NIH Public Access Author Manuscript Neuroimage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Neuronal Distribution Across the Cerebral Cortex of the Marmoset
bioRxiv preprint doi: https://doi.org/10.1101/385971; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Neuronal distribution across the cerebral cortex of the marmoset monkey (Callithrix jacchus) Nafiseh Atapour1, 2*, Piotr Majka1-3*, Ianina H. Wolkowicz1, Daria Malamanova1, Katrina H. Worthy1 and Marcello G.P. Rosa1,2 1 Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia 2 Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia 3 Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland * N.A. and P.M contributed equally to this study, and should be considered joint first authors Abbreviated title: Neuronal distribution in the marmoset cortex Number of pages: 43 Number of figures: 12 Number of tables: 4 Number of supplementary figures: 7 Number of supplementary tables: 2 Corresponding author: Marcello G.P. Rosa Email: [email protected] Conflicts of interests: The authors declare there is no conflict of interest. bioRxiv preprint doi: https://doi.org/10.1101/385971; this version posted August 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment
The Journal of Neuroscience, December 1989, 9(12): 4355-4370 Lesions of Perirhinal and Parahippocampal Cortex That Spare the Amygdala and Hippocampal Formation Produce Severe Memory Impairment Stuart Zola-Morgan,’ Larry Ft. Squire,’ David G. Amaral,2 and Wendy A. Suzuki2J Veterans Administration Medical Center, San Diego, California, 92161, and Department of Psychiatry, University of California, San Diego, La Jolla, California 92093, The Salk Institute, San Diego, California 92136, and 3Group in Neurosciences, University of California, San Diego, La Jolla, California 92093 In monkeys, bilateral damage to the medial temporal region Moss, 1984). (In this notation, H refers to the hippocampus, A produces severe memory impairment. This lesion, which in- to the amygdala, and the plus superscript (+) to the cortical cludes the hippocampal formation, amygdala, and adjacent tissue adjacent to each structure.) This lesion appears to con- cortex, including the parahippocampal gyrus (the H+A+ le- stitute an animal model of medial temporal lobe amnesia like sion), appears to constitute an animal model of human me- that exhibited by the well-studied patient H.M. (Scoville and dial temporal lobe amnesia. Reexamination of histological Milner, 1957). material from previously studied monkeys with H+A+ lesions The H+A+ lesion produces greater memory impairment than indicated that the perirhinal cortex had also sustained sig- a lesion limited to the hippocampal formation and parahip- nificant damage. Furthermore, recent neuroanatomical stud- pocampal cortex-the H+ lesion (Mishkin, 1978; Mahut et al., ies show that the perirhinal cortex and the closely associated 1982; Zola-Morgan and Squire, 1985, 1986; Zola-Morgan et al., parahippocampal cortex provide the major source of cortical 1989a). -
Sustained Activities and Retrieval in a Computational Model of Perirhinal
Sustained activities and retrieval in a computational model of perirhinal cortex Julien Vitay and Fred H. Hamker∗ Abstract Perirhinal cortex is involved in object recognition and novelty detection, but also in multimodal in- tegration, reward association and visual working memory. We propose a computational model that focuses on the role of perirhinal cortex in working memory, particularly with respect to sustained activities and memory retrieval. This model describes how different partial informations are inte- grated into assemblies of neurons that represent the identity of an object. Through dopaminergic modulation, the resulting clusters can retrieve the global information with recurrent interactions between neurons. Dopamine leads to sustained activities after stimulus disappearance that form the basis of the involvement of perirhinal cortex in visual working memory processes. The infor- mation carried by a cluster can also be retrieved by a partial thalamic or prefrontal stimulation. Thus, we suggest that areas involved in planning and memory coordination encode a pointer to access the detailed information encoded in associative cortex such as perirhinal cortex. ∗Allgemeine Psychologie, Psychologisches Institut II, Westf. Wilhelms-Universit¨at M¨unster, Germany 1 Introduction Perirhinal cortex (PRh), composed of cortical areas 35 and 36, is located in the ventromedial part of the temporal lobe. It receives its major inputs from areas TE and TEO of inferotemporal cortex, as well as from entorhinal cortex (ERh), parahippocampal cortex, insular cortex and orbitofrontal cortex (Suzuki & Amaral, 1994). As part of the medial temporal lobe system (with hippocampus and ERh), its primary role is considered to be object-recognition memory, as shown by impairements in delayed matching-to-sample (DMS) or delayed nonmatching-to-sample (DNMS) tasks following PRh cooling or removal (Horel, Pytko-Joiner, Voytko, & Salsbury, 1987; Zola-Morgan, Squire, Amaral, & Suzuki, 1989; Meunier, Bachevalier, Mishkin, & Murray, 1993; Buffalo, Reber, & Squire, 1998). -
