Plant Cell. Tissue and Organ Culture 73: 213-230, 2003. 213 2003 Kiuwer Academic Publishers. Printed in the Netherlands. Review of Plant Biotechnology and Applied Genetics Microspore culture in wheat (Triticum aestivum) — doubled haploid production via induced embryogenesis Ming Y. Zheng Department of Biology, Gordon College, 255 Grapevine Road, Wenham, MA 01984, USA (Fax: + 1-978-867-4666; E-mail:
[email protected]) Received 12 July 2002: accepted in revised form 14 January 2003 Key words: androgenesis, cellular mechanisms, embryoids, genetic control, molecular and biochemical mechanisms, plant regeneration, somatic embryogenesis Abstract The inherent potential to produce plants from microspores or immature pollen exists naturally in many plant species. Some genotypes in hexaploid wheat (Triticum aestivum L.) also exhibit the trait for androgenesis. Under most circumstances, however, an artificial manipulation, in the form of physical, physiological and/or chemical treatment, need to be employed to switch microspores from gametophytic development to a sporophytic pathway. Induced embryogenic microspores, characterized by unique morphological features, undergo organized cell divisions and differentiation that lead to a direct formation of embryoids. Embryoids ‘germinate’ to give rise to haploid or doubled haploid plants. The switch from terminal differentiation of pollen grain formation to sporophytic development of embryoid production involves a treatment that halts gametogenesis and initiates sporogenesis showing predictable cellular and molecular events. In principle, the inductive treatments may act to release microspores from cell cycle control that ensures mature pollen formation hence overcome a developmental block to embryogenesis. Isolated microspore culture, genetic analyses, and studies of cellular and molecular mechanisms related to microspore embryogenesis have yielded useful information for both understanding androgenesis and improving the efficiency of doubled haploid production.