Bioinorganic Chemistry Content
Total Page:16
File Type:pdf, Size:1020Kb
Bioinorganic Chemistry Content 1. What is bioinorganic chemistry? 2. Evolution of elements 3. Elements and molecules of life 4. Phylogeny 5. Metals in biochemistry 6. Ligands in biochemistry 7. Principals of coordination chemistry 8. Properties of bio molecules 9. Biochemistry of main group elements 10. Biochemistry of transition metals 11. Biochemistry of lanthanides and actinides 12. Modell complexes 13. Analytical methods in bioinorganic 14. Applications areas of bioinorganic chemistry "Simplicity is the ultimate sophistication" Leonardo Da Vinci Bioinorganic Chemistry Slide 1 Prof. Dr. Thomas Jüstel Literature • C. Elschenbroich, A. Salzer, Organometallchemie, 2. Auflage, Teubner, 1988 • S.J. Lippard, J.N. Berg, Bioinorganic Chemistry, Spektrum Akademischer Verlag, 1995 • J.E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie – Prinzipien von Struktur und Reaktivität, 3. Auflage, Walter de Gruyter, 2003 • W. Kaim, B. Schwederski: Bioinorganic Chemistry, 4. Auflage, Vieweg-Teubner, 2005 • H. Rauchfuß, Chemische Evolution und der Ursprung des Lebens, Springer, 2005 • A.F. Hollemann, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, de Gruyter, 2007 • I. Bertini, H.B. Gray, E.I. Stiefel, J.S. Valentine, Biological Chemistry, University Science Books, 2007 • N. Metzler-Nolte, U. Schatzschneier, Bioinorganic Chemistry: A Practical Course, Walter de Gruyter, 2009 • W. Ternes, Biochemie der Elemente, Springer, 2013 • D. Rabinovich, Bioinorganic Chemistry, Walter de Gruyter, 2020 Bioinorganic Chemistry Slide 2 Prof. Dr. Thomas Jüstel 1. What is Bioinorganic Chemistry? A Highly Interdisciplinary Science at the Verge of Biology, Chemistry, Physics, and Medicine Biochemistry Inorganic Chemistry (Micro)- Physics & Biology Spectroscopy Bioinorganic Chemistry Pharmacy & Medicine & Toxicology Physiology Diagnostics Bioinorganic Chemistry Slide 3 Prof. Dr. Thomas Jüstel 2. Evolution of the Elements Most Abundant Elements in the Universe According to Atomic Fraction Are: 1. Hydrogen 88.6% 2. Helium 11.3% All other elements of the periodic table, described as metals by astronomers, contribute to only 0.1% 4He production in stars and Whilst hydrogen, helium, and traces of lithium have during the big bang been formed during the big bang, all other heavier D + D → 3He + n elements up to iron had to be generated by fission D + D → 3H + p within the stars. Even heavier elements were formed only in supernovae 3H + D → 4He + n or supergiants. 3He + D → 4He + p D + D → 4He + γ Bioinorganic Chemistry Slide 4 Prof. Dr. Thomas Jüstel 2. Evolution of Elements Table of Isotopes of the Light Elements (Stable Isotopes Are Drawn in Blue) Beryllium 9Be is the first element with solely one stabile isotope (pure element): Very toxic… Fluorine 19F is the first biochemical relevant element with solely one stabile isotope… Bioinorganic Chemistry Slide 5 Prof. Dr. Thomas Jüstel 2. Evolution of Elements Formation of Moderately Heavy Elements (Stellar Synthesis) Several fission processes lead to a number of products: 1H → 4He → 12C, 16O → 20Ne → 24Mg, 28Si → 54Fe, 56Ni Formation of phosphorus (rare) 12C + 12C → 24Mg* → 23Na + p 23Na + → 26Mg + p 26Mg + → 30Si 30Si + p → 31P Pre-supernova-burning stages of a star with 25 times the solar mass Burn process T [109 K] Main products Duration of burning stage H 0.02 4He, 14N 7.106 a He 0.2 12C, 16O, 20Ne 5.105 a C 0.8 20Ne, 23Na, 24Mg 6.102 a Ne 1.5 20Ne, 23Na, 24Mg 1 a O 2.0 28Si, 32S, 40Ca 180 days Si 3.5 54Fe, 56Ni, 52Cr 1 day! Bioinorganic Chemistry Slide 6 Prof. Dr. Thomas Jüstel 2. Evolution of Elements Formation of the Heavy Elements S(slow)-process (in red supergiants): • Kinetics: Time of ß-decay must be orders of magnitude higher than the period till the next capture of a neutron • Starting points are seed cores such as 56Fe • They capture neutrons → 59Fe and decompose via a ß-decay to 59Co • This process is repeating itself → the process moves along the stability valley of the table of isotopes Bioinorganic Chemistry Slide 7 Prof. Dr. Thomas Jüstel 2. Evolution of Elements Formation of the Heavy Elements R(rapid)-process (in supernovae, SN): • Requires extremely high flux of neutrons to compensate for the ß- decay • The core is enriched with neutrons (20 - 30 neutrons) until it reaches the “neutron drip line“. By spontaneous emission of neutrons the core remains in that waiting state until it decomposes via the ß-decay • Such neutron density (1024 cm-3) is reached by photo disintegration within the core of SN Bioinorganic Chemistry Slide 8 Prof. Dr. Thomas Jüstel 2. Evolution of Elements 1 Groups 18 1 2 1 HZn 2 13 14 15 16 17 ZnHe 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 2 11 12 13 14 15 16 17 18 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar 3 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 4 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 5 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs B La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 6 87 88a 89 104 105 106 107 108 109 110 111 112 Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn 7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 6 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 7 Synthesis within 15 min after the big bang stellar synthesis Stellar formation via the s(slow)-process (neutron capture and ß-decay) Formation via the (rapid)-process during supernovae explosions of the type II Bioinorganic Chemistry Slide 9 Prof. Dr. Thomas Jüstel 2. Evolution of Elements Distribution within the Interstellar Medium 1. Supernovae explosions (e.g.: Supernova Type Ia, white dwarfs, SN1572, Tycho Brahe) 2. T-Tauri stars → strong stellar winds X-ray images of SN1572 by space telescope on board of satellite “Chandra“ Bioinorganic Chemistry Slide 10 Prof. Dr. Thomas Jüstel 2. Evolution of Elements Elemental Composition of the Sun and of Carbonaceous Chondrites (C1) Typical for Stars in the Milky Way Normalised by hydrogen by N(H) = 12.0 Bioinorganic Chemistry Slide 11 Prof. Dr. Thomas Jüstel 2. Evolution of Elements Elemental Composition of the Sun The “bio” elements F, P, Cl and K are relatively rare! Bioinorganic Chemistry Slide 12 Prof. Dr. Thomas Jüstel 3. Elements and Molecules of Life Elemental Composition of the Solar Systems Ca. 4.7 billion years ago: 81 stable elements existing in the protoplanetary (solar) nebula. That means all elements till Bi, but Tc and Pm, since they only possess short-lived isotopes About 26 elements in living organisms: C H O N S P Carbohydrates X X X 1. Necessary in quantitative amounts: 11 elements Lipides X X X X X C, H, O, N, S, P, Na, Mg, Cl, K, Ca Proteins X X X X X 2. In smaller amounts needed: 8 elements Nucleotides X X X X X Mn, Fe, Co, Ni, Cu, Zn, I, Mo Porphyrines X X X X 3. Elements, occurring only in some species: 8 elements B, F, Si, V, Cr, Se, Sn, W Bioinorganic Chemistry Slide 13 Prof. Dr. Thomas Jüstel 3. Elements and Molecules of Life Most Abundant Elements of Earth’s Crust (Atmo-, Bio-, Hydro-, Cryo- and Lithosphere) According to Weight Fractions: 1. Oxygen 48.9% 2. Silicon 26.3% 3. Aluminium 7.7% 4. Iron 4.7% 5. Calcium 3.4% 6. Sodium 2.6% 7. Potassium 2.4% 8. Magnesium 1.9% 97.9% All other elements of the periodic table add up to only 2.1%: H: 1400 ppm S 350 ppm C 200 ppm Cu 60 ppm Co 25 ppm Bioinorganic Chemistry Slide 14 Prof. Dr. Thomas Jüstel 3. Elements and Molecules of Life Most Abundant Elements in the Human Body According to Weight Fraction 1. Oxygen 65.4% 2. Carbon 18.1% 3. Hydrogen 10.1% 4. Nitrogen 3.0% 5. Calcium 1.5% Trace Elements Daily demand of the human body 6. Phosphorus 1.0% Iron 10 - 20 mg 7. Sulphur 0.25% Zinc 7 - 10 mg 99.35% Manganese 2 - 5 mg Copper 1 – 1.5 mg All other elements of the periodic table contribute Molybdenum 0.05 – 0.1 mg to 0.65% of the mass of an human body! Vanadin 0.01 - 0.03 mg Cobalt 0.003 mg Bioinorganic Chemistry Slide 15 Prof. Dr. Thomas Jüstel 3. Elements and Molecules of Life 1 Groups 18 1 2 1 HZn 2 13 14 15 16 17 ZnHe 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 2 11 12 13 14 15 16 17 18 Na Mg 3 4 5 6 7 8 9 10 11 12 Al Si P S Cl Ar 3 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K C Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 4 37 38a 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 5 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl P Bi Po At Rn 6 87 88 89 104 105 106 107 108 109 110 111 112 b Fr Ra Ac Rf Db Sg Bh Hs Mt Ds Rg Cn 7 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 6 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 7 Needed in higher quantities Trace elements Toxic Pharmacological effects Radioactive elements Diagnostic applications Bioinorganic Chemistry Slide 16 Prof.