Radiochemistry Webinars Actinide Chemistry Series • Environmental
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Focal Spot, Spring 2006
Washington University School of Medicine Digital Commons@Becker Focal Spot Archives Focal Spot Spring 2006 Focal Spot, Spring 2006 Follow this and additional works at: http://digitalcommons.wustl.edu/focal_spot_archives Recommended Citation Focal Spot, Spring 2006, April 2006. Bernard Becker Medical Library Archives. Washington University School of Medicine. This Book is brought to you for free and open access by the Focal Spot at Digital Commons@Becker. It has been accepted for inclusion in Focal Spot Archives by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. SPRING 2006 VOLUME 37, NUMBER 1 *eiN* i*^ MALLINCKRC RADIOLO AJIVERSITY *\ irtual Colonoscopy: a Lifesaving Technology ^.IIMi.|j|IUII'jd-H..l.i.|i|.llJ.lii|.|.M.; 3 2201 20C n « ■ m "■ ■ r. -1 -1 NTENTS FOCAL SPOT SPRING 2006 VOLUME 37, NUMBER 1 MIR: 75 YEARS OF RADIOLOGY EXPERIENCE In the early 1900s, radiology was considered by most medical practitioners as nothing more than photography. In this 75th year of Mallinckrodt Institute's existence, the first of a three-part series of articles will chronicle the rapid advancement of radiol- ogy at Washington University and the emergence of MIR as a world leader in the field of radiology. THE METABOLISM OF THE DIABETIC HEART More diabetic patients die from cardiovascular disease than from any other cause. Researchers in the Institute's Cardiovascular Imaging Laboratory are finding that the heart's metabolism may be one of the primary mechanisms by which diseases such as diabetes have a detrimental effect on heart function. VIRTUAL C0L0N0SC0PY: A LIFESAVING TECHNOLOGY More than 55,000 Americans die each year from cancers of the colon and rectum. -
George De Hevesy in America
Journal of Nuclear Medicine, published on July 13, 2019 as doi:10.2967/jnumed.119.233254 George de Hevesy in America George de Hevesy was a Hungarian radiochemist who was awarded the Nobel Prize in Chemistry in 1943 for the discovery of the radiotracer principle (1). As the radiotracer principle is the foundation of all diagnostic and therapeutic nuclear medicine procedures, Hevesy is widely considered the father of nuclear medicine (1). Although it is well-known that he spent time at a number of European institutions, it is not widely known that he also spent six weeks at Cornell University in Ithaca, NY, in the fall of 1930 as that year’s Baker Lecturer in the Department of Chemistry (2-6). “[T]he Baker Lecturer gave two formal presentations per week, to a large and diverse audience and provided an informal seminar weekly for students and faculty members interested in the subject. The lecturer had an office in Baker Laboratory and was available to faculty and students for further discussion.” (7) There is also evidence that, “…Hevesy visited Harvard [University, Cambridge, MA] as a Baker Lecturer at Cornell in 1930…” (8). Neither of the authors of this Note/Letter was aware of Hevesy’s association with Cornell University despite our longstanding ties to Cornell until one of us (WCK) noticed the association in Hevesy’s biographical page on the official Nobel website (6). WCK obtained both his undergraduate degree and medical degree from Cornell in Ithaca and New York City, respectively, and spent his career in nuclear medicine. JRO did his nuclear medicine training at Columbia University and has subsequently been a faculty member of Weill Cornell Medical College for the last eleven years (with a brief tenure at Memorial Sloan Kettering Cancer Center (affiliated with Cornell)), and is now the program director of the Nuclear Medicine residency and Chief of the Molecular Imaging and Therapeutics Section. -
Chicago Section American Chemical
http://chicagoacs.org NOVEMBER • 2008 CHICAGO SECTION AMERICAN CHEMICAL SOCIETY Joint Meeting of the University of Chicago Department of Chemistry and the Chicago Section ACS WEDNESDAY, NOVEMBER 19, 2008 The Parthenon Restaurant Vegetarian Spinach-Cheese Pie, Vege- PRESENTATION OF STIEGLITZ 314 South Halsted Street tarian Pastitsio (Macaroni baked with LECTURE 8:00 P.M. Chicago, IL broccoli, Bechamel sauce and Kefalotiri), 312-726-2407 Dolmades (vine leaves stuffed with rice, meats and herbs), Rotisserie-roasted DIRECTIONS TO THE MEETING lamb served with rice pilaf and roasted potatoes. Desserts: Baklava (flaky layers From Kennedy (I-90) or Edens (I-94): of Phyllo baked with nuts and honey) Drive downtown and exit at Adams and Galaktobouriko (flaky layers of Phyl- Street. Turn right to Halsted. Turn left at lo with vanilla custard and baked with Halsted. Restaurant is approximately syrup. Beverages, bread and butter. 1.5 blocks on the west side of the street. The cost is $30 to Section members who From Eisenhower (I-290): Drive east have paid their local section dues, mem- to Chicago. Exit at Racine and turn left. bers' families, and visiting ACS members. Go to Jackson Boulevard and turn right. The cost to members who have NOT Take Jackson to Halsted. Turn right at paid their local section dues and to non- Halsted. Restaurant is approximately Section members is $32. The cost to stu- 1/2 block on the west side of the street. dents and unemployed members is $15. Seating will be available for those who PARKING: Free valet parking. Parking wish to attend the meeting without dinner. -
Philosophy of the Tracer Methods
Technical Information Philosophy of the Tracer Methods A. A. BENSON Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093 ラ ジ オ ア イ ソ トー プ が サ イ ク ロ ト ロ ン で 製 造 さ れ は じめ た1930年 代 か ら40年 代 に か け てErnest Lawrence教 授 を 中 心 にSam Ruben博 士,Martin Kamen博 士 ら は ラ ジ オ ア イ ソ トー プ の ト レ ー サ ー 実 験 を 開 始 し た,本 稿 は サ イ ク ロ ト ロ ン で 製 造 さ れ た 半 減 期20分 の11Cを 使 っ て 寸 秒 を 惜 ん で 行 わ れ た 活 気 に 満 ち た 初 期 の こ ろ の 様 子 。Kamenお よ びRuben両 氏 に よ る14Cの 発 見 と, そ れ に 続 く輝 か し い 多 くの 成 果 が 得 られ た 熱 気 に 満 ち た カ リ ホ ル ニ ア 大 学,ロ ー レ ン ス 研 究 所 の 人 々 の 活 躍 ぶ り,放 射 性 人 間 と い わ れ たKamen博 士 の 奮 斗 ぶ り,壮 絶 なRuben博 士 の 殉 職 の 事 件 な ど,当 時 い っ し ょ に 協 同 研 究 を して お ら れ たAndrewA. Benson教 授 が 直 接 語 ら れ た き わ め て 貴 重 な 資 料 で あ る 。 こ の 講 演 は1976年9月10日 他 団 体 と 日本 ア イ ソ トー プ 協 会 農 業 生 物 部 会 の 共 催 で 行 わ れ た 。 It is a privilege to discuss tracer methodo- radioisotope discovery and a birhtplace for logy with you today. -
A Brief History of Nuclear Astrophysics
A BRIEF HISTORY OF NUCLEAR ASTROPHYSICS PART I THE ENERGY OF THE SUN AND STARS Nikos Prantzos Institut d’Astrophysique de Paris Stellar Origin of Energy the Elements Nuclear Astrophysics Astronomy Nuclear Physics Thermodynamics: the energy of the Sun and the age of the Earth 1847 : Robert Julius von Mayer Sun heated by fall of meteors 1854 : Hermann von Helmholtz Gravitational energy of Kant’s contracting protosolar nebula of gas and dust turns into kinetic energy Timescale ~ EGrav/LSun ~ 30 My 1850s : William Thompson (Lord Kelvin) Sun heated at formation from meteorite fall, now « an incadescent liquid mass » cooling Age 10 – 100 My 1859: Charles Darwin Origin of species : Rate of erosion of the Weald valley is 1 inch/century or 22 miles wild (X 1100 feet high) in 300 My Such large Earth ages also required by geologists, like Charles Lyell A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. Homer Lane ; 1880s :August Ritter : Sun gaseous Compressible As it shrinks, it releases gravitational energy AND it gets hotter Earth Mayer – Kelvin - Helmholtz Helmholtz - Ritter A gaseous, contracting and heating Sun 푀⊙ Mean solar density : ~1.35 g/cc Sun liquid Incompressible = 4 3 푅 3 ⊙ 1870s: J. -
HISTORY Nuclear Medicine Begins with a Boa Constrictor
HISTORY Nuclear Medicine Begins with a Boa Constrictor Marshal! Brucer J Nucl Med 19: 581-598, 1978 In the beginning, a boa constrictor defecated in and then analyzed the insoluble precipitate. Just as London and the subsequent development of nuclear he suspected, it was almost pure (90.16%) uric medicine was inevitable. It took a little time, but the acid. As a thorough scientist he also determined the 139-yr chain of cause and effect that followed was "proportional number" of 37.5 for urea. ("Propor inexorable (7). tional" or "equivalent" weight was the current termi One June week in 1815 an exotic animal exhibi nology for what we now call "atomic weight.") This tion was held on the Strand in London. A young 37.5 would be used by Friedrich Woehler in his "animal chemist" named William Prout (we would famous 1828 paper on the synthesis of urea. Thus now call him a clinical pathologist) attended this Prout, already the father of clinical pathology, be scientific event of the year. While he was viewing a came the grandfather of organic chemistry. boa constrictor recently captured in South America, [Prout was also the first man to use iodine (2 yr the animal defecated and Prout was amazed by what after its discovery in 1814) in the treatment of thy he saw. The physiological incident was common roid goiter. He considered his greatest success the place, but he was the only person alive who could discovery of muriatic acid, inorganic HC1, in human recognize the material. Just a year earlier he had gastric juice. -
Read This Issue
Look to the rock from which you were hewn Vol. 28, No. 1, Winter 2004 chicago jewish historical society chicago jewish history IN THIS ISSUE Martin D. Kamen— Science & Politics in the Nuclear Age From the Archives: Synagogue Project Dr. Louis D. Boshes —Memorial Essay & Oral History Excerpts “The Man with the Golden Fingers” Report: Speaker Ruth M. Rothstein at CJHS Meeting Harold Fox measures Rabbi Morris Gutstein of Congregation Shaare Tikvah for a kosher suit. Courtesy of Harold Fox. African-American (Nate Duncan), and one Save the Date—Sunday, March 21 Mexican (Hilda Portillo)—who reminisce Author Carolyn Eastwood to Present about interactions in the old neighborhood and tell of their struggles to save it and the “Maxwell Street Kaleidoscope” Maxwell Street Market that was at its core. at Society Open Meeting Near West Side Stories is the winner of a Book Achievement Award from the Midwest Dr. Carolyn Eastwood will present “Maxwell Street Independent Publishers’ Association. Kaleidoscope,” at the Society’s next open meeting, Sunday, There will be a book-signing at the March 21 in the ninth floor classroom of Spertus Institute, 618 conclusion of the program. South Michigan Avenue. A social with refreshments will begin at Carolyn Eastwood is an adjunct professor 1:00 p.m. The program will begin at 2:00 p.m. Invite your of Anthropology at the College of DuPage friends—admission is free and open to the public. and at Roosevelt University. She is a member The slide lecture is based on Dr. Eastwood’s book, Near West of the CJHS Board of Directors and serves as Side Stories: Struggles for Community in Chicago’s Maxwell Street recording secretary. -
Europe's Biggest General Science Conference Concludes Successfully
SCIENCEScience PagesPAGES Special Report - ESOF 2016 Europe’s biggest generalSpecial Report science conference concludes successfully ESOF 2016, Europe's biggest general science conference concludes successfully in Manchester,in Manchester,UK UK Theme: Science as Revolution Theme: Science as Revolution - Veena Patwardhan rom 23rd to 27th July, 2016, FManchester flaunted its City of Science status as the host city of the seventh edition of EuroScience Open Forum (ESOF 2016). A bi- ennial event held in a different European city every two years, this time it was Manchester's turn to host this globally reputed science conference. Around 4500 delegates – scien- tists, innovators, academics, young researchers, journalists, policy makers, industry representatives and others – converged on the world's first industrial city to dis- cover and have discussions about the latest advancements in scien- rd th Manchester Central, venue of ESOF 2016 tific and technological researchFrom 23 to 27 July, 2016, Manchester flaunted its City of Science status as the host city of the across Europe and beyond. The seventhmain theme edition this of EuroScienceyear Laureates Open Forumand distinguished (ESOF 2016). Ascientists biennial inevent the held packed in a different was 'Science as Revolution', indicatingEuropean that city the every focus two of years,Exchange this time Hall it wasof Manchester Manchester's Central, turn to hostthe venuethis globally of the reputed the conference would be on how sciencescience andconference. technology conference. could transform life on the planet, revolutionise econo- The proceedings began with a string quartet render- mies, and help in overcoming challenges faced by global ing a piece of specially composed music. -
The Nobel Laureate George De Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine Niese S* Am Silberblick 9, 01723 Wilsdruff, Germany
Open Access SAJ Biotechnology LETTER ISSN: 2375-6713 The Nobel Laureate George de Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine Niese S* Am Silberblick 9, 01723 Wilsdruff, Germany *Corresponding author: Niese S, Am Silberblick 9, 01723 Wilsdruff, Germany, Tel: +49 35209 22849, E-mail: [email protected] Citation: Niese S, The Nobel Laureate George de Hevesy (1885-1966) - Universal Genius and Father of Nuclear Medicine. SAJ Biotechnol 5: 102 Article history: Received: 20 March 2018, Accepted: 29 March 2018, Published: 03 April 2018 Abstract The scientific work of the universal genius the Nobel Laureate George de Hevesy who has discovered and developed news in physics, chemistry, geology, biology and medicine is described. Special attention is given to his work in life science which he had done in the second half of his scientific career and was the base of the development of nuclear medicine. Keywords: George de Hevesy; Radionuclides; Nuclear Medicine Introduction George de Hevesy has founded Radioanalytical Chemistry and Nuclear Medicine, discovered the element hafnium and first separated stable isotopes. He was an inventor in many disciplines and his interest was not only focused on the development and refinement of methods, but also on the structure of matter and its changes: atoms, molecules, cells, organs, plants, animals, men and cosmic objects. He was working under complicated political situation in Europe in the 20th century. During his stay in Germany, Austria, Hungary, Switzerland, Denmark, and Sweden he wrote a lot papers in German. In 1962 he edited a large part of his articles in a collection where German papers are translated in English [1]. -
Chem 103, Section F0F Unit I
Lecture 4 - Observations that Led to the Chem 103, Section F0F Nuclear Model of the Atom Unit I - An Overview of Chemistry Dalton’s theory proposed that atoms were indivisible particles. Lecture 4 • By the late 19th century, this aspect of Dalton’s theory was being challenged. • Work with electricity lead to the discovery of the electron, • Some observations that led to the nuclear model as a particle that carried a negative charge. for the structure of the atom • The modern view of the atomic structure and the elements • Arranging the elements into a (periodic) table 2 Lecture 4 - Observations that Led to the Lecture 4 - Observations that Led to the Nuclear Model of the Atom Nuclear Model of the Atom The cathode ray In 1897, J.J. Thomson (1856-1940) studies how cathode rays • Cathode rays were shown to be electrons are affected by electric and magnetic fields • This allowed him to determine the mass/charge ration of an electron Cathode rays are released by metals at the cathode 3 4 Lecture 4 - Observations that Led to the Lecture 4 - Observations that Led to the Nuclear Model of the Atom Nuclear Model of the Atom In 1897, J.J. Thomson (1856-1940) studies how cathode rays In 1897, J.J. Thomson (1856-1940) studies how cathode rays are affected by electric and magnetic fields are affected by electric and magnetic fields • Thomson estimated that the mass of an electron was less • Thomson received the 1906 Nobel Prize in Physics for his that 1/1000 the mass of the lightest atom, hydrogen!! work. -
Appendix E Nobel Prizes in Nuclear Science
Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence -
Facts and Figures 2013
Facts and Figures 201 3 Contents The University 2 World ranking 4 Academic pedigree 6 Areas of impact 8 Research power 10 Spin-outs 12 Income 14 Students 16 Graduate careers 18 Alumni 20 Faculties and Schools 22 Staff 24 Estates investment 26 Visitor attractions 28 Widening participation 30 At a glance 32 1 The University of Manchester Our Strategic Vision 2020 states our mission: “By 2020, The University of Manchester will be one of the top 25 research universities in the world, where all students enjoy a rewarding educational and wider experience; known worldwide as a place where the highest academic values and educational innovation are cherished; where research prospers and makes a real difference; and where the fruits of scholarship resonate throughout society.” Our core goals 1 World-class research 2 Outstanding learning and student experience 3 Social responsibility 2 3 World ranking The quality of our teaching and the impact of our research are the cornerstones of our success. 5 The Shanghai Jiao Tong University UK Academic Ranking of World ranking Universities assesses the best teaching and research universities, and in 2012 we were ranked 40th in the world. 7 World European UK European Year Ranking Ranking Ranking ranking 2012 40 7 5 2010 44 9 5 2005 53 12 6 2004* 78* 24* 9* 40 Source: 2012 Shanghai Jiao Tong University World Academic Ranking of World Universities ranking *2004 ranking refers to the Victoria University of Manchester prior to the merger with UMIST. 4 5 Academic pedigree Nobel laureates 1900 JJ Thomson , Physics (1906) We attract the highest calibre researchers and Ernest Rutherford , Chemistry (1908) teachers, boasting 25 Nobel Prize winners among 1910 William Lawrence Bragg , Physics (1915) current and former staff and students.