Powerfuels in a Renewable Energy World - Global Volumes, Costs, and Trading 2030 to 2050
Total Page:16
File Type:pdf, Size:1020Kb
Pin a Renewable WERFUELS Energy World Global Volumes, Costs, and Trading 2030 to 2050 – + Publisher: Deutsche Energie-Agentur GmbH (dena) German Energy Agency Chausseestraße 128 a 10115 Berlin, Germany Tel.: + 49 (0)30 66 777-0 Fax: + 49 (0)30 66 777-699 E-mail: [email protected] www.dena.de Authors: LUT: Manish Ram, Tansu Galimova, Dmitrii Bogdanov, Mahdi Fasihi, Ashish Gulagi, Christian Breyer dena: Matteo Micheli, Kilian Crone Conception & design: Heimrich & Hannot GmbH Date: 12/2020 All rights reserved. Any use is subject to consent by dena. Please cite this report as: Ram M., Galimova T., Bogdanov D., Fasihi M., Gulagi A., Breyer C., Micheli M., Crone K. (2020). Powerfuels in a Renewable Energy World - Global volumes, costs, and trading 2030 to 2050. LUT University and Deutsche Energie-Agentur GmbH (dena). Lappeenranta, Berlin. ISBN: 978-952-335-551-4 Lappeenranta-Lahti University of Technology Research Reports Serial Number: 112. ISSN-L 2243-3376 ISSN: 2243-3376 Lappeenranta, Berlin, 2020 Content Executive Summary .............................................................................................................................4 1 Introduction .................................................................................................................................... 10 2 Methods and Data: Modelling the global energy system transition with powerfuels ............................................................................................................................. 13 Industrial fuel production ........................................................................................................................................... 14 CO2 from direct air capture ...................................................................................................................................... 15 Power-to-chemicals ........................................................................................................................................................ 16 Growth trajectory of powerfuels.............................................................................................................................17 Global trading of powerfuels .................................................................................................................................... 18 Additional background data for powerfuels ............................................................................................. 18 3 Results: Powerfuels in the global energy system transition ....................................... 20 Electrification and defossilisation across the power, heat, transport and desalination sectors ........................................................................................................................................................20 Energetic demand development for fuels and chemicals .........................................................23 Demand for powerfuels ...............................................................................................................................................26 Demand for CO2 as raw material input .........................................................................................................29 Global trading of powerfuels ...................................................................................................................................32 Cost analysis of powerfuels......................................................................................................................................44 Greenhouse gas emissions savings .................................................................................................................50 4 Outlook for Europe ...................................................................................................................... 52 5 Discussion and conclusions ............................................................................................................58 The future of powerfuels ..............................................................................................................................................58 Powerfuels for system flexibility .............................................................................................................................58 Powerfuels for an integrated energy sector..............................................................................................58 CO2 from being a pollutant to a sustainable feedstock.................................................................59 Powerfuels in major global energy transition scenarios ...............................................................59 Future for global trading of powerfuels .........................................................................................................62 Powerfuels for climate neutrality .........................................................................................................................63 Global political consensus for advancing powerfuels ....................................................................63 Annexes ................................................................................................................................................. 64 A LUT Energy System Transition model .......................................................................................................64 B Technical and financial assumptions ...................................................................................................68 C Assumptions for powerfuels and their trading ...............................................................................77 D Limitations, uncertainties and possible improvements .......................................................... 81 E Regions................................................................................................................................................................................82 List of Figures ....................................................................................................................................... 84 List of Tables......................................................................................................................................... 86 References ............................................................................................................................................ 87 Abbreviations ...................................................................................................................................... 96 3 Executive Summary Aligned to the Paris Agreement’s goals, this study by Most current global energy scenarios and studies Lappeenranta-Lahti University of Technology (LUT) significantly underestimate the role of power-to-X and the Global Alliance Powerfuels explores the role of technologies in their full spectrum of future energy powerfuels in a global carbon-neutral energy system systems17, 28. In response, as a first, this research study based on renewable energy sources. builds upon an energy system model that includes all Power-to-x products. It quantifies the presence of Powerfuels – i. e. green hydrogen and derived gas- powerfuels across the global energy mix in 2030, 2040, eous and liquid energy carriers and feedstocks such and 2050. By analysing 145 distinct geographical re- as synthetic kerosene, methane or ammonia – will gions covering the whole world, the study explores play an important role in a carbon-neutral energy the potential of producing powerfuels in each region, system. They will be essential for defossilising sectors examines the resulting cost levels, and quantifies how that are hard to electrify such as aviation, maritime trade of powerfuels develops in a cost-optimised transport, and specific industrial processes. In addi- global market. It further quantifies the reductions of tion, they will play an important role in replacing fossil levelised costs resulting from international trade of resources employed as process feedstocksa. Further- powerfuels and the greenhouse gas emission reduc- more, even in sectors with high electrification shares, tions resulting from their adoption. The results are there will be numerous applications relying on gas- mainly reported as demand volumes for powerfuels eous or liquid energy carriers. Here too, renewable and CO2 as raw material, costs, and trade volumes. liquid and gaseous energy carriers such as power- Costs are reported for two distinct cases: one where fuels will be essential for their defossilisation. powerfuels are traded globally and one where power- fuels are only traded within the producing regions. A dedicated focus chapter on Europe is included in this study. a Such is the case in the chemical industry, where renewable electricity-based chemicals are the only technologically viable option for defossilising the entire product chain. 4 Executive Summary This study is based on the LUT Energy System Transition model. The model considers energy demand from the power, heat, industry, transport, chemical, and desalination sectors as well as an estimation of the non-energetic feedstock demand of the chemical sector. The fundamental assumptions and modelling choices of the model are: ■ The global energy system in 2050 is carbon- ■ Renewable electricity based synthetic fuels are neutral. complemented by biofuels and bio-chemicals in meeting the demand for molecule-based ■ Projections for energy demand and the renew