The Dual Fluid Reactor

Total Page:16

File Type:pdf, Size:1020Kb

The Dual Fluid Reactor atw Vol. 65 (2020) | Issue 3 ı March The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept 145 with High Efficiency and Total Burnup Jan-Christian Lewitz, Armin Huke, Götz Ruprecht, Daniel Weißbach, Stephan Gottlieb, Ahmed Hussein and Konrad Czerski 1 Introduction In the early decades of nuclear fission power technology development, most of the possible implementations were at least considered in studies and many were tested in experimental facilities as have been most of the types of the Generation IV canon. Uranium enrichment and fuel reprocessing with the wet chemical PUREX process for today’s reactors originated from the Manhattan project in order to gain weapons-grade fissile material. The use of fuel elements in light water with respect to the EROI-measure and capability and best neutronic proper- reactors originated from the propul- to passive safety standards according ties. sion systems of naval vessels like to the KISS (keep-it-simple-and-safe) Pure molten Lead has low neutron submarines and carriers. principle and with attention to capture cross-sections, a low modera- A sound measure for the overall current- state technology in mechani- tion capability, and a very suitable efficiency and economy of a power cal, plant and chemical engineering liquid phase temperature range. For plant is the EROI (Energy Return on for a speedy implementation. the fuel, it is possible to employ RESEARCH AND INNOVATION Investment). The known problem of There was a gap in the reactor undiluted fissionable material as solid fuel elements in power reactors concepts of the past with a high opposed to a MSFR that works with is fission product accumulation during development potential for the present less than 20 % actinide fluoride, see operation requiring heavy safety and the future. A DFR power plant Sec. 4 for details. Consequently, a DFR measures to avoid a core meltdown. could exploit the potential of nuclear has increased power density, small These measures reduce the EROI for fission power with an EROI two orders core volume and very hard neutron today’s Pressurized Water Reactors of magnitude higher than fossil fired spectrum that further improves the (PWRs) to values of about 75 (Sec. 9) power plants. neutron economy. Additional benefits which is only a factor of 2 higher than of liquid metal coolant comprise the for fossil-fired power plants. This is 2 Basic principle application of magneto hydrodynamic in fact surprisingly low compared The Dual Fluid Reactor (DFR) is a techniques both for pumping and, with the possible maximum EROI for heterogeneous fast reactor with a possibly in the future, direct elec tricity nuclear energy of 10,000 (Sec. 9). liquid fuel and a liquid coolant generation because of the high con- Unfortunately, most Generation IV whereby both flow through the centration of charge carriers. reactor concepts except the Molten reactor core. Separation of cooling Furthermore, the reactor core and Salt Fast Reactor (MSFR, see below) and fuel supply function is achieved primary coolant loop can operate at are again based on solid fuel tech- by an interconnected array of fuel normal pressure which allows for nology. For the probably most inten- conduits immersed in the coolant simple and cost regressive size- scaling. sively developed breeder technology, liquid. Both cycles can now be opti- Figure 1 explains the synergetic the Sodium-Cooled Fast Reactor SFR mized for their respective purpose. effects. The Dual Fluid Principle opens (or the Traveling-wave variant, Terra- This has many advantages to a MSFR, the possibility of a liquid fuel with power’s TP-1), sodium has been cho- where both functions must be satis- high actinide concentration in com- sen as the coolant. It has aggressive fied by one liquid in a trade-off bination with a coolant with high chemical reactivity with air, water and between high-temperature fuel, low- heat transfer capability, which leads structural materials as well as a high temperature cooling, and an accept- to a high-power density. Liquid fuel neutron reaction cross section with able heat capacity. like in a MSR already reduces the the possibility of a temporary positive The coolant liquid should have the consumption of structural materials void coefficient. These properties highest possible heat transportation compared with solid fuel reactors, require a reactor pressure vessel, double- walled piping, and an inter- mediary cooling cycle. In effect, all this sums up to expenses which double the electricity production costs of the SFR relative to a PWR as calculated for the Superphénix class. Hence Generation III and most of Generation IV nuclear power plants are in danger of losing competition against fossil fired power plants, especially in the advent of the shale gas exploitation. | Fig. 1. The Dual Fluid Reactor (DFR) The flow chart shows the advantages of the Dual Fluid principle partially depending on each other. It is essential for the understanding of the synergetic effects. concept presented here is designed Research and Innovation The Dual Fluid Reactor – An Innovative Fast Nuclear-Reactor Concept with High Efficiency and Total Burnup ı J.