Renewable Energy Technologies CHAPTER 7

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy Technologies CHAPTER 7 renewable energy technologies CHAPTER 7 Wim C. Turkenburg (Netherlands) LEAD AUTHORS: Jos Beurskens (Netherlands), André Faaij (Netherlands), Peter Fraenkel (United Kingdom), Ingvar Fridleifsson (Iceland), Erik Lysen (Netherlands), David Mills (Australia), Jose Roberto Moreira (Brazil), Lars J. Nilsson (Sweden), Anton Schaap (Netherlands), and Wim C. Sinke (Netherlands) CONTRIBUTING AUTHORS: Per Dannemand Andersen (Denmark), Sheila Bailey (United States), Jakob Björnsson (Iceland), Teun Bokhoven (Netherlands), Lex Bosselaar (Netherlands), Suani Teixeira Coelho (Brazil), Baldur Eliasson (Switzerland), Brian Erb (Canada), David Hall (United Kingdom), Peter Helby (Sweden), Stephen Karekezi (Kenya), Eric Larson (United States), Joachim Luther (Germany), Birger Madson (Denmark), E.V.R. Sastry (India), Yohji Uchiyama (Japan), and Richard van den Broek (Netherlands) ABSTRACT In 1998 renewable energy sources supplied 56 ± 10 exajoules, or about 14 percent of world primary energy consumption. The supply was dominated by traditional biomass (38 ± 10 exajoules a year). Other major contributions came from large hydropower (9 exajoules a year) and from modern biomass (7 exajoules). The contribution of all other renewables—small hydropower, geothermal, wind, solar, and marine energy—was about 2 exajoules. That means that the energy supply from new renewables was about 9 exajoules (about 2 percent of world consumption). The commercial primary energy supply from renewable sources was 27 ± 6 exajoules (nearly 7 percent of world consumption), with 16 ± 6 exajoules from biomass. Renewable energy sources can meet many times the present world energy demand, so their potential is enormous. They can enhance diversity in energy supply markets, secure long-term sustainable energy supplies, and reduce local and global atmospheric emissions. They can also provide commercially attractive options to meet specific needs for energy services (particularly in developing countries and rural areas), create new employment opportunities, and offer possibilities for local manufacturing of equipment. There are many renewable technologies. Although often commercially available, most are still at an early stage of development and not technically mature. They demand continuing research, development, and demonstration efforts. In addition, few renewable energy technologies can compete with conventional fuels on cost, except in some niche markets. But substantial cost reductions can be achieved for most renewables, closing gaps and making them more competitive. That will require further technology development and market deployment—and boosting production capacities to mass production. For the long term and under very favourable conditions, the lowest cost to produce electricity might be $0.01–0.02 a kilowatt-hour for geothermal, $0.03 a kilowatt-hour for wind and hydro, $0.04 a kilowatt-hour for solar thermal and biomass, and $0.05–0.06 a kilowatt-hour for photovoltaics and marine currents. The lowest cost to produce heat might be $0.005 a kilowatt-hour for geothermal, $0.01 a kilowatt-hour for biomass, and $0.02–0.03 a kilowatt-hour for solar thermal. The lowest cost to produce fuels might be $1.5 a gigajoule for biomass, $6–7 a gigajoule for ethanol, $7–10 a gigajoule for methanol, and $6–8 a gigajoule for hydrogen. Scenarios investigating the potential of renewables reveal that they might contribute 20–50 percent of energy supplies in the second half of the 21st century. A transition to renewables-based energy systems would have to rely on: I Successful development and diffusion of renewable energy technologies that become more competitive through cost reductions from technological and organisational developments. I Political will to internalise environmental costs and other externalities that permanently increase fossil fuel prices. Many countries have found ways to promote renewables. As renewable energy activities grow and require more funding, the tendency in many countries is to move away from methods that let taxpayers carry the burden of promoting renewables, towards economic and regulatory methods that let energy consumers carry the burden. I 220 WORLD ENERGY ASSESSMENT: ENERGY AND THE CHALLENGE OF SUSTAINABILITY Chapter 7: Renewable Energy Technologies Many renewables technologies are suited to small off-grid applications, R enewable energy sources policy guidelines and environmental, have been important for humans good for rural, remote areas, where social, and economic goals: since the beginning of civilisation. For energy is often crucial in Diversifying energy carriers for the centuries and in many ways, biomass production of heat, fuels, and electricity. has been used for heating, cooking, steam human development. I Improving access to clean energy sources. raising, and power generation—and hydropower Balancing the use of fossil fuels, saving them and wind energy, for movement and later for electricity for other applications and for future generations. production. Renewable energy sources generally depend on Increasing the flexibility of power systems as electricity energy flows through the Earth’s ecosystem from the insolation of the demand changes. sun and the geothermal energy of the Earth. One can distinguish: I Reducing pollution and emissions from conventional energy systems. I Biomass energy (plant growth driven by solar radiation). I Reducing dependency and minimising spending on imported fuels. I Wind energy (moving air masses driven by solar energy). Furthermore, many renewables technologies are suited to small I Direct use of solar energy (as for heating and electricity production). off-grid applications, good for rural, remote areas, where energy is I Hydropower. often crucial in human development. At the same time, such small energy I Marine energy (such as wave energy, marine current energy, and systems can contribute to the local economy and create local jobs. energy from tidal barrages). The natural energy flows through the Earth’s ecosystem are I Geothermal energy (from heat stored in rock by the natural heat immense, and the theoretical potential of what they can produce for flow of the Earth). human needs exceeds current energy consumption by many times. If applied in a modern way, renewable energy sources (or For example, solar power plants on 1 percent of the world’s desert renewables) are considered highly responsive to overall energy area would generate the world’s entire electricity demand today. TABLE 7.1. CATEGORIES OF RENEWABLE ENERGY CONVERSION TECHNOLOGIES Technology Energy product Application Biomass energy Combustion(domestic scale) Heat (cooking, space heating) Widely applied; improved technologies available Combustion(industrial scale) Process heat, steam, electricity Widely applied; potential for improvement Gasification/power production Electricity, heat (CHP). Demonstration phase Gasification/fuel production Hydrocarbons, methanol, H2 Development phase Hydrolysis and fermentation Ethanol Commercially applied for sugar/ starch crops; production from wood under development Pyrolysis/production of liquid fuels Bio-oils Pilot phase; some technical barriers Pyrolysis/production of solid fuels Charcoal Widely applied; wide range of efficiencies Extraction Biodiesel Applied; relatively expensive Digestion Biogas Commercially applied Wind energy Water pumping and battery charging Movement, power Small wind machines, widely applied Onshore wind turbines Electricity Widely applied commercially Offshore wind turbines Electricity Development and demonstration phase Solar energy Photovoltaic solar energy conversion Electricity Widely applied; rather expensive; further development needed Solar thermal electricity Heat, steam, electricity Demonstrated; further development needed Low-temperature solar energy use Heat (water and space heating, Solar collectors commercially applied; solar cookers widely applied in cooking, drying) and cold some regions; solar drying demonstrated and applied Passive solar energy use Heat, cold, light, ventilation Demonstrations and applications; no active parts Artificial photosynthesis H2 or hydrogen rich fuels Fundamental and applied research Hydropower Power, electricity Commercially applied; small and large scale applications Geothermal energy Heat, steam, electricity Commercially applied Marine energy Tidal energy Electricity Applied; relatively expensive Wave energy Electricity Research, development, and demonstration phase Current energy Electricity Research and development phase Ocean thermal energy conversion Heat, electricity Research, development, and demonstration phase Salinity gradient / osmotic energy Electricity Theoretical option Marine biomass production Fuels Research and development phase WORLD ENERGY ASSESSMENT: ENERGY AND THE CHALLENGE OF SUSTAINABILITY 221 Chapter 7: Renewable Energy Technologies Biomass energy BOX 7.1. LAND USE REQUIREMENTS FOR ENERGY PRODUCTION Biomass is a rather simple term for all organic material that stems from plants (including algae), trees, and crops. Biomass sources Biomass production requires land. The productivity of a perennial are therefore diverse, including organic waste streams, agricultural crop (willow, eucalyptus, switchgrass) is 8–12 tonnes of dry matter and forestry residues, as well as crops grown to produce heat, fuels, per hectare a year. The lower heating value (LHV) of dry clean wood amounts to about 18 gigajoules a tonne; the higher heating and electricity (energy plantations). value about 20 gigajoules a tonne. Thus 1 hectare
Recommended publications
  • Wind Energy Shipping and Logistics Is a Complex SCM Discipline As Each Wind Farm Project Requires Tailor-Made Solutions
    Poulsen, T., Rytter, N.G.M., Chen, G.: Global Wind Turbine Shipping & Logistics – A Research Area of the Future?, conference proceedings International Conference on Logistics and Maritime Systems (LogMS), September 12-14, 2013, Singapore, www.logms2013.org [中文]全球风电物流——一个新兴的研究领域?作者托马斯.鲍尔森,尼尔斯.吕特, 陈刚,发表于 2013 年世界物流与海运系统大会,2013 年 9 月 12 日至 14 日于新加坡 1 GLOBAL WIND TURBINE SHIPPING & LOGISTICS - A RESEARCH AREA OF THE FUTURE? Thomas Poulsen, Gang Chen, and Niels G. M. Rytter Respectively Research Assistant, Assistant Professor, and Associate Professor at Aalborg University, Copenhagen campus, Department of Mechanical and Manufacturing Engineering, A.C. Meyers Vænge 15, 2450 Copenhagen SV, Denmark, emails respectively [email protected], [email protected], and [email protected] ABSTRACT This paper investigates shipping and logistics challenges of the rapidly growing wind turbine industry using an end-to-end supply chain perspective. Wind turbine supply chains execute activities related to inbound logistics, wind turbine production/assembly, outbound logistics, installation, operations/maintenance of active wind farms, and de-commissioning. Such activities are often spread out across countries or regions, and require long-distance transportation of parts, components, or modules. Wind turbines are growing in size and weight, requiring specialized equipment and handling. Each onshore or offshore wind farm project requires tailor-made shipping and logistics solutions as installation sites are unique. Wind turbine manufacturers and/or utility companies owning the wind farms therefore face several practical challenges regarding shipping and logistics activities which also make up significant costs for them while simultaneously posing an increasingly attractive revenue opportunity for shipping and logistics service companies.
    [Show full text]
  • Section 10 Flash Technology
    10 FLASH TECHNOLOGY Overview Flash memory technology is a mix of EPROM and EEPROM technologies. The term “flash” was chosen because a large chunk of memory could be erased at one time. The name, therefore, distinguishes flash devices from EEPROMs, where each byte is erased individually. Flash memory technology is today a mature technology. Flash memory is a strong com- petitor to other memories such as EPROMs, EEPROMs, and to some DRAM applications. Figure 10-1 shows the density comparison of a flash versus other memories. 64M 16M 4M DRAM/EPROM 1M SRAM/EEPROM Density 256K Flash 64K 1980 1982 1984 1986 1988 1990 1992 1994 1996 Year Source: Intel/ICE, "Memory 1996" 18613A Figure 10-1. Flash Density Versus Other Memory How the Device Works The elementary flash cell consists of one transistor with a floating gate, similar to an EPROM cell. However, technology and geometry differences between flash devices and EPROMs exist. In particular, the gate oxide between the silicon and the floating gate is thinner for flash technology. It is similar to the tunnel oxide of an EEPROM. Source and INTEGRATED CIRCUIT ENGINEERING CORPORATION 10-1 Flash Technology drain diffusions are also different. Figure 10-2 shows a comparison between a flash cell and an EPROM cell with the same technology complexity. Due to thinner gate oxide, the flash device will be more difficult to process. CMOS Flash Cell CMOS EPROM Cell Mag. 10,000x Mag. 10,000x Flash Memory Cell – Larger transistor – Thinner floating gate – Thinner oxide (100-200Å) Photos by ICE 17561A Figure 10-2.
    [Show full text]
  • Energy Technology Perspectives 2020
    Energy Technology Perspectives 2020 A path for the decarbonisation of the buildings sector 14 December 2020 Page 1 Opening remarks Timur Gül Head, Energy Technology Policy Division, International Energy Agency (IEA) The IEA buildings technology work across four main deliverables Energy Technology Tracking clean energy Special Report on Clean Technology guide progress Perspectives Innovation Tracking Clean Energy Progress Assessing critical energy technologies for global clean energy transitions The IEA is unfolding a series of resources setting an ambitious pathway to reach the Paris Agreement and other Sustainable Development goals. Opening remarks Roland Hunziker Director, Sustainable Buildings and Cities, World Business Council for Sustainable Development (WBCSD) Energy Technology Perspectives 2020 presentation Thibaut ABERGEL Chiara DELMASTRO Co-leads, Buildings Energy Technology, Energy Technology Policy Division, International Energy Agency (IEA) Commitment to net-zero emissions is globalising Share of energy-related CO2 emissions covered by national and supra-national public net-zero emissions targets as of 01st SeptemberDecember 20202020 Carbon or climate 100% 10 neutrality target 80% 8 No target 2 60% 6 Under discussion GtCO 40% 4 In policy document 20% 2 Proposed legislation 0% 0 In law Total emissions (right axis) Countries responsible for around 60% of global energy-related CO2 emissions have formulated net-zero emissions ambitions in laws, legislation, policy documents or official discussions. Source: IEA (2020),| Credit Energyphoto
    [Show full text]
  • Fuel Cells and Environmental, Energy, and Other Clean Energy Technologies…
    Energy Efficiency & Renewable Energy U.S. Department of Energy Fuel Cell Technologies Program Nancy L. Garland, Ph.D. Technology Development Manager Fuel Cell Technologies Program Energy Efficiency and Renewable Energy United States Department of Energy Washington, D.C. 18th WWorldo rld Hydrogen EnergyEnergy Conference 2010 Essen, Germany May 17, 2010 Advancing Presidential Priorities Energy efficiency and renewable energy research , development , and deployment activities help the U.S. meet its economic, energy security, and environmental challenges concurrently. Energy Security Economic • Deploy the cheapest, cleanest, • Create green jobs through fastest energy source – energy Recovery Act energy projects efficiency • Double renewable energy • One million plug-in hybrid cars generation by 2012 on the road by 2015 Presidential Priorities • Weatherize one million homes • Develop the next generation of annually sustainable biofuels and infrastructure • Increase fuel economy standards Environmental • Implement an economy-wide cap-and-trade program to reduce greenhouse gas emissions 80 percent by 2050 • Make the US a leader on climate change • Establish a national low carbon fuel standard U.S. DOE President’s National Objectives for DOE— Energy to Secure America’s Future • Quickly Implement the Economic Recovery Package: Create Millions of New Green Jobs and Lay the Foundation for the Future • Restore Science Leadership: Strengthen America ’s Role as the World Leader in Science and Technology • Reduce GHG Emissions: Drive emissions 20 Percent below 1990 levels by 2020 • Enhance Energy Security: Save More Oil than the U.S currently imports from the Middle East and Venezuela combined within 10 years • Enhance Nuclear Security: Strengthen non-proliferation activities, reduce global stockpiles of nuclear weapons, and maintain safety and reliability of the US stockpile First Principle: Pursue material and cost-effective measures with a sense of urgency From: Secretary Chu’s presentation on DOE Goal’s and Targets, 5/5/09 U.S.
    [Show full text]
  • Drivers of Innovation in Energy and Fuel Cell Technology: Supply-Demand and R&D
    Drivers of Innovation in Energy and Fuel Cell Technology: Supply-Demand and R&D Madeline Woodruff IEA and Yukiko Fukasaku OECD 1 Overview Q Drivers of energy technology innovation – Sustained increase in demand – Diversification of sources of fossil fuel supply due to growing security and economic concerns – Fuel switching and development of new fuels due to efficiency and environmental concerns – De-regulation and increasing competition Q Increasing importance of R&D and technological innovation Q How the energy innovation system works Q Focus on fuel cells 2 Part I Supply, Demand, and Investment Trends Role of Fuel Cells in the Energy System 3 4 Today’s Energy Reference Word Primary Energy Demand Challenges 6,000 WEO 2002 Oil Q Energy security to fuel economic 5,000 growth and mobility Gas 4,000 and Coal 3,000 curbing environmental and climate Nuclear damage from energy use 2,000 Hydro 1,000 Other – “business as usual” energy renewables demand is rising inexorably 0 1970 1980 1990 2000 2010 2020 2030 – greenhouse gas emissions also – stronger policies stabilize OECD emissions only after 2020. Reference Energy-Related CO2 Emissions WEO 2002 Q Access to modern energy for all – 1.6 billion people have no access 45000 to electricity, 80% of them in 40000 World South Asia and sub-Saharan 35000 30000 OECD Africa 25000 Transition 20000 Q Lower costs in deregulated Economies 15000 markets; infrastructure stresses Developing 10000 Million Tonnes CO2 Tonnes Million Countries 5000 0 1971 1990 2000 2010 2020 2030 5 Renewables Growing Fast, but From
    [Show full text]
  • Parabolic Trough Solar Collectors: a General Overview of Technology, Industrial Applications, Energy Market, Modeling, and Standards
    Green Processing and Synthesis 2020; 9: 595–649 Review Article Pablo D. Tagle-Salazar, Krishna D.P. Nigam, and Carlos I. Rivera-Solorio* Parabolic trough solar collectors: A general overview of technology, industrial applications, energy market, modeling, and standards https://doi.org/10.1515/gps-2020-0059 received May 28, 2020; accepted September 28, 2020 Nomenclature Abstract: Many innovative technologies have been devel- oped around the world to meet its energy demands using Acronyms renewable and nonrenewable resources. Solar energy is one of the most important emerging renewable energy resources in recent times. This study aims to present AOP advanced oxidation process fl the state-of-the-art of parabolic trough solar collector ARC antire ective coating technology with a focus on different thermal performance CAPEX capital expenditure fl analysis methods and components used in the fabrication CFD computational uid dynamics ffi of collector together with different construction materials COP coe cient of performance and their properties. Further, its industrial applications CPC compound parabolic collector (such as heating, cooling, or concentrating photovoltaics), CPV concentrating photovoltaics solar energy conversion processes, and technological ad- CSP concentrating solar power vancements in these areas are discussed. Guidelines on DNI direct normal irradiation fi - ff commercial software tools used for performance analysis FDA nite di erence analysis fi - of parabolic trough collectors, and international standards FEA nite element analysis related to performance analysis, quality of materials, and FO forward osmosis fi durability of parabolic trough collectors are compiled. FVA nite volume analysis Finally, a market overview is presented to show the im- GHG greenhouse gasses portance and feasibility of this technology.
    [Show full text]
  • Splendid Prospects
    WIND ENERGY The Iberian Peninsula has many excellent wind power locations. More and more wind farms are springing up in Spain and Portugal. Photos (3): Jan Oelker Splendid prospects The worldwide use of wind power is developing strongly. Unlimited opportunities in North America More and more markets are opening up, so that the boom In the USA the »Production Tax Credit«, PTC, is the driv- is not dependent on just a few countries. North America ing force. Unfortunately, for many years the US govern- ment didn’t feel able to grant the PTC on a long-term and Asia are growing in importance, but Europe will stay basis. Again and again there were interruptions to this support mechanism, so that the market was affected by dominant for the time being. a »yo-yo effect«, which was a problem for manufactur- ers (see diagram). There was a regular up and down on the US market. The manufacturer GE Energy, which is especially dependent on the US market, felt the effects particularly strongly, and the turnover dropped dramat- ll renewable energies are currently being expand- ically in 2004 (see table 2). ed strongly, but wind power is growing the Now, however, the situation seems to be calming fastest. The reasons are clear: The technology is down. In September 2005 the US government extend- mature, the costs per kilowatt hour are relative- ed the PTC until the end of 2007. This provided an ac- ly low and construction takes very little time. ceptable amount of security for investments and the Many governments are trying to reduce their depen- market has grown steadily since then.
    [Show full text]
  • A Report on Semiconductor Foundry Access by US Academics (Discussion Held at a Meeting Virtually Held at the National Science Foundation on Dec 16, 2020)
    A Report on Semiconductor Foundry Access by US Academics (Discussion held at a meeting virtually held at the National Science Foundation on Dec 16, 2020) Organizers: Sankar Basu1, Erik Brunvand2, Subhasish Mitra3, H.-S. Philip Wong4 Scribes: Sayeef Salahuddin5, Shimeng Yu6 1 NSF, [email protected] 2 NSF, [email protected] 3 Stanford University, [email protected] 4 Stanford University, [email protected] 5 University of California, Berkeley, [email protected] 6 Georgia Institute of Technology, [email protected] 2 Executive Summary Semiconductor technology and microelectronics7 is a foundational technology that without its continued advancement, the promises of artificial intelligence (AI), 5G/6G communication, and quantum computing will never be realized in practice. Our nation’s economic competitiveness, technology leadership, and national security, depend on our staying at the forefront of microelectronics. We must accelerate the pace of innovation and broaden the pool of researchers who possess research capability in circuit design and device technologies, and provide a pathway to translate these innovations to industry. This meeting has brought to the fore the urgent need for access to semiconductor foundry and design ecosystem to achieve these goals. Microelectronics is a field that requires sustained and rapid innovations, especially as the historical rate of progress following a predictable path, is no longer guaranteed as it had been in the past. Yet, there are many plausible paths to move forward, and the potential for further advances is immense. There is a future in system integration of heterogeneous technologies that requires end-to-end co-design and innovation. Isolated push along silos, such as miniaturization of components, will be inadequate.
    [Show full text]
  • For Wind Farms
    Technology & Technical Issues in Renewable Project Development Bruce Bailey, President AWS Truewind, LLC 255 Fuller Road Albany, NY 12203 [email protected] 1 Who is AWS Truewind z Industry Leader & Consultant for 5,000+ MW z Wind Energy Assessment, Engineering, Due Diligence, Forecasting/Scheduling • Experience in 40+ Countries • Established in 1983; 40 Employees 2 Technology & Technical Issues z Technology & Cost Trends z Defining Resources z Siting Tools z Project Development Steps z Challenges & Uncertainties z Conclusions 3 Annual Average Growth of Energy Technologies in the ‘90s 30 Wind 25 Solar PV 25.7* Geothermal 20 Nat. Gas 15 Hydro 16.8 Oil 10 Coal 3.0 5 2.1 Nuclear 1.6 1.4 1.2 0.6 Source: REPP, 0 Worldwatch 4 Costs of Energy from Different Energy Technologies 25 20 RenewableRenewable Options:Options: Conventional Options: 15 Costs don’t include externalities ¢10 kWh per 5 0 WindWind SmallSmall FuelFuel BioBio SolarSolar SolarSolar CoalCoal GTGT CCCC SCSC NuclearNuclear HydroHydro CellCell MassMass ThermalThermal PVPV Sources: BTM Consult, WindPower Monthly, GE Wind Energy Biomass : Direct fueled 5 20+ Years of Wind Technology Growth 1981 1985 1990 1996 1999 2004 Rotor (Meter) 10 17 27 40 50 77 KW 25 100 225 550 $750 1,500 Cost/kW $2,600 $1,650 $1,333¢ per $1,050kWh $950 $800 MWh 45 220 550 1,480 2,200 5,600 Bottom Line: 1981-1999 = 49x the power, 11x the cost; 1999-2004 = 2.6x the power, 1.8x the cost 6 U.S. Wind Potential is Large, But… Best Resources are Often Distant from Load Centers 7 Basic Qualities of Wind Project Sites z Strong Winds » Minimum Class 4 desired (>7 m/s @ hub height) for wind farms z Transmission Access » distance, voltage, excess capacity z Good Permitting Chances » land use compatibility » public acceptance » visual, noise, and bird/bat impacts z Adequate Land Area » economies of scale with larger project size » multiple landowners Crop of the 21st Century? 8 Siting Tools z Wind Maps & Other Regional Resource Data z Topographic Maps Old vs.
    [Show full text]
  • The Energy Sector in Sweden
    THE ENERGY SECTOR IN SWEDEN FLANDERS INVESTMENT & TRADE MARKET SURVEY /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// THE ENERGY SECTOR IN SWEDEN Introduction to the market March 2020 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// www.flandersinvestmentandtrade.com TABLE OF CONTENT: 1. Introduction ....................................................................................................................................................................................... 3 2. The Swedish energy market ................................................................................................................................................... 4 3. Different types of renewable sources ............................................................................................................................... 6 3.1 Hydropower 6 3.2 Bioenergy 6 3.3 Nuclear power 7 3.4 Solar power 7 3.5 Wind power 8 3.6 Other sources 9 3.6.1 Wave power 9 3.6.2 Heat pumps 9 3.6.3 Body heat 9 4. Role of the government ........................................................................................................................................................... 10 4.1 carbon taxation 10 4.2 Green electricity certification 11 4.3 The Swedish Energy Agency 11 5. Long term goals ............................................................................................................................................................................
    [Show full text]
  • Ggf Supports Serbia's Climate Goals by Co-Financing Two Pioneering Wind Farms
    GGF SUPPORTS SERBIA’S CLIMATE GOALS BY CO- FINANCING TWO PIONEERING WIND FARMS • GGF co-finances two of the first large-scale wind projects in the country • 42 MW wind farm supported by GGF with EUR 13.5 million and 158 MW wind farm supported by GGF with EUR 18.35 million Luxembourg, 5 June 2018 – The Green for Growth Fund (GGF), advised by Finance in Motion GmbH, has demonstrated its support for Serbia’s commitment to achieve 27 percent of its energy consumption from renewable energy sources by 2020, through recent investments in two of the first large-scale wind farms in the country – the Alibunar wind farm and the Čibuk 1 wind farm. These projects mark the rollout of wind farms as a primary renewable energy source for Serbia and are the result of a combined effort between the nation’s government, project sponsors and in particular the development finance community, to create a bankable renewable energy framework for the country. The GGF is supporting the 42 MW Alibunar wind farm with EUR 13.5 million of financing through an International Finance Corporation (IFC) B loan. The IFC, a member of the World Bank Group, serves as the Lender of Record and structuring bank for the project. The Alibunar wind farm is being developed by Elicio NV, a Belgian renewable energy company, near the town of Alibunar in northeastern Serbia. The wind farm is comprised of 21 turbines from the German wind turbine manufacturer Senvion. Construction is now almost completed. The GGF is also contributing EUR 18.35 million to the 158 MW Čibuk 1 wind farm, the largest wind project in Serbia and the Western Balkans to date.
    [Show full text]
  • Wind Power Economics Rhetoric & Reality
    WIND POWER ECONOMICS RHETORIC & REALITY The Performance of Wind Power in Denmark Gordon Hughes WIND POWER ECONOMICS RHETORIC & REALITY Volume ii The Performance of Wind Power in Denmark Gordon Hughes School of Economics, University of Edinburgh © Renewable Energy Foundation 2020 Published by Renewable Energy Foundation Registered Office Unit 9, Deans Farm Stratford-sub-Castle Salisbury SP1 3YP The cover image (Adobe Stock: 179479012) shows a coastal wind turbine in Esbjerg, Denmark. www.ref.org.uk The Renewable Energy Foundation is a registered charity in England and Wales (No. 1107360) CONTENTS The Performance of Wind Power in Denmark: Summary ........................................ v The Performance of Wind Power in Denmark ............................................................ 1 1. Background ........................................................................................................... 1 2. Data on Danish wind turbines ............................................................................ 4 3. Failure analysis for Danish turbines .................................................................... 6 4. Age and turbine performance in Denmark ...................................................... 16 5. The performance of offshore turbines .............................................................. 20 6. Auctions and the winner’s curse ...................................................................... 23 7. Kriegers Flak and the economics of offshore wind generation ....................... 27 8. Financial
    [Show full text]