A Non-Canonical Feedforward Pathway for Computing Odor Identity
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317248; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A non-canonical feedforward pathway for computing odor identity Honggoo Chae1♯, Arkarup Banerjee1,2,3♯ & Dinu F. Albeanu1,2* 1 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 2 Cold Spring Harbor Laboratory School for Biological Sciences, Cold Spring Harbor, NY 3 current address - New York University Medical Center, New York, NY ♯ equal contribution * Correspondence: [email protected] Short title: Cell-type specific decoding of odor identity and intensity in the olfactory bulb Key words: mitral and tufted cells, piriform cortex, anterior olfactory nucleus, cortical feedback, concentration invariant odor identity decoding, two photon calcium imaging, PCA, dPCA, linear and non-linear decoders bioRxiv preprint doi: https://doi.org/10.1101/2020.09.28.317248; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Sensory systems rely on statistical regularities in the experienced inputs to either group disparate stimuli, or parse them into separate categories1,2. While considerable progress has been made in understanding invariant object recognition in the visual system3–5, how this is implemented by olfactory neural circuits remains an open question6–10. The current leading model states that odor identity is primarily computed in the piriform cortex, drawing from mitral cell (MC) input6–9,11. -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
A Hypothesis for the Evolution of the Upper Layers of the Neocortex Through Co-Option of the Olfactory Cortex Developmental Program
HYPOTHESIS AND THEORY published: 12 May 2015 doi: 10.3389/fnins.2015.00162 A hypothesis for the evolution of the upper layers of the neocortex through co-option of the olfactory cortex developmental program Federico Luzzati 1, 2* 1 Department of Life Sciences and Systems Biology (DBIOS), University of Turin, Turin, Italy, 2 Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Truin, Italy The neocortex is unique to mammals and its evolutionary origin is still highly debated. The neocortex is generated by the dorsal pallium ventricular zone, a germinative domain that in reptiles give rise to the dorsal cortex. Whether this latter allocortical structure Edited by: contains homologs of all neocortical cell types it is unclear. Recently we described a Francisco Aboitiz, + + Pontificia Universidad Catolica de population of DCX /Tbr1 cells that is specifically associated with the layer II of higher Chile, Chile order areas of both the neocortex and of the more evolutionary conserved piriform Reviewed by: cortex. In a reptile similar cells are present in the layer II of the olfactory cortex and Loreta Medina, the DVR but not in the dorsal cortex. These data are consistent with the proposal that Universidad de Lleida, Spain Gordon M. Shepherd, the reptilian dorsal cortex is homologous only to the deep layers of the neocortex while Yale University School of Medicine, the upper layers are a mammalian innovation. Based on our observations we extended USA Fernando Garcia-Moreno, these ideas by hypothesizing that this innovation was obtained by co-opting a lateral University of Oxford, UK and/or ventral pallium developmental program. Interestingly, an analysis in the Allen brain *Correspondence: atlas revealed a striking similarity in gene expression between neocortical layers II/III Federico Luzzati, and piriform cortex. -
Anterograde and Retrograde Amnesia in Rats with Large Hippocampal Lesions