-C. Lewitz, A. Huke, G. Ruprecht, D. Weißbach, S. Gottlieb, A. Hussein and K. Czerski atw Vol. 65 (2020) | Issue 3 ı March but the power density is limited. In the DFR, both positive properties can be combined which leads to a 146 massive reduction of structural mate- rials. At high operating temperatures (needed when using an undiluted salt, see Sec. 7), corrosion of core structural materials limits the choices of such materials. However, corrosion resistant materials at high tempera- tures do exist, but they are quite expensive. Using such materials in a DFR design has little effect on its economy due to its small size, low material inventory, and the absence of | Fig. 2. any parts that need be to replaced Possible power plant based on the DFR, with the nuclear part including the core, the pyro-processing unit (PPU), disposal and decay heat dump (left hand side) and the conventional part with the heat periodically. exchanger and turbines (right hand side). The compactness allows for a subterranean installation. On the other hand, the use of such expensive corrosion resistant ma terials in a MSR has adverse economic effects due to its high inventory of structural material. Thus, the temperature of a RESEARCH AND INNOVATION MSR is limited and the MSR research was focused in the past on finding suit- able eutectic salt mixtures, also compli- cating the production and reprocessing techniques. For the DFR, very simple state-of-art techniques can be applied, see Sec. 4.2. Another comparison can be made with the Generation IV concept of the Lead-cooled Fast Reactor, LFR. Again, due to economic reasons, the wall material of the exchangeable fuel rods must be cheap, which focused the re- search on finding suitable steel alloys. They yet have a higher lead corrosion susceptibility than the expensive materials intended for the DFR design, | Fig. 3. therefore also limiting the operating DFR fuel and cooling loop. The fuel circulates between the PPU (which is also connected to the short-li- temperature. Due to these material ved fission products storage) and the core whereas the coolant loop connects the fissile zone to the con- ventional part, also cooling the fission product storage. PPU, core and fission product storage are equip- restrictions, both, LFR and MSR, ped with a fuse plug. are not able to achieve operating tem peratures suitable for economic As a result, a new concept not electric grid of industrialized coun- hydrogen production from water. fitting into one of the Generation-IV tries. But also, power-sizes even down These restrictions do not exist for reactor developments has been in- to approx. 35 M GWe are possible, the DFR. vented. It foresees a compact core with depending on markets demands. Due Contrary to a MSFR, DFR’s liquid a very high power density, an operating to its compact size, the nuclear part fuel is not limited to actinide salts, temperature of about 1,000 °C, in- can reside in a sub terranean bunker but it is the current reference design. herits MSFR’s passive safety features, that can withstand high magnitude However, an alternative could be a and has hard neutron spectrum. The earthquakes, direct aircraft impacts solder-like melt of a metal alloy made abundant neutron excess can be used and non-concen trated conventional up of actinides and, if necessary, met- for multiple transmutation purposes, military attacks. The conventional als with low melting points in order to like nuclear waste incineration, and part can utilize supercritical water or 238 232 reduce the solidus temperature of the breeding for U and Th cycles. supercritical CO2 (see Sec. 8.1) and is alloy and gain a pumpable fluid. The All this produces a nuclear power not fortified for economic reasons, but advantage would be an even higher plant with an outstanding economic fortification to any desired degree can power density due to better heat competitiveness. easily be achieved. transportation capability, and a possi- ble higher operating temperature due 3 System overview 3.1 Fuel and coolant loop to the lower corrosive potential of the Figure 2 shows how a DFR reference Since the cooling function is separated metal alloy. The basic design, then, al- power plant might look like. The from the liquid fuel, the circulation lows for a high degree of possibilities reference design has a power output of the fuel can be adjusted to nuclear which can be trimmed to a specific of 3 GWth and an electric output of purposes like maximum burn-up, purpose. These concepts will be dis- 1.5 GWe which is currently the typical transuranic incineration, isotope pro- cussed briefly in Sec.
Recommended publications
  • Thermal Hydraulics Analysis of the Distribution Zone in Small Modular Dual Fluid Reactor
    metals Article Thermal Hydraulics Analysis of the Distribution Zone in Small Modular Dual Fluid Reactor Chunyu Liu 1,* , Xiaodong Li 1 , Run Luo 1,2 and Rafael Macian-Juan 1 1 Chair of Nuclear Technology, Department of Mechanical Engineering, Technical University of Munich (TUM), Boltzmannstr. 15, 85748 Garching, Germany; [email protected] (X.L.); [email protected] or [email protected] (R.L.); [email protected] (R.M.-J.) 2 School of Resource & Environment and Safety Engineering, University of South China, No. 28, Changsheng West Road, Hengyang 421001, China * Correspondence: [email protected] or [email protected] Received: 29 June 2020; Accepted: 4 August 2020; Published: 6 August 2020 Abstract: The Small Modular Dual Fluid Reactor (SMDFR) is a novel molten salt reactor based on the dual fluid reactor concept, which employs molten salt as fuel and liquid lead/lead-bismuth eutectic (LBE) as coolant. A unique design of this reactor is the distribution zone, which locates under the core and joins the core region with the inlet pipes of molten salt and coolant. Since the distribution zone has a major influence on the heat removal capacity in the core region, the thermal hydraulics characteristics of the distribution zone have to be investigated. This paper focuses on the thermal hydraulics analysis of the distribution zone, which is conducted by the numerical simulation using COMSOL Multiphysics with the CFD (Computational Fluid Dynamics) module and the Heat Transfer module. The energy loss and heat exchange in the distribution zone are also quantitatively analyzed. The velocity and temperature distributions of both molten salt and coolant at the outlet of the distribution zone, as inlet of the core region, are produced.
    [Show full text]
  • Core Safety of Indian Nuclear Power Plants (Npps) Under Extreme Conditions
    Sadhan¯ a¯ Vol. 38, Part 5, October 2013, pp. 945–970. c Indian Academy of Sciences Core safety of Indian nuclear power plants (NPPs) under extreme conditions JBJOSHI1,∗, AKNAYAK2, M SINGHAL3 and D MUKHOPADHAYA4 1Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India 2Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India 3Nuclear Power Corporation of India Limited, Anushaktinagar, Mumbai 400 0094, India 4Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India e-mail: [email protected] Abstract. Nuclear power is currently the fourth largest source of electricity produc- tion in India after thermal, hydro and renewable sources of electricity. Currently, India has 20 nuclear reactors in operation and seven other reactors are under construction. Most of these reactors are indigenously designed and built Heavy Water Reactors. In addition, a 300 MWe Advanced Heavy Water Reactor has already been designed and in the process of deployment in near future for demonstration of power production from Thorium apart from enhanced safety features by passive means. India has ambi- tious plans to enhance the share of electricity production from nuclear. The recent Fukushima accident has raised concerns of safety of Nuclear Power Plants world- wide. The Fukushima accident was caused by extreme events, i.e., large earthquake followed by gigantic Tsunami which are not expected to hit India’s coast considering the geography of India and historical records. Nevertheless, systematic investigations have been conducted by nuclear scientists in India to evaluate the safety of the current Nuclear Power Plants in case of occurrence of such extreme events in any nuclear site.
    [Show full text]
  • Liquid Metal Cooled Reactors: Experience in Design and Operation
    IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 The originating Sections of this publication in the IAEA were: INIS and Nuclear Knowledge Management and Nuclear Power Technology Development Sections International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria LIQUID METAL COOLED REACTORS: EXPERIENCE IN DESIGN AND OPERATION IAEA, VIENNA, 2007 IAEA-TECDOC-1569 ISBN 978–92–0–107907–7 ISSN 1011–4289 © IAEA, 2007 Printed by the IAEA in Austria December 2007 FOREWORD In 2002, within the framework of the Department of Nuclear Energy’s Technical Working Group on Fast Reactors (TWG-FR), and according to the expressed needs of the TWG-FR Member States to maintain and increase the present knowledge and expertise in fast reactor science and technology, the IAEA established its initiative seeking to establish a comprehensive, international inventory of fast reactor data and knowledge. More generally, at the IAEA meeting of senior officials convened to address issues of nuclear knowledge management underlying the safe and economic use of nuclear science and technology (Vienna, 17–19 June 2002), there was widespread agreement that, for sustainability reasons for fissile sources and waste management, long-term development of nuclear power as a part of the world’s future energy mix will require the fast reactor technology. Furthermore, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This consensus concluded from the recognition of immediate need gave support to the IAEA initiative for fast reactor data and knowledge presevation.
    [Show full text]
  • Interview: the Dual Fluid Reactor the Public Is Ready for Nuclear Power
    Interview: The Dual Fluid Reactor The Public is Ready for Nuclear Power Dr. Ahmed Hussein is Professor Emeritus of physics at University of Northern British Columbia currently stationed at TRIUMF, Canada’s National Laboratory for particle and nuclear physics in Vancouver, British Columbia. He is also an Associate Member of the Institute for Solid State Nuclear Physics (IFK) in Berlin, Germany. He was interviewed on September 16, 2014 by Robert Hux for 21st Century Science & Technology. Robert Hux – Dr. Hussein, we met you recently at the millions of tons of green house gases and the 320,000 Pacific Basin Nuclear Conference here in Vancouver, tonnes of ash containing toxic heavy metals and tens of where you presented a very interesting new design for thousands of tonnes of sulfur and nitrogen oxides that a nuclear fission reactor.1 How does your design differ are produced by fossil fuel power stations. Furthermore, from the nuclear fission reactors which have been de- nuclear power reactors do not emit any radioactive ma- veloped since the 1950s? terials into the atmosphere during operation, while coal- Dr. Ahmed Hussein – Our reactor, called the Dual fired stations emit radioactive materials that are mixed Fluid Reactor (DFR)2, was designed to solve many of the naturally with coal. problems which exist now with the current reactors that Our reactor concept has a simpler design that avoids people are afraid of. Current reactors have some designs most of the problems that we have right now. And it will that actually originated in the military use of nuclear actually make nuclear power a lot cheaper, safer, most- power in the old days of the Manhattan Project, and they ly carbon-free, and better to use than any other energy were adapted to civilian use.
    [Show full text]
  • INIS-Mf —14954 CA9600857
    i-\ I- S I *• t. -^ INIS-mf —14954 III CA9600857 v // / A ^r^-14 i I ULJ n ^^ ISSN 0S3?-O299 CURRENT ISSUE PAPER i 17 NCIIERNOBYL, THREE MILE ISLAND AND BEYOND; LESSONS FOR ONTARIO? Prepared by: K. Lewis Yeagcr Research C fficer Legij'ative Research Service March 1991 y Ho-sonrch So THKSSSim Nuclear power has been a fact of life in the developed world for two generations. It is v. workhorse supplier of base electricity loads in Ontario, France. Belgium, Japan and many American states. Highly publicized accidents at Chernobyl, and .to.a.lesser..:. extent Three Mile Island, have raised public concern around the world about the safety of nuclear generatin;;, -nations. Since the planning process which will guide the Province's 'power generic:1. for <!ie next 25'years is now under way, it isimportant" that the public and elected officials understand how and why these and other nuclear accidents occurred and whether there are lessons.to.be learned in designing and-, operating CANUU facilities in Ontario. Tilts Current Issue Paper reviews major accidents which nave occurred at commercial and military nuclear facilities, and provides basic background on nuclear power and reactor design features to assist the novice in understanding the very complex technical issues surrounding these events. Above all, the role of human factors in the prevention of potential accident situations is emphasized. ih>- TABLE OF CONTENTS Page No l-xncurivr-: SUMMARY . j INTRODUCTION , ] BACKGROUND 2 . General Principles of Nuclear Power 2 Types of Reactors " " " ~ ' 3 Nuclear Safety Philosophy 5 THREE MILE ISLAND .... 8 The Plant : 8 The Accident ; ft Local Impacts .
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • Description of the Advanced Gas Cooled Type of Reactor (AGR)
    Nordisk Nordisk Poh|oismaincn Nordic kerne- karn- ydin- nuclear sikkerheds- sakcrhets- turvallisuus- safely forskning forskning lutkimus research KAK-2 NKS/RAK2(96)TR-C2 DK9700041 Description of the Advanced Gas Cooled Type of Reactor (AGR) Erik Nonbel Riso National Laboratory Roskilde, Denmark November 1996 Abstract The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail Data on the other 6 stations, Dungeness B, Hinkley Point B, Hunterston B, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data Where specific data for Torness AGR has not been available, corresponding data from other AGR plants has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors The information presented is based on the open literature The report is written as a part of the NKS/RAK-2 subproject 3 "Reactors in Nordic Surroundings", which comprises a description of nuclear power plants neighbouring the Nordic countries NKS/RAK-2(96)TR-C2 ISBN 87-550-2264-2 Graphic Service, Riso, 1996 Tlic report can be obtained from NKS Secretariat Phone +45 46 77 40 45 POBox49 Fax +45 46 35 92 73 DK-4000 Roskildc hUp/Auuv nsoc dk/nks Denmark e-mail anncttc.lemmensfr nsoe dk -3- Contents 1 INTRODUCTION 8 2 SUMMARY OF DESIGN DATA 10 3 SITE AND REGION 13 3.1 Selection of the site 13 4 SAFETY CRITERIA 14 5 TECHNICAL DESCRIPTION AND DESIGN EVALUATION 15 5.1 Plant arrangement 15 5.2 Buildings and structures 16 5.3 Reactor core and other reactor vessel internals 17 5.3.1 Mechanical design..
    [Show full text]
  • Annual Report 2013 / 2014
    Technische Universität München Department of Mechanical Engineering Mechanical Engineering Annual Report Imprint Technische Universität München Department of Mechanical Engineering Boltzmannstraße 15 85748 Garching near Munich Germany www.mw.tum.de Editor: Prof. Dr. Tim C. Lüth, Dean Sub-editor: Dr. Till v. Feilitzsch Layout: Fa-Ro Marketing, Munich Photo credits: Uli Benz, Thomas Bergmann, Astrid Eckert, Kurt Fuchs, Andreas Gebert, Haslbeck, Andreas Heddergott, Mittermüller Bildbetrieb, Wotan Wilden and further illustrations by the institutes March 2015 Technische Universität München Department of Mechanical Engineering Mechanical Engineering Annual Report 2013-2014 Content Preamble 6 TUM Department of Mechanical Engineering 7 Department Board of Management 8 Teaching 10 Research 11 Ranking Results 12 Facts and Figures 13 Projects and Clusters 14 Divisions of the Department of Mechanical Engineering 16 Faculty Graduate Center Mechanical Engineering 26 Center of Key Competences 27 Elected Representatives 28 Faculty Members 29 Prof. Dr.-Ing. Nikolaus Adams Institute of Aerodynamics and Fluid Mechanics 36 Prof. Dr.-Ing. Horst Baier Institute of Lightweight Structures 45 Prof. Dr. Klaus Bengler Institute of Ergonomics 49 Prof. Dr. Sonja Berensmeier Bioseparation Engineering Group 55 Prof. Dr. Carlo L. Bottasso Wind Energy Institute 58 Prof. Dr.-Ing. Klaus Drechsler Institute for Carbon Composites 63 Prof. Dr.-Ing. Michael W. Gee Mechanics & High Performance Computing Group 68 Prof. Dr.-Ing. habil. Dipl.-Geophys. Christian Große Institute of Non-destructive Testing 72 Prof. Dr.-Ing. Willibald A. Günthner Institute for Materials Handling, Material Flow, Logistics 75 Prof. Dr.-Ing. Oskar J. Haidn Institute of Flight Propulsion 84 Prof. Dr.-Ing. Oskar J. Haidn Space Propulsion Group 90 Prof.
    [Show full text]
  • Nuclear Fuel Cycle, KD2430
    Nuclear Fuel Cycle 2011 Lecture 8: Reactor Concepts Fission Exotherm process for all nuclides with more than 130 nucleons (A>130) Activation energy for A=130 is very high; 100 MeV For A > 230 the activation energy is <10 MeV Fission with thermal (slow) neutrons is only possible for (even,odd) or (odd,odd) nuclei with Z>90 Nuclear chain reaction 235U + n fission products + 2.4 n + 210 MeV Fission of 235U with thermal neutrons Thermal neutron is captured and forms an excited compound nuclueus 235U + n (236U)* Excitation energy = captured neutron’s binding energy (6.8 MeV). Compound nucleus must emit energy. Either as γ or by fission. Probability for these can be expressed as cross sections σn,γ and σn,f 2 fission products + ν neutrons (236U)* 236U + γ => 85% of captured neutrons will cause fission Energy balance Binding energy/nucleon for heavy nuclei: 7.6 MeV Binding energy/nucleon for semi-heavy nuclei (A=80-150): 8.5 MeV Difference: 0.9 MeV For U-235: 235×0.9 MeV = 210 MeV Kinetic energy of fission products: 175 MeV Kinetic energy of neutrons: 5 MeV Kinetic energy of γ: 7 MeV β from fission products: 7 MeV γ from fission products 6 MeV Neutrinos (energy is lost): 10 MeV Effective neutron multiplication factor, k • If the number of produced neutrons, k > 1 Supercritical => Atomic explosion • If k< 1 Subcritical=> Chain reaction will die out • In a nuclear reactor k is controlled to be 1 (critical) with control rods (containing neutron-absorbent) Moderating neutrons • Fast and slow (thermal) neutrons are produced.
    [Show full text]
  • Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report
    NUREG-1251 Vol. I Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report Main Report U.S. Nuclear Regulatory Commission p. o AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investi- gation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceed- ings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regula- tions in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
    [Show full text]
  • Monte Calrlo Modelling of Void Coefficient of Reactivity Experiment
    MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute (ATI) of the Vienna University of Technology utilizes a TRIGA Mark II research reactor for last fourty eight years at a nominal reactor power of 250 kW (thermal). It has a completely mixed core and employing three different types of fuels i.e. aluminium clad fuel with 20% enrichment, stainless steel (SS) clad fuel with 20% enrichment and SS clad FLIP fuel with 70% enrichment. The current core loading is 83 fuel elements. The reactor core is equipped with many irradiation facilities inside the core to irradiate samples at different flux levels. These irradiation facilities include the Central Channel (CC which is used to irradiate samples at maximum flux. This paper presents the calculations and measurements of the void coefficient of reactivity in CC. For this purpose, a cylindrical void of 66.47 cm3 was inserted into the CC and moved from bottom to top of the core along the axial length of the channel in steps of 5 cm. For each step, the effect of void sample on the core reactivity was measured by the regulating control rod position. This experiment was performed at 10W in automatic mode of operation. Monte Carlo neutