Alexander Ruf Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Alexander Ruf Dissertation TECHNISCHE UNIVERSITÄT MÜNCHEN Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Dissertation TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt Lehrstuhl für Analytische Lebensmittelchemie Previously unknown organomagnesium compounds in astrochemical context Alexander Ruf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Erwin Grill Prüfer der Dissertation: 1. apl. Prof. Dr. Philippe Schmitt-Kopplin 2. Prof. Dr. Michael Rychlik 3. Prof. Eric Quirico, PhD (Université Grenoble Alpes) Die Dissertation wurde am 06.12.2017 bei der Technischen Universität München ein- gereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 18.01.2018 angenommen. Do we feel less open-minded, the more open-minded we are? A tribute to sensitivity and resolution... Acknowledgments This work has been prepared at the Helmholtz Zentrum München in the research unit Analytical BioGeoChemistry of apl. Prof. Dr. Philippe Schmitt-Kopplin, in collaboration with the Chair of Analytical Food Chemistry at the Technical Uni- versity of Munich. In the course of these years, I have relied on the courtesy and support of many to which I am grateful. The success of this PhD thesis would not have been possible without help and support of many wonderful people. First of all, I would like to thank the whole research group Analytical BioGeo- Chemistry for a very friendly, informal, and emancipated working atmosphere that formed day-by-day an enjoyable period of residence - it has felt like freedom! Small issues like having stimulating lunch discussions or going out into a bar, friendly peo- ple could be found herein to setting up a balance to scientific work. I am thankful for enabling travels to conferences and meetings. I am fullfilled, this level of ex- panding mindsets is priceless and crucial, both on a scientific and a personal level. However, a couple of people, deserve a mentioning by name to express them my deep gratitude. Philippe - as my PhD supervisor with always open doors to my issues. To me, it was an ideal degree of balancing inspiration, guidance, support and "letting me do my things". I am very grateful for the matter of trust into my work, e.g. at rep- resentations on conferences or at Munich SFB OLIM project meetings. In addition, thanks for "embedding" me into a huge scientific network, on which bases for many ideas on future projects have been created (e.g. Paola Caselli from observational and modling astrochemistry in space, Dieter Braun from orgin(s) of life research or Dirk Schulze-Makuch and Nancy W. Hinman from the field of astrobiology). Last but not least, Post Doc positions were thus enabled. One example, I want to high- light, is the successful story of the PNAS publication. Publishing in PNAS as a PhD student is hard to believe and simple amazing. This work was a product of multidiscliplinary, collaborative science, to which you introduced me so well! On a face-to-face level, thanks also for having instantaneously a sympathetic ear at all times for all kinds of problems, including private issues. I enormously acknowledge this incredible degree of flexibility. I am aware that this is not always an easy job to get into short discussions with me. Nevertheless, to me, these feeling of comfortabil- ity made me being creative and let science to be pushed forward. Interactions have felt barrierless, more like a friendship than a strict professor-student relationship. This kind of freedom is the spore of scientific success! Thanks, Philippe, for this hardly describable atmosphere. I am looking forward to the future ! Franco - daily work atmosphere was enhanced in quality due to our interactions. Thanks for having countless discussions and creative input on mass spectrometric data analysis, graph-theoretical problems, quantum chemistry, philosophy, politics, girlfriends, either in the office or at Isar. Those were always barrierless, open- minded discussions - discussions "über den Tellerrand hinaus". It has always felt to be self-explanatory to help each other - a good feeling! Creative ideas regarding visualization, graphs, etc. helped me a lot during various kinds of studies. Addition- ally, while writing this thesis at the moment, I am highly looking forward on your secret quotation, you will present during my PhD defense party. Addtional thanks for proof-reading of this thesis. Basem - helpful discussions, creating new ideas regarding theoretical and exper- imental background helped a lot during this doctoral time period. Your experience and gut feeling regarding quantum chemical computations is priceless! Addition- ally, I am highly grateful for your personal availability whenever I had problems or questions. Jenny, Astrid - thanks for all the "krims krams", which HAS to be done. What- ever, if bureaucratic issues or personally questions bothered me, you were always instantaneously willing to help. Anja - thanks a lot for every kind of help regarding administrative issues. In particular, reimbursement issues for travels and conferences went really smoothly thanks to your active and enthusiastic help. Eventhough, also these things HAVE to be checked rather than someone WANTS to do them, you created a convenient atmosphere including nice little words, also when working off these neccessary points from our lists. Norbert - thanks for "hardcore", fundamental discussions on basic chemistry issues regarding coordination compounds, especially during the period of detection and verification of dihydroxymagnesium carboxylates. Suggestions from NMR side helped to dig deeper in mechanistic understanding. Critical input always helps to optimize solid arguments and move further to feel confident of fundamentally new scientific knowledge! Additional thanks for numerous discussions on astrophysical, astrochemical and astrobiological topics, including their philosophical consequences. Not to forget: an amazing week in Paris together with Juliana in our shared flat - I highly enjoyed it! Addtional thanks for proof-reading of this thesis. Marianna - thanks for priceless help on multivariate data analytical problems. Dealing with our daily-life multi-dimensional data complexity, it would have been not possible to extract meaningful information without dealing with statistical data analysis. Daniel - thanks for always having a "helping hand", especially with R program- ming issues. Ryan - thanks for introducing me to "the grammar police". Nancy - thanks for open discussions on astrobiological, geochemical issues. Your experienced insights from NASA astrobiology background helped a lot in setting up hypothesis. Benedicte - thanks for constructive and efficient collaboration on astrobiological and geobiological problems. By discussing via email instantaneously or via lab exchanges, fruitful hypothesis were born. I am looking forward on their realizations in near future. Rainer (Augart) - herein, I don’t want to forget to mention people, who sup- ported me during "science kindergarten". Rainer, you were the initial motivator during my apprenticeship as a chemical lab assistant, forcing me to go deeper into theoretical chemical science. Sadly, I don’t have the opportunity anymore to express my deep gratitude personally to you, but I want to use this medium as an alter- native. Without setting the basis, paths cannot be followed! This should never be forgotten. Christian (Neusüß), Dirk Flottmann - in addition to previous words, I want to thank both of you for support during my BSc studies. Nonrestricted, open scien- tific discussions and stimulations to move forward into theoretical chemical science pushed me actually forward. An important issue, I don’t want to forget here, is the initiated contact by you, Christian, with Philippe in Munich. This connection set my scientific basis! Eric (Quirico), Michael Rychlik - thanks for flexible support and spontaneity while finishing this PhD thesis. Lee - highly deep gratitude for long ongoing friendship, which cannot be ex- pressed by any language. Our close interactions since over 20 years shaped my character as a person. I think, shared passion for various kinds of science (maths, physics, astronomy, chemistry, philosophy) or music issues (as the toco-jungs period) fixed us together and gave me inspriation in several areas all over the years. At a certain point, friendships are so deeply well-grounded that you don’t question them anymore. THANKS, beyond words.. Mama, Papa, Thomas - thanks for EVERYTHING ! Unconditional support in all kinds of situations or daily issues gave me freedom to have life as easy as possible. But not everything’s easy in daily life. Thank you also for supporting me when having had hard times in my life. In general, I feel grateful because of continuous interest in things I am doing. Thanks for listening for hours, when I am talking about science or other things, I am curious about. Even if scientific background diverges, you never quit in listening and show your interest in my issues. That’s a wonderful feeling! For this, I want to quote Johann Wolfgang von Goethe: "Alles, was den einen Menschen interessiert, wird auch in dem andern einen Anklang finden". Without your support, I would not be at the level where I am now ! Marie
Recommended publications
  • 1 Introduction to Early Main Group Organometallic Chemistry and Catalysis
    1 1 Introduction to Early Main Group Organometallic Chemistry and Catalysis Sjoerd Harder University Erlangen-Nürnberg, Inorganic and Organometallic Chemistry, Egerlandstrasse 1, 91058 Erlangen, Germany 1.1 Introduction Although organometallic complexes of the early main groups are well known for their very high reactivity and challenging isolation, they are among the first stud- ied during the pioneering beginnings of the field. Their high nucleophilicity and Brønsted basicity have made them to what they are today: strong polar reagents that are indispensible in modern organic synthesis. It is exactly this high reactivity that has made them potent catalysts for organic transformations that are gener- ally catalyzed by transition metal complexes. Despite their lack of partially filled d-orbitals and their inability to switch reversibly between oxidation states, the scope of their application in catalysis is astounding. As the early main group metal catalysis only started to become popular since the beginning of this century, it is still a young field with ample opportunities for further development. This intro- ductory chapter is specifically written for new graduate students in the field. It gives a very compact overview of the history of early main group organometallic chemistry, synthetic methods, bonding and structures, analytical methods, solu- tion dynamics, and some preliminary low-valent chemistry. This forms the basis for understanding their use in catalysis for which the basic steps are described in the second part of this chapter. For further in-depth information, the reader is referred to the individual chapters in this book. 1.2 s-Block Organometallics 1.2.1 Short History The organometallic chemistry of the highly electropositive early main group metals could not have started without the isolation of these elements in the metallic state.
    [Show full text]
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • Project Leader Lissa Mccracken Michael Simpson, PE Acting Director Sr
    Project Leader Lissa McCracken Michael Simpson, PE Acting Director Sr. Environmental Engineer Kentucky Pollution Prevention Center City of Los Angeles University of Louisville Department of Public Works Louisville, KY Bureau of Sanitation Industrial Waste Management Division Cam Metcalf (former Director of Kentucky Los Angeles, CA Pollution Prevention Center) National Pollution Prevention Round 2001 Lancashire Ave #208 Table Board Member Louisville, KY Authors * Editors Michelle Butler, PhD* Michelle Butler, PhD* Sr. Pollution Prevention Engineer Sr. Pollution Prevention Engineer NY State Pollution Prevention Institute NY State Pollution Prevention Institute Rochester Institute of Technology Rochester Institute of Technology Rochester, New York Rochester, New York Al Innes Jonathan M. Rivin, PhD* Minnesota Pollution Control Agency Waste Management Specialist Green Chemistry Coordinator UW Extension-Solid & Hazardous Waste Pollution Prevention Program Education Center St. Paul, MN University of Wisconsin-Stevens Point Stevens Point, WI Lin Kaatz Chary, PhD, MPH Executive Director Cathy Bouge Great Lakes Green Chemistry Network Washington State Gary, IN Department of Ecology Olympia, WA Olga Krel, MS Plancheck Engineer City of Los Angeles Department of Public Works Bureau of Sanitation Industrial Waste Management Division Los Angeles, CA Ally LaTourelle, Esq. Managing Partner BioEconomy Partners Philadelphia, PA *Editors Green Chemistry Guide This manual provides state agencies and technical assistance providers with tools and resources
    [Show full text]
  • 1 Introduction
    1 Field-control, phase-transitions, and life’s emergence 2 3 4 Gargi Mitra-Delmotte 1* and A.N. Mitra 2* 5 6 7 139 Cite de l’Ocean, Montgaillard, St.Denis 97400, REUNION. 8 e.mail : [email protected] 9 10 2Emeritius Professor, Department of Physics, Delhi University, INDIA; 244 Tagore Park, 11 Delhi 110009, INDIA; 12 e.mail : [email protected] 13 14 15 16 17 18 19 *Correspondence: 20 Gargi Mitra-Delmotte 1 21 e.mail : [email protected] 22 23 A.N. Mitra 2 24 e.mail : [email protected] 25 26 27 28 29 30 31 32 33 34 35 Number of words: ~11748 (without Abstract, references, tables, and figure legends) 36 7 figures (plus two figures in supplementary information files). 37 38 39 40 41 42 43 44 45 46 47 Abstract 48 49 Critical-like characteristics in open living systems at each organizational level (from bio- 50 molecules to ecosystems) indicate that non-equilibrium phase-transitions into absorbing 51 states lead to self-organized states comprising autonomous components. Also Langton’s 52 hypothesis of the spontaneous emergence of computation in the vicinity of a critical 53 phase-transition, points to the importance of conservative redistribution rules, threshold, 54 meta-stability, and so on. But extrapolating these features to the origins of life, brings up 55 a paradox: how could simple organics-- lacking the ‘soft matter’ response properties of 56 today’s complex bio-molecules--have dissipated energy from primordial reactions 57 (eventually reducing CO 2) in a controlled manner for their ‘ordering’? Nevertheless, a 58 causal link of life’s macroscopic irreversible dynamics to the microscopic reversible laws 59 of statistical mechanics is indicated via the ‘functional-takeover’ of a soft magnetic 60 scaffold by organics (c.f.
    [Show full text]
  • Worker and Environmentalist Green Chemistry Awareness Training Curriculum
    Worker and Environmentalist Green Chemistry Awareness Training Curriculum The New England Consortium University of Massachusetts Lowell Grant funded by The National Institute of Environmental Health Sciences Grant No. 3U45ES006172-18S2, titled: Administrative Supplements to Promote Partnerships For Environmental Public Health.” This Page Intentionally Left Blank ACKNOWLEDGMENTS Principal Investigator: Craig Slatin, Sc.D., MPH Professor Department of Community Health and Sustainability Director, Center for Health Promotion and Research School of Health and Environment University of Massachusetts Lowell Project Director: Paul Morse, MA, BS Project Manager of The New England Consortium Center for Health Promotion and Research School of Health and Environment University of Massachusetts Lowell This curriculum was a collaboration by the following individuals and institutions: Curriculum Coordinator: Tolle Graham, Labor and Environment Coordinator, Massachusetts Coalition for Occupational Safety & Health (MassCOSH) Curriculum Development Team: Melissa Coffin, Research Associate, Lowell Center for Sustainable Production Amy Cannon, Executive Director, Beyond Benign Foundation Claudie Grout, ENVISION Exceptional Instruction Tom Estabrook, Project Manager - Special Projects, The New England Consortium, UMass Lowell Craig Slatin, Professor, Principal Investigator, The New England Consortium, UMass Lowell Joel Tickner, Associate Professor, Project Director – Lowell Center for Sustainable Production, UMass Lowell The curriculum development team wants
    [Show full text]
  • Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 8-8-2013 12:00 AM Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling) Rana Sabouni The University of Western Ontario Supervisor Prof. Sohrab Rohani The University of Western Ontario Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Rana Sabouni 2013 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Other Chemical Engineering Commons Recommended Citation Sabouni, Rana, "Carbon Dioxide Adsorption by Metal Organic Frameworks (Synthesis, Testing and Modeling)" (2013). Electronic Thesis and Dissertation Repository. 1472. https://ir.lib.uwo.ca/etd/1472 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. i CARBON DIOXIDE ADSORPTION BY METAL ORGANIC FRAMEWORKS (SYNTHESIS, TESTING AND MODELING) (Thesis format: Integrated Article) by Rana Sabouni Graduate Program in Chemical and Biochemical Engineering A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada Rana Sabouni 2013 ABSTRACT It is essential to capture carbon dioxide from flue gas because it is considered one of the main causes of global warming. Several materials and various methods have been reported for the CO2 capturing including adsorption onto zeolites, porous membranes, and absorption in amine solutions.
    [Show full text]
  • Bayesian Analysis of the Astrobiological Implications of Life's
    Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications.
    [Show full text]
  • Cosmochemistry Cosmic Background RadiaOn
    6/10/13 Cosmochemistry Cosmic background radiaon Dust Anja C. Andersen Niels Bohr Instute University of Copenhagen hp://www.dark-cosmology.dk/~anja Hauser & Dwek 2001 Molecule formation on dust grains Multiwavelenght MW 1 6/10/13 Gas-phase element depleons in the Concept of dust depleon interstellar medium The depleon of an element X in the ISM is defined in terms of (a logarithm of) its reducon factor below the expected abundance relave to that of hydrogen if all of the atoms were in the gas phase, [Xgas/H] = log{N(X)/N(H)} − log(X/H) which is based on the assumpon that solar abundances (X/H)are good reference values that truly reflect the underlying total abundances. In this formula, N(X) is the column density of element X and N(H) represents the column density of hydrogen in both atomic and molecular form, i.e., N(HI) + 2N(H2). The missing atoms of element X are presumed to be locked up in solids within dust grains or large molecules that are difficult to idenfy spectroscopically, with fraconal amounts (again relave to H) given by [Xgas/H] (Xdust/H) = (X/H)(1 − 10 ). Jenkins 2009 Jenkins 2009 2 6/10/13 Jenkins 2009 Jenkins 2009 The Galacc Exncon Curve Extinction curves measure the difference in emitted and observed light. Traditionally measured by comparing two stars of the same spectral type. Galactic Extinction - empirically determined: -1 -1 <A(λ)/A(V)> = a(λ ) + b(λ )/RV (Cardelli et al. 1999) • Bump at 2175 Å (4.6 µm-1) • RV : Ratio of total to selective extinction in the V band • Mean value is RV = 3.1 (blue) • Low value: RV = 1.8 (green) (Udalski 2003) • High value: RV = 5.6-5.8 (red) (Cardelli et al.
    [Show full text]
  • Visualization of Chemical Space Using Principal Component Analysis
    World Applied Sciences Journal 29 (Data Mining and Soft Computing Techniques): 53-59, 2014 ISSN 1818-4952 © IDOSI Publications, 2014 DOI: 10.5829/idosi.wasj.2014.29.dmsct.10 Visualization of Chemical Space Using Principal Component Analysis B. Firdaus Begam and J. Satheesh Kumar Department of Computer Applications, School of Computer Science and Engineering, Bharathiar University, Coimbatore, Tamilnadu, India Abstract: Principal component analysis is one of the most widely used multivariate methods to visualize chemical space in new dimension by the chemist for analysing data. In Multivariate data analysis, the relationship between two variables with more number of characteristics can be considered. PCA provides a compact view of variation in chemical data matrix which helps in creating better Quantitative Structure Activity Relationship (QSAR) model. It highlights the dominating pattern in the matrix through principal component and graphical representation. This paper focuses on mathematical aspects of principal components and role of PCA on Maybridge dataset to identify dominating hidden patterns of drug likeness based on Lipinski RO5. Key words: Principal Component Analysis Load p lot Score plot Biplot INTRODUCTION a new model of selected objects and variables with minimal loss of information. It can also be used for Principal Component Analysis (PCA) is a multivariate prediction model as PCA acts as exploratory tool for data statistical approach to analyze data in lower dimensional analysis by calculating the variance among the variables space. PCA used vector space transformation technique which are uncorrelated [8]. to view datasets from higher-dimensional space to lower Chemical space (drug space) is defined as dimensional space. PCA is an application of linear algebra number of descriptors calculated for each molecule [2] which was first coined by Karl Pearson during 1901 [1].
    [Show full text]
  • Interstellar Dust Within the Life Cycle of the Interstellar Medium K
    EPJ Web of Conferences 18, 03001 (2011) DOI: 10.1051/epjconf/20111803001 C Owned by the authors, published by EDP Sciences, 2011 Interstellar dust within the life cycle of the interstellar medium K. Demyk1,2,a 1Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 2CNRS, IRAP, 9 Av. colonel Roche, BP. 44346, 31028 Toulouse Cedex 4, France Abstract. Cosmic dust is omnipresent in the Universe. Its presence influences the evolution of the astronomical objects which in turn modify its physical and chemical properties. The nature of cosmic dust, its intimate coupling with its environment, constitute a rich field of research based on observations, modelling and experimental work. This review presents the observations of the different components of interstellar dust and discusses their evolution during the life cycle of the interstellar medium. 1. INTRODUCTION Interstellar dust grains are found everywhere in the Universe: in the Solar System, around stars at all evolutionary stages, in interstellar clouds of all kind, in galaxies and in the intergalactic medium. Cosmic dust is intimately mixed with the gas-phase and represents about 1% of the gas (in mass) in our Galaxy. The interstellar extinction and the emission of diffuse interstellar clouds is reproduced by three dust components: a population of large grains, the BGs (Big Grains, ∼10–500 nm) made of silicate and a refractory mantle, a population of carbonaceous nanograins, the VSGs (Very Small Grains, 1–10 nm) and a population of macro-molecules the PAHs (Polycyclic Aromatic Hydrocarbons) [1]. These three components are more or less abundant in the diverse astrophysical environments reflecting the coupling of dust with the environment and its evolution according to the physical and dynamical conditions.
    [Show full text]
  • Exploring Chemical Space
    Frontier of Chemistry Exploring Chemical Space Shuli Mao 04/12/2008 Shuli Mao @ Wipf Group Page 1 of 40 4/15/2008 What is chemical space? Chemical space is the space spanned by all possible (i.e. energetically stable) stoichiometrical combinations of electrons and atomic nuclei and topologies (isomers) in molecules and compounds in general. -----wilkipedia Chemical space is defined as the total descriptor space that encompasses all the small carbon-based molecules that could in principle be created. (Descriptors: molecular mass, liphophilicity and topological features, etc.) -----Dobson, C. M. Chemical space and biology Nature 2004, 432, 824. Shuli Mao @ Wipf Group Page 2 of 40 4/15/2008 Why we need to explore chemical space? The estimated number of small carbon-based compounds is on the order of 1060. However, only a minute fraction of this chemical space has been explored. Given the vastness of chemical space, we need to explore chemical space efficiently to find biologically relevant chemical space (space in which biologically active compounds reside). Dobson, C. M. Chemical space and biology Nature 2004, 432, 824. • To understand biological systems especially in unknown area • To develop potential drugs From 1994 to 2001, only 22 drugs that modulate new targets were approved. So far, less than 500 human proteins have been targeted by current drugs, which is a small portion of human proteins. Lipinski, C; Hopkins, A. Navigating chemical space for biology and medicine Nature 2004, 432, 855. Shuli Mao @ Wipf Group Page 3 of 40 4/15/2008 How to explore chemical space? Three approaches: (A) Target-Oriented Synthesis (B) Focused Synthesis (Medicinal Chemistry/ Combinatorial Chemistry) (C) Diversity-Oriented Synthesis Burke, M.
    [Show full text]
  • Bioinorganic Chemistry Content
    Bioinorganic Chemistry Content 1. What is bioinorganic chemistry? 2. Evolution of elements 3. Elements and molecules of life 4. Phylogeny 5. Metals in biochemistry 6. Ligands in biochemistry 7. Principals of coordination chemistry 8. Properties of bio molecules 9. Biochemistry of main group elements 10. Biochemistry of transition metals 11. Biochemistry of lanthanides and actinides 12. Modell complexes 13. Analytical methods in bioinorganic 14. Applications areas of bioinorganic chemistry "Simplicity is the ultimate sophistication" Leonardo Da Vinci Bioinorganic Chemistry Slide 1 Prof. Dr. Thomas Jüstel Literature • C. Elschenbroich, A. Salzer, Organometallchemie, 2. Auflage, Teubner, 1988 • S.J. Lippard, J.N. Berg, Bioinorganic Chemistry, Spektrum Akademischer Verlag, 1995 • J.E. Huheey, E. Keiter, R. Keiter, Anorganische Chemie – Prinzipien von Struktur und Reaktivität, 3. Auflage, Walter de Gruyter, 2003 • W. Kaim, B. Schwederski: Bioinorganic Chemistry, 4. Auflage, Vieweg-Teubner, 2005 • H. Rauchfuß, Chemische Evolution und der Ursprung des Lebens, Springer, 2005 • A.F. Hollemann, N. Wiberg, Lehrbuch der Anorganischen Chemie, 102. Auflage, de Gruyter, 2007 • I. Bertini, H.B. Gray, E.I. Stiefel, J.S. Valentine, Biological Chemistry, University Science Books, 2007 • N. Metzler-Nolte, U. Schatzschneier, Bioinorganic Chemistry: A Practical Course, Walter de Gruyter, 2009 • W. Ternes, Biochemie der Elemente, Springer, 2013 • D. Rabinovich, Bioinorganic Chemistry, Walter de Gruyter, 2020 Bioinorganic Chemistry Slide 2 Prof. Dr. Thomas Jüstel 1. What is Bioinorganic Chemistry? A Highly Interdisciplinary Science at the Verge of Biology, Chemistry, Physics, and Medicine Biochemistry Inorganic Chemistry (Micro)- Physics & Biology Spectroscopy Bioinorganic Chemistry Pharmacy & Medicine & Toxicology Physiology Diagnostics Bioinorganic Chemistry Slide 3 Prof. Dr. Thomas Jüstel 2. Evolution of the Elements Most Abundant Elements in the Universe According to Atomic Fraction Are: 1.
    [Show full text]