HIPPOCAMPUS 11:18–26 (2001) Anterograde and Retrograde Amnesia in Rats With Large Hippocampal Lesions Gordon Winocur,1–4* Robert M. McDonald,3 and Morris Moscovitch1,5 1Department of Psychology, Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada 2Department of Psychology, Trent University, Peterborough, Ontario, Canada 3Department of Psychology, University of Toronto, Toronto, Ontario, Canada 4Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada 5Department of Psychology, Erindale College, University of Toronto, Toronto, Ontario, Canada ABSTRACT: A test of socially acquired food preferences was used to study durable representation, available for future recall (Mil- the effects of large lesions to the hippocampal formation (HPC) on antero- ner, 1966; Squire, 1992). Two related predictions follow grade and retrograde memory in rats. In the anterograde test, rats with HPC from this position. The first pertains to anterograde lesions normally acquired the food preference but showed a faster rate of forgetting than control groups. When the food preference was acquired memory and asserts that hippocampal damage will result preoperatively, HPC groups exhibited a temporally graded retrograde amne- in impaired memory for events after long delays (long- sia in which memory was impaired when the preference was acquired within term memory, LTM), but not after relatively short delays 2 days of surgery but not at longer delays. The results support the traditional (short-term memory, STM). The rationale is that, in theory that the HPC contributes to the consolidation of newly acquired information into a durable memory trace that is represented in other brain STM, information is held and recalled for a brief period areas. -
Neocortex and Allocortex Respond Differentially to Cellular Stress in Vitro and Aging in Vivo
Neocortex and Allocortex Respond Differentially to Cellular Stress In Vitro and Aging In Vivo Jessica M. Posimo, Amanda M. Titler, Hailey J. H. Choi, Ajay S. Unnithan, Rehana K. Leak* Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania, United States of America Abstract In Parkinson’s and Alzheimer’s diseases, the allocortex accumulates aggregated proteins such as synuclein and tau well before neocortex. We present a new high-throughput model of this topographic difference by microdissecting neocortex and allocortex from the postnatal rat and treating them in parallel fashion with toxins. Allocortical cultures were more vulnerable to low concentrations of the proteasome inhibitors MG132 and PSI but not the oxidative poison H2O2. The proteasome appeared to be more impaired in allocortex because MG132 raised ubiquitin-conjugated proteins and lowered proteasome activity in allocortex more than neocortex. Allocortex cultures were more vulnerable to MG132 despite greater MG132-induced rises in heat shock protein 70, heme oxygenase 1, and catalase. Proteasome subunits PA700 and PA28 were also higher in allocortex cultures, suggesting compensatory adaptations to greater proteasome impairment. Glutathione and ceruloplasmin were not robustly MG132-responsive and were basally higher in neocortical cultures. Notably, neocortex cultures became as vulnerable to MG132 as allocortex when glutathione synthesis or autophagic defenses were inhibited. Conversely, the glutathione precursor N-acetyl cysteine rendered allocortex resilient to MG132. Glutathione and ceruloplasmin levels were then examined in vivo as a function of age because aging is a natural model of proteasome inhibition and oxidative stress. Allocortical glutathione levels rose linearly with age but were similar to neocortex in whole tissue lysates. -
The Structural Model: a Theory Linking Connections, Plasticity, Pathology, Development and Evolution of the Cerebral Cortex
Brain Structure and Function https://doi.org/10.1007/s00429-019-01841-9 REVIEW The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex Miguel Ángel García‑Cabezas1 · Basilis Zikopoulos2,3 · Helen Barbas1,3 Received: 11 October 2018 / Accepted: 29 January 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices—which form a ring at the base of the cerebral hemisphere—are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. -
The Hippocampus, Prefrontal Cortex, and Perirhinal Cortex Are Critical to Incidental Order Memory
The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory Abbreviated Title: INCIDENTAL ORDER MEMORY Leila M. Allen1,2,3, Rachel A. Lesyshyn1,2, Steven J. O’Dell2, Timothy A. Allen1,3, Norbert J. Fortin1,2 1Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA 92697 2Department of Neurobiology and Behavior, University of California, Irvine, CA 92697 3Cogntive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL 33199 Number of figures: 3 Number of tables: 0 Number of text pages: 25 Total Word Count: 8,777 Corresponding Author: Norbert J. Fortin, Ph.D. Center for the Neurobiology of Learning and Memory Department of Neurobiology and Behavior University of California, Irvine 106 Bonney Research Laboratory Irvine, CA 92697-3800 tel: 949-824-9740 email: [email protected] Conflicts of Interest: The authors declare no competing financial interests. Acknowledgments: We would like to thank Clare Quirk and Collin Fuhrman for assistance with behavioral and histological procedures. This research was supported, in part, by the National Science Foundation (awards IOS-1150292 and BCS-1439267 to N.J.F.), NIMH (award MH115697 to N.J.F.), the Whitehall Foundation (award 2010-05-84 to N.J.F.) and the University of California, Irvine. INCIDENTAL ORDER MEMORY 1 ABSTRACT 2 Considerable research in rodents and humans indicates the hippocampus and prefrontal cortex are 3 essential for remembering temporal relationships among stimuli, and accumulating evidence 4 suggests the perirhinal cortex may also be involved. However, experimental parameters differ 5 substantially across studies, which limits our ability to fully understand the fundamental 6 contributions of these structures. -
The Hippocampus, Prefrontal Cortex, and Perirhinal Cortex Are Critical to Incidental Order Memory
Florida International University FIU Digital Commons Department of Psychology College of Arts, Sciences & Education 2-3-2020 The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory Leila M. Allen University of California, Irvine Rachel A. Lesyshyn University of California, Irvine Steven J. O'Dell University of California, Irvine Timothy A. Allen University of California, Irvine Norbert J. Fortin University of California, Irvine Follow this and additional works at: https://digitalcommons.fiu.edu/psychology_fac Recommended Citation Allen, Leila M.; Lesyshyn, Rachel A.; O'Dell, Steven J.; Allen, Timothy A.; and Fortin, Norbert J., "The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory" (2020). Department of Psychology. 22. https://digitalcommons.fiu.edu/psychology_fac/22 This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Psychology by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Behav Brain Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2021 February 03. Published in final edited form as: Behav Brain Res. 2020 February 03; 379: 112215. doi:10.1016/j.bbr.2019.112215. The hippocampus, prefrontal cortex, and perirhinal cortex are critical to incidental order memory Leila M. -
Default Mode Network in Childhood Autism Posteromedial Cortex Heterogeneity and Relationship with Social Deficits
ARCHIVAL REPORT Default Mode Network in Childhood Autism: Posteromedial Cortex Heterogeneity and Relationship with Social Deficits Charles J. Lynch, Lucina Q. Uddin, Kaustubh Supekar, Amirah Khouzam, Jennifer Phillips, and Vinod Menon Background: The default mode network (DMN), a brain system anchored in the posteromedial cortex, has been identified as underconnected in adults with autism spectrum disorder (ASD). However, to date there have been no attempts to characterize this network and its involvement in mediating social deficits in children with ASD. Furthermore, the functionally heterogeneous profile of the posteromedial cortex raises questions regarding how altered connectivity manifests in specific functional modules within this brain region in children with ASD. Methods: Resting-state functional magnetic resonance imaging and an anatomically informed approach were used to investigate the functional connectivity of the DMN in 20 children with ASD and 19 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate regression analyses were used to test whether altered patterns of connectivity are predictive of social impairment severity. Results: Compared with TD children, children with ASD demonstrated hyperconnectivity of the posterior cingulate and retrosplenial cortices with predominately medial and anterolateral temporal cortex. In contrast, the precuneus in ASD children demonstrated hypoconnectivity with visual cortex, basal ganglia, and locally within the posteromedial cortex. Aberrant posterior cingulate cortex hyperconnectivity was linked with severity of social impairments in ASD, whereas precuneus hypoconnectivity was unrelated to social deficits. Consistent with previous work in healthy adults, a functionally heterogeneous profile of connectivity within the posteromedial cortex in both TD and ASD children was observed. Conclusions: This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity.