Cosmochemistry Cosmic Background Radia On
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
USGS Open-File Report 2005-1190, Appendix A
USGS Open-File Report 2005-1190 APPENDIX B Detailed listing of personnel changes for the Branch of Astrogeology from 1960 through 1972. In the early 1960’s, the Branch of Astrogeology grew slowly. Growth was rapid during and after 1964 with a maximum of 250 employees being reached in 1970 when design and training for the Apollo missions were at their peaks. [Authors Note: The Branch of Astrogeology in 2006 consisted of approximately 80 employees.] Table 1. Number of Employee with the U.S. Geological Survey, Branch of Astrogeology from 1960 through 1987 [Author’s Note: Although Monthly Reports for Astrogeology were submitted to the USGS and NASA through 1977, new personnel and personnel changes were only documented in these reports through 1970.] Year Number of employees 1960 18 1961 26 1962 40 1963 59 1964 143 1965 154 1966 221 1967 239 1968 244 1969 234 1970 250 1960 The following personnel joined the Astrogeologic Studies Unit at Menlo Park during 1960 (see main text and Appendix A) (various sources): Henry J. Moore II (Geologist, September) Charles H. “Chuck” Marshall (Geologist/Lunar mapper; September) Richard E. Eggleton (Geologist, October) Richard V. Lugn (August) 1961 The following personnel came on duty with the Branch of Astrogeology at Menlo Park, California during 1961 (see main text and Appendix A) (various sources): David J. Roddy (Geologist; January/February) Martin L. Baker (Scientific Photographer; October) Jacquelyn H. Freeberg (Research Librarian and Bibliographer; December) Daniel J. Milton (Geologist; August) Carl H. Roach (Geophysicist; August) 1 Maxine Burgess (Secretary) 1962 The following was taken from the Branch of Astrogeology Monthly Report for April 1962 from Chief, Branch of Astrogeology to V.E. -
Cometary Panspermia a Radical Theory of Life’S Cosmic Origin and Evolution …And Over 450 Articles, ~ 60 in Nature
35 books: Cosmic origins of life 1976-2020 Physical Sciences︱ Chandra Wickramasinghe Cometary panspermia A radical theory of life’s cosmic origin and evolution …And over 450 articles, ~ 60 in Nature he combined efforts of generations supporting panspermia continues to Prof Wickramasinghe argues that the seeds of all life (bacteria and viruses) Panspermia has been around may have arrived on Earth from space, and may indeed still be raining down some 100 years since the term of experts in multiple fields, accumulate (Wickramasinghe et al., 2018, to affect life on Earth today, a concept known as cometary panspermia. ‘primordial soup’, referring to Tincluding evolutionary biology, 2019; Steele et al., 2018). the primitive ocean of organic paleontology and geology, have painted material not-yet-assembled a fairly good, if far-from-complete, picture COMETARY PANSPERMIA – cultural conceptions of life dating back galactic wanderers are normal features have argued that these could not into living organisms, was first of how the first life on Earth progressed A SOLUTION? to the ideas of Aristotle, and that this of the cosmos. Comets are known to have been lofted from the Earth to a coined. The question of how from simple organisms to what we can The word ‘panspermia’ comes from the may be the source of some of the have significant water content as well height of 400km by any known process. life’s molecular building blocks see today. However, there is a crucial ancient Greek roots ‘sperma’ meaning more hostile resistance the idea of as organics, and their cores, kept warm Bacteria have also been found high in spontaneously assembled gap in mainstream understanding - seed, and ‘pan’, meaning all. -
The Chemical Origin of Behavior Is Rooted in Abiogenesis
Life 2012, 2, 313-322; doi:10.3390/life2040313 OPEN ACCESS life ISSN 2075-1729 www.mdpi.com/journal/life Article The Chemical Origin of Behavior is Rooted in Abiogenesis Brian C. Larson, R. Paul Jensen and Niles Lehman * Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207, USA; E-Mails: [email protected] (B.C.L.); [email protected] (R.P.J.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-503-725-8769. Received: 6 August 2012; in revised form: 29 September 2012 / Accepted: 2 November 2012 / Published: 7 November 2012 Abstract: We describe the initial realization of behavior in the biosphere, which we term behavioral chemistry. If molecules are complex enough to attain a stochastic element to their structural conformation in such as a way as to radically affect their function in a biological (evolvable) setting, then they have the capacity to behave. This circumstance is described here as behavioral chemistry, unique in its definition from the colloquial chemical behavior. This transition between chemical behavior and behavioral chemistry need be explicit when discussing the root cause of behavior, which itself lies squarely at the origins of life and is the foundation of choice. RNA polymers of sufficient length meet the criteria for behavioral chemistry and therefore are capable of making a choice. Keywords: behavior; chemistry; free will; RNA; origins of life 1. Introduction Behavior is an integral feature of life. Behavior is manifest when a choice is possible, and a living entity responds to its environment in one of multiple possible ways. -
Interstellar Dust Within the Life Cycle of the Interstellar Medium K
EPJ Web of Conferences 18, 03001 (2011) DOI: 10.1051/epjconf/20111803001 C Owned by the authors, published by EDP Sciences, 2011 Interstellar dust within the life cycle of the interstellar medium K. Demyk1,2,a 1Université de Toulouse, UPS-OMP, IRAP, Toulouse, France 2CNRS, IRAP, 9 Av. colonel Roche, BP. 44346, 31028 Toulouse Cedex 4, France Abstract. Cosmic dust is omnipresent in the Universe. Its presence influences the evolution of the astronomical objects which in turn modify its physical and chemical properties. The nature of cosmic dust, its intimate coupling with its environment, constitute a rich field of research based on observations, modelling and experimental work. This review presents the observations of the different components of interstellar dust and discusses their evolution during the life cycle of the interstellar medium. 1. INTRODUCTION Interstellar dust grains are found everywhere in the Universe: in the Solar System, around stars at all evolutionary stages, in interstellar clouds of all kind, in galaxies and in the intergalactic medium. Cosmic dust is intimately mixed with the gas-phase and represents about 1% of the gas (in mass) in our Galaxy. The interstellar extinction and the emission of diffuse interstellar clouds is reproduced by three dust components: a population of large grains, the BGs (Big Grains, ∼10–500 nm) made of silicate and a refractory mantle, a population of carbonaceous nanograins, the VSGs (Very Small Grains, 1–10 nm) and a population of macro-molecules the PAHs (Polycyclic Aromatic Hydrocarbons) [1]. These three components are more or less abundant in the diverse astrophysical environments reflecting the coupling of dust with the environment and its evolution according to the physical and dynamical conditions. -
Introduction to Chemistry
Introduction to Chemistry Author: Tracy Poulsen Digital Proofer Supported by CK-12 Foundation CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook Introduction to Chem... materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based Authored by Tracy Poulsen collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and 8.5" x 11.0" (21.59 x 27.94 cm) distribution of high-quality educational content that will serve both as core text as well as provide Black & White on White paper an adaptive environment for learning. 250 pages ISBN-13: 9781478298601 Copyright © 2010, CK-12 Foundation, www.ck12.org ISBN-10: 147829860X Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made Please carefully review your Digital Proof download for formatting, available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share grammar, and design issues that may need to be corrected. Alike 3.0 Unported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc- sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), We recommend that you review your book three times, with each time focusing on a different aspect. which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Check the format, including headers, footers, page 1 numbers, spacing, table of contents, and index. 2 Review any images or graphics and captions if applicable. -
Cosmochemical Evidence for Astrophysical Processes During the Formation of Our Solar System
Cosmochemical evidence for astrophysical processes during the formation of our solar system Glenn J. MacPhersona,1 and Alan Bossb aDepartment of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560; and bDepartment of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved October 25, 2011 (received for review June 22, 2011) Through the laboratory study of ancient solar system materials such as meteorites and comet dust, we can recognize evidence for the same star-formation processes in our own solar system as those that we can observe now through telescopes in nearby star-forming regions. High temperature grains formed in the innermost region of the solar system ended up much farther out in the solar system, not only the asteroid belt but even in the comet accretion region, suggesting a huge and efficient process of mass transport. Bi-polar outflows, turbulent diffusion, and marginal gravitational instability are the likely mechanisms for this transport. The presence of short-lived radionuclides in the early solar system, especially 60Fe, 26Al, and 41Ca, requires a nearby supernova shortly before our solar system was formed, suggesting that the Sun was formed in a massive star-forming region similar to Orion or Carina. Solar system formation may have been “triggered” by ionizing radiation originating from massive O and B stars at the center of an expanding HII bubble, one of which may have later provided the supernova source for the short-lived radionuclides. Alternatively, a supernova shock wave may have simultaneously triggered the collapse and injected the short-lived radionuclides. -
Using Cold Plasma to Investigate the Mechanisms
Using cold plasma to investigate the mechanisms involved in cosmic dust formation: Role of the C/O ratio and metals Remi Berard, Kremena Makasheva, Hassan Sabbah, Karine Demyk, Christine Joblin To cite this version: Remi Berard, Kremena Makasheva, Hassan Sabbah, Karine Demyk, Christine Joblin. Using cold plasma to investigate the mechanisms involved in cosmic dust formation: Role of the C/O ratio and metals. Proceedings of the International Astronomical Union, Cambridge University Press (CUP), 2019, 15 (S350), pp.297-300. 10.1017/S1743921319008457. hal-02974762 HAL Id: hal-02974762 https://hal.archives-ouvertes.fr/hal-02974762 Submitted on 22 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Laboratory Astrophysics: from Observations to Interpretation Proceedings IAU Symposium No. 350, 2019 c 2019 International Astronomical Union F. Salama , H.J. Fraser & H. Linnartz, eds. DOI: 00.0000/X000000000000000X Using cold plasma to investigate the mechanisms involved in cosmic dust formation: role of the C/O ratio and metals R´emiB´erard1;2, Kremena Makasheva2, Hassan Sabbah1;3, Karine Demyk1 and Christine Joblin1 1IRAP, Universit´ede Toulouse, CNRS, UPS, CNES 9 Av. du Colonel Roche, 31028 Toulouse Cedex 4, France 2LAPLACE, Universit´ede Toulouse, CNRS, UPS, INPT 118 route de Narbonne, Toulouse cedex 9, France 3LCAR-IRSAMC, Universit´ede Toulouse, UPS, CNRS 118 route de Narbonne, Toulouse cedex 9, France Abstract. -
Connection Between Micrometeorites and Wild 2 Particles: from Antarctic Snow to Cometary Ices
Meteoritics & Planetary Science 44, Nr 10, 1643–1661 (2009) Abstract available online at http://meteoritics.org Connection between micrometeorites and Wild 2 particles: From Antarctic snow to cometary ices E. DOBRIC√1,*, C. ENGRAND1, J. DUPRAT1, M. GOUNELLE2, H. LEROUX3, E. QUIRICO4, and J.-N. ROUZAUD5 1Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, CNRS-Univ. Paris Sud, 91405 Orsay Campus, France 2Laboratoire de Minéralogie et de Cosmochimie, Muséum National d’Histoire Naturelle, 57 rue Cuvier, CP52, 75005 Paris, France 3Laboratoire de Structure et Propriétés de l’Etat Solide, CNRS-Univ. des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq, France 4Laboratoire de Planétologie de Grenoble, Univ. J. Fourier CNRS-INSU 38041 Grenoble Cedex 09, France 5Laboratoire de Géologie, Ecole Normale Supérieure, CNRS, 75231 Paris Cedex 5, France *Corresponding author. E-mail: [email protected] (Received 17 March 2009; revision accepted 21 September 2009) Abstract–We discuss the relationship between large cosmic dust that represents the main source of extraterrestrial matter presently accreted by the Earth and samples from comet 81P/Wild 2 returned by the Stardust mission in January 2006. Prior examinations of the Stardust samples have shown that Wild 2 cometary dust particles contain a large diversity of components, formed at various heliocentric distances. These analyses suggest large-scale radial mixing mechanism(s) in the early solar nebula and the existence of a continuum between primitive asteroidal and cometary matter. The recent collection of CONCORDIA Antarctic micrometeorites recovered from ultra-clean snow close to Dome C provides the most unbiased collection of large cosmic dust available for analyses in the laboratory. -
The Water Molecule
Seawater Chemistry: Key Ideas Water is a polar molecule with the remarkable ability to dissolve more substances than any other natural solvent. Salinity is the measure of dissolved inorganic solids in water. The most abundant ions dissolved in seawater are chloride, sodium, sulfate, and magnesium. The ocean is in steady state (approx. equilibrium). Water density is greatly affected by temperature and salinity Light and sound travel differently in water than they do in air. Oxygen and carbon dioxide are the most important dissolved gases. 1 The Water Molecule Water is a polar molecule with a positive and a negative side. 2 1 Water Molecule Asymmetry of a water molecule and distribution of electrons result in a dipole structure with the oxygen end of the molecule negatively charged and the hydrogen end of the molecule positively charged. 3 The Water Molecule Dipole structure of water molecule produces an electrostatic bond (hydrogen bond) between water molecules. Hydrogen bonds form when the positive end of one water molecule bonds to the negative end of another water molecule. 4 2 Figure 4.1 5 The Dissolving Power of Water As solid sodium chloride dissolves, the positive and negative ions are attracted to the positive and negative ends of the polar water molecules. 6 3 Formation of Hydrated Ions Water dissolves salts by surrounding the atoms in the salt crystal and neutralizing the ionic bond holding the atoms together. 7 Important Property of Water: Heat Capacity Amount of heat to raise T of 1 g by 1oC Water has high heat capacity - 1 calorie Rocks and minerals have low HC ~ 0.2 cal. -
Lalboratory STUDIES of INTERPLANETABY DUST
LAlBORATORY STUDIES OF INTERPLANETABY DUST hicDorincll (kntcr for the Sp:tce Sciclnccs 211 d 1)cpartrncnt of I'hjsics \!'ashirigton linivcrsity St. I,ouis, h10 G31:30, CS,Z licport. prcp:lrc'd for: STUDEES OF INTERPLmETARY DUST I. INTXODUCTION Inkrrplar~etarydust particles collected in three different ways are now available for laboratory study. lnipact collectors flown on aircraft samplirig the stratosphere have provided Lhe most important source of (more or less) unaltered interplanetary dust material [I]. Larger cosmic particlles have been recovered from sediments, both from the sea (21, and, most recently, from temipora~ryglacial lakes in Greenland [3]. Finally, debris samples from impacting interplanetary particles have also been collected in experimenls fiown in earth orbit and rc.tnrned to earlh [4, 5, and 6b].* This brief review treats only the analysis of dust particles co1:ccted in the stratosptlerc. These particles are the best available samples of interplanetary dust and have been studied using a variety of analytical techniques. 'The particles are systematically collected and curated by a group at the Johnson Space Cenler, Houston. Catalogs of the collections have been pubIishetl and individual particles are made available to qualified irivestigators on request [a]. Tllr strat,ospheric dust particles have been called by a variety of names (including the deserved description as "Brownlee particles") and a word about nomenclature is in order. In what follows, stratospheric particles whose major element compositions are similar to those of ctaondritic meteorites, are referred to as "interplanetary dust particles or IDPs." Some particles irn this cllcmical class are demonstrably extraterrestrial. To facilitate discussion, certain IDPs have also been given individual names, e.g. -
Astromaterials - PSRD | a Cosmosparks Report
Astromaterials - PSRD | A CosmoSparks report Quick Views of Big Advances Looking After and Preserving NASA's Extraterrestrial Samples Materials from space have a superb home on Earth at the Johnson Space Center (JSC) in Houston, Texas. The curators and staff in the Astromaterials Acquisition and Curation Office at JSC have the enormous and enviable responsibility for protecting, preserving, and distributing extraterrestrial samples. You might be surprised at the variety of materials and where they've come from: Comet particles; cosmic dust; meteorites from asteroids, the Moon, and Mars; rocks and soils from the Moon; and samples of the solar wind. To find out more, take a look at the wonderful, comprehensive review by Carlton Allen (Astromaterials Curator), Judith Allton (Genesis Sample Curator), Gary Lofgren (Lunar Sample Curator), Kevin Righter (Antarctic Meteorite Curator), and Michael Zolensky (Cosmic Dust and Stardust Sample Curator) published recently in Chemie der Erde, the international journal for geochemistry-related topics. The curators cover, in detail, the six collections of extraterrestrial samples in their care: Lunar rocks and soils collected by the Apollo astronauts Meteorites collected on NSF-funded expeditions to Antarctica; these are samples from asteroids, the Moon, and Mars Cosmic dust collected by high altitude NASA aircraft Solar wind atoms collected by the Genesis spacecraft Comet particles collected by the Stardust spacecraft Interstellar dust particles collected by the Stardust spacecraft The report provides details of how the samples are collected, cataloged, and stored, as well as how the laboratories and clean rooms operate. Samples are allocated under strict guidelines to qualified researchers and investigators worldwide. -
An Evolving Astrobiology Glossary
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines.