was in detail elsewhere (Zola-Morgan et al., 1989~). Histological examina- rewarded according to a pseudorandom schedule (Gellerman, 1933). tion of the animals in the PRPH I group (Zola-Morgan et al., 1989~) This modification of the testing procedure was adopted in response to revealed that the most anterior part of the perirhinal cortex at the level difficulties encountered in an earlier study of the effects of PRPH lesions of the temporal pole (area 36pm of Insausti et al., 1987) was spared in (PRPH I group; Zola-Morgan et al., 1989~). In that study, only one of all four animals (Fig. 3 of Zola-Morgan et al., 1989~).
Recommended publications
  • Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment
    The Journal of Neuroscience, December 1989, 9(12): 4355-4370 Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment Stuart Zola-Morgan,’ Larry Ft. Squire,’ David G. Amaral,2 and Wendy A. Suzuki2J Veterans Administration Medical Center, San Diego, California, 92161, and Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, The Salk Institute, San Diego, California 92136, and 3Group in Neurosciences, University of California, San Diego, La Jolla, California 92093 In monkeys, bilateral damage to the medial temporal region Moss, 1984). (In this notation, H refers to the hippocampus, A produces severe memory impairment. This lesion, which in- to the amygdala, and the plus superscript (+) to the cortical cludes the hippocampal formation, amygdala, and adjacent tissue adjacent to each structure.) This lesion appears to con- cortex, including the parahippocampal gyrus (the H+A+ le- stitute an animal model of medial temporal lobe amnesia like sion), appears to constitute an animal model of human me- that exhibited by the well-studied patient H.M. (Scoville and dial temporal lobe amnesia. Reexamination of histological Milner, 1957). material from previously studied monkeys with H+A+ lesions The H+A+ lesion produces greater memory impairment than indicated that the perirhinal cortex had also sustained sig- a lesion limited to the hippocampal formation and parahip- nificant damage. Furthermore, recent neuroanatomical stud- pocampal cortex-the H+ lesion (Mishkin, 1978; Mahut et al., ies show that the perirhinal cortex and the closely associated 1982; Zola-Morgan and Squire, 1985, 1986; Zola-Morgan et al., parahippocampal cortex provide the major source of cortical 1989a).
    [Show full text]
  • Anatomy of the Temporal Lobe
    Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation.
    [Show full text]
  • Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
    Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925).
    [Show full text]
  • Anterograde and Retrograde Amnesia in Rats with Large Hippocampal Lesions
    HIPPOCAMPUS 11:18–26 (2001) Anterograde and Retrograde Amnesia in Rats With Large Hippocampal Lesions Gordon Winocur,1–4* Robert M. McDonald,3 and Morris Moscovitch1,5 1Department of Psychology, Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada 2Department of Psychology, Trent University, Peterborough, Ontario, Canada 3Department of Psychology, University of Toronto, Toronto, Ontario, Canada 4Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada 5Department of Psychology, Erindale College, University of Toronto, Toronto, Ontario, Canada ABSTRACT: A test of socially acquired food preferences was used to study durable representation, available for future recall (Mil- the effects of large lesions to the hippocampal formation (HPC) on antero- ner, 1966; Squire, 1992). Two related predictions follow grade and retrograde memory in rats. In the anterograde test, rats with HPC from this position. The first pertains to anterograde lesions normally acquired the food preference but showed a faster rate of forgetting than control groups. When the food preference was acquired memory and asserts that hippocampal damage will result preoperatively, HPC groups exhibited a temporally graded retrograde amne- in impaired memory for events after long delays (long- sia in which memory was impaired when the preference was acquired within term memory, LTM), but not after relatively short delays 2 days of surgery but not at longer delays. The results support the traditional (short-term memory, STM). The rationale is that, in theory that the HPC contributes to the consolidation of newly acquired information into a durable memory trace that is represented in other brain STM, information is held and recalled for a brief period areas.
    [Show full text]
  • Windows to the Brain: Introduction to Neuroanatomy
    VA Mid-Atlantic Health Care Network Windows to the Brain: Introduction to Neuroanatomy Overview Planes of Section Radiographic Perspective Major Divisions Cortical Lobes, Gyri & Sulci General Functions Brodmann’s Areas Basal Forebrain Subcortical Structures Symptoms Cerebellum Structures Symptoms Katherine Taber, PhD, FANPA MIRECC Assistant Director - Education Research Health Scientist W.G. “Bill” Hefner VAMC, Salisbury NC Research Professor, Div Biomedical Sciences Edward Via College of Osteopathic Medicine Robin Hurley, MD, FANPA MIRECC Associate Director - Education ACOS/Research and Academic Affairs Service Line W.G. “Bill” Hefner VAMC, Salisbury NC Professor, Psychiatry and Radiology Wake Forest School of Medicine revised September 2019 Source: http://www.mirecc.va.gov/visn6/Tools-Tips.asp Use of text, images and other content are subject to the following terms and conditions: Fair Use Is Permitted Fair use of copyrighted material includes the use for non-commercial educational purposes, such as teaching, scholarship, research, criticism, commentary, news reporting, and other content. Unless otherwise noted, users who wish to download or print text and image files from this Web site for such uses may do so without the VISN 6 MIRECC’s express permission, provided that they comply with the following conditions: The content may only be used for personal, educational or non- commercial purposes; Users must always specifically cite the author(s) and source of the content every time the material is used, as they would for material from any printed work; None of the content may be altered or modified. Warranty By downloading, printing, or otherwise using text and image files from this website, users agree and warrant that they will limit their use of such files to fair use.
    [Show full text]
  • 1. Lateral View of Lobes in Left Hemisphere TOPOGRAPHY
    TOPOGRAPHY T1 Division of Cerebral Cortex into Lobes 1. Lateral View of Lobes in Left Hemisphere 2. Medial View of Lobes in Right Hemisphere PARIETAL PARIETAL LIMBIC FRONTAL FRONTAL INSULAR: buried OCCIPITAL OCCIPITAL in lateral fissure TEMPORAL TEMPORAL 3. Dorsal View of Lobes 4. Ventral View of Lobes PARIETAL TEMPORAL LIMBIC FRONTAL OCCIPITAL FRONTAL OCCIPITAL Comment: The cerebral lobes are arbitrary divisions of the cerebrum, taking their names, for the most part, from overlying bones. They are not functional subdivisions of the brain, but serve as a reference for locating specific functions within them. The anterior (rostral) end of the frontal lobe is referred to as the frontal pole. Similarly, the anterior end of the temporal lobe is the temporal pole, and the posterior end of the occipital lobe the occipital pole. TOPOGRAPHY T2 central sulcus central sulcus parietal frontal occipital lateral temporal lateral sulcus sulcus SUMMARY CARTOON: LOBES SUMMARY CARTOON: GYRI Lateral View of Left Hemisphere central sulcus postcentral superior parietal superior precentral gyrus gyrus lobule frontal intraparietal sulcus gyrus inferior parietal lobule: supramarginal and angular gyri middle frontal parieto-occipital sulcus gyrus incision for close-up below OP T preoccipital O notch inferior frontal cerebellum gyrus: O-orbital lateral T-triangular sulcus superior, middle and inferior temporal gyri OP-opercular Lateral View of Insula central sulcus cut surface corresponding to incision in above figure insula superior temporal gyrus Comment: Insula (insular gyri) exposed by removal of overlying opercula (“lids” of frontal and parietal cortex). TOPOGRAPHY T3 Language sites and arcuate fasciculus. MRI reconstruction from a volunteer. central sulcus supramarginal site (posterior Wernicke’s) Language sites (squares) approximated from electrical stimulation sites in patients undergoing operations for epilepsy or tumor removal (Ojeman and Berger).
    [Show full text]
  • Circuits That Link the Cerebral Cortex to the Adrenal Medulla COLLOQUIUM PAPER
    The mind–body problem: Circuits that link the cerebral cortex to the adrenal medulla COLLOQUIUM PAPER Richard P. Duma,b, David J. Levinthala,b,c, and Peter L. Stricka,b,1 aUniversity of Pittsburgh Brain Institute, Systems Neuroscience Center, Center for the Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; bDepartment of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261; and cDivision of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261 Edited by Robert H. Wurtz, National Institutes of Health, Bethesda, MD, and approved October 4, 2019 (received for review July 31, 2019) Which regions of the cerebral cortex are the origin of descending shortcoming has been overcome by the introduction of neuro- commands that influence internal organs? We used transneuronal tropic viruses as transneuronal tracers (4–6). transport of rabies virus in monkeys and rats to identify regions of Here,wereviewsomeofourresultsusingtheN2cstrainofrabies cerebral cortex that have multisynaptic connections with a major virus (RV) to reveal the areas of the cerebral cortex that influence sympathetic effector, the adrenal medulla. In rats, we also examined the adrenal medulla of the monkey and rat. We will also review the multisynaptic connections with the kidney. In monkeys, the cortical results of RV transport from the kidney in the rat. The adrenal influence over the adrenal medulla originates from 3 distinct networks medulla and kidney are controlled exclusively by sympathetic ef- that are involved in movement, cognition, and affect. Each of these ferents and are therefore, ideal for defining the cortical areas that networks has a human equivalent.
    [Show full text]
  • Differential Projection from the Motor and Limbic Cortical Regions to the Mediodorsal Thalamic Nucleus in the Dog
    ACTA NEUROBIOL. EXP. 1989. 49: 23-37 DIFFERENTIAL PROJECTION FROM THE MOTOR AND LIMBIC CORTICAL REGIONS TO THE MEDIODORSAL THALAMIC NUCLEUS IN THE DOG Iwona STEPNIEWSKA and Anna KOSMAL Department of Neurophysiology, Nencki Institute of Experimental Biology 3 Pasteur Str., 02-093 Warsaw, Poland Key words: mediodorsal thalamic nucleus, motor and limbic cortices, horseradish peroxidase Abstract. The cortical afferents to the mediodorsal thalamic nucleus in the dog were studied by using horseradish peroxidase. Small injec- tions allowed to establish two specific projection zones connected sepa- rately with the lateral and medial segments of the nucleus. The lateral segment received the major projection from the dorsal half of the hemi- sphere. It included premotor and part of the motor cortices in the ante- rior sigmoid gyrus and precruciate areas as well as the presylvian cor- tex. The medial segment of the nucleus was innervated by the limbic areas of the ventral half of the hemisphere. These areas included the medloventrally located genual, subcallosal and plriform cortices, as well as the cortex of the ventral bank of the anterior rhinal sulcus and the caudal part of the orbital gyrus. The cortical fields situated between these two main cortical zones, both on the lateral and medial surfaces (rhinal and sylvian sulci and anterior cingular gyrus, respectively) sent projec- tions to both medial and lateral segments of the nucleus. These results indicate that in the mediodorsal thalamic nucleus may take place the integration of information from two functionally defined systems, the motor and limbic ones. INTRODUCTIOPJ The numerous studies of the cortical afferents of the mediodorsal thalamic nucleus (MD) showed, that although the prefrontal cortex (PFC) gives rise to the heaviest projection to MD, it is not the only cortical region projecting to thls nucleus.
    [Show full text]
  • Dissection Technique for the Study of the Cerebral Sulci, Gyri and Ventricles
    Arq Neuropsiquiatr 2008;66(2-A):282-287 Dissection technique for the stuDy of the cerebral sulci, gyri anD ventricles João Paulo Mattos1, Marcos Juliano dos Santos2, João Flavio Daniel Zullo2, Andrei Fernandes Joaquim2, Feres Chaddad-Neto1, Evandro de Oliveira3 Abstract – Neuroanatomy in addition to neurophysiology, are the basic areas for the proper formation from health students to specialized professionals in neuroscience. A step by step guide for practical studies of neuroanatomy is required for this kind of knowledge to become more acceptable among medical students, neurosurgeons, neurologists, neuropediatricians and psychiatric physicians. Based on the well known courses of sulci, gyri and ventricles offered by Beneficência Portuguesa Hospital in São Paulo, Brazil, two times a year, since 1994, totalizing more than 20 complete courses, and answering the request of many neuroscience students and professionals whose asked for a practical guide to the neuroanatomy study, the authors suggest a protocol for the study of superficial and deep brain structures showing how to approach the more structures as possible with minimum damage to the anatomic piece and with the smaller number of brains. Key wordS: neuroanatomy, brain, dissection technique. técnica de dissecação para o estudo dos sulcos, giros e ventriculos cerebrais Resumo – Neuroanatomia e a neurofisiologia são as áreas básicas para a adequada formação desde estudantes na área da saúde a profissionais especializados em neurociências. Um guia prático, passo a passo, para o estudo
    [Show full text]
  • AN EXPERIMENTAL INVESTIGATION of the CONNEXIONS of the OLFACTORY TRACTS in the MONKEY by MARGARET MEYER and A
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.12.4.274 on 1 November 1949. Downloaded from J. Neurol. Neurosurg. Psychiat., 1949, 12, 274. AN EXPERIMENTAL INVESTIGATION OF THE CONNEXIONS OF THE OLFACTORY TRACTS IN THE MONKEY BY MARGARET MEYER and A. C. ALLISON From the Department ofAnatomy, University of Oxford The great expansion of the-cerebral cortex which bilateral degeneration of olfactory terminals appar- has taken place in higher primates has brought ently passing through the anterior limb of the about a considerable displacement of structures on anterior commissure. The present study has been the base of the telencephalon, and the precise undertaken to map out the connexions of the comparison of certain areas in this part of the olfactory bulb in the monkey's brain as precisely brain with those in lower mammals has been a as possible with the same silver technique. matter of some difficulty. This is true particularly Material and Methods of the olfactory areas which lie on the orbital aspect guest. Protected by copyright. of the frontal lobe and the adjacent part of the Three macaque monkeys (Macaca mulatta) and two this immature Guinea baboons (Papio papio) were used. temporal lobe. Although part of the brain The operative technique was similar in all cases: under in primates has been subjected to detailed cyto- nembutal anesthesia and with the usual aseptic pre- architectural and myelo-architectural examinations cautions a large right frontal bone flap was reflected; (Rose, 1927b, 1928; Beck, 1934, and others), the the frontal lobe of the hemisphere was carefully retraced, areas directly related to olfaction have never been and the olfactory peduncle, lying on the ventral surface, clearly defined.
    [Show full text]
  • Interaction of Inferior Temporal Cortex with Frontal Cortex and Basal Forebrain: Double Dissociation in Strategy Implementation and Associative Learning
    The Journal of Neuroscience, August 15, 2002, 22(16):7288–7296 Interaction of Inferior Temporal Cortex with Frontal Cortex and Basal Forebrain: Double Dissociation in Strategy Implementation and Associative Learning David Gaffan,1 Alexander Easton,2 and Amanda Parker2 1Department of Experimental Psychology, Oxford University, Oxford OX1 3UD, United Kingdom, and 2School of Psychology, Nottingham University, Nottingham NG7 2RD, United Kingdom Macaque monkeys learned a strategy task in which two groups TSϩAMϩFX cannot be generally attributed to the partial tem- of visual objects needed to be treated differently, one with poral–frontal disconnection that this lesion creates, and there- persistent and one with sporadic object choices, to obtain food fore support the hypothesis that the amnesic effects of this rewards. After preoperative training, they were divided into two lesion are caused primarily by the disconnection of temporal surgical groups of three monkeys each. One group received cortex from ascending inputs from the basal forebrain. The crossed unilateral removals of frontal cortex and inferior tem- results also show that temporal–frontal interaction in strategy poral cortex (IT ϫ FC) and were severely impaired in performing implementation does not require those routes of temporal– the strategy task. The other group received bilateral transection frontal interaction that are interrupted in TSϩAMϩFX, and of anterior temporal stem, amygdala, and fornix (TSϩAMϩFX) therefore support the hypothesis that projections to other pos- and were unimpaired in performing the strategy task. Subse- terior cortical areas allow temporal and frontal cortex to interact quently the same animals were tested in visual object–reward with each other by multisynaptic corticocortical routes in strat- association learning.
    [Show full text]
  • Surgical Anatomy and Techniques
    SURGICAL ANATOMY AND TECHNIQUES MICROSURGICAL APPROACHES TO THE MEDIAL TEMPORAL REGION:AN ANATOMICAL STUDY Alvaro Campero, M.D. OBJECTIVE: To describe the surgical anatomy of the anterior, middle, and posterior Department of Neurological Surgery, portions of the medial temporal region and to present an anatomic-based classification University of Florida, of the approaches to this area. Gainesville, Florida METHODS: Twenty formalin-fixed, adult cadaveric specimens were studied. Ten brains Gustavo Tro´ccoli, M.D. provided measurements to compare different surgical strategies. Approaches were demon- Department of Neurological Surgery, strated using 10 silicon-injected cadaveric heads. Surgical cases were used to illustrate the Hospital “Dr. J. Penna,” results by the different approaches. Transverse lines at the level of the inferior choroidal point Bahı´a Blanca, Argentina and quadrigeminal plate were used to divide the medial temporal region into anterior, middle, and posterior portions. Surgical approaches to the medial temporal region were classified into Carolina Martins, M.D. four groups: superior, lateral, basal, and medial, based on the surface of the lobe through which Department of Neurological Surgery, University of Florida, the approach was directed. The approaches through the medial group were subdivided further Gainesville, Florida into an anterior approach, the transsylvian transcisternal approach, and two posterior ap- proaches, the occipital interhemispheric and supracerebellar transtentorial approaches. Juan C. Fernandez-Miranda, M.D. RESULTS: The anterior portion of the medial temporal region can be reached through Department of Neurological Surgery, University of Florida, the superior, lateral, and basal surfaces of the lobe and the anterior variant of the Gainesville, Florida approach through the medial surface.
    [Show full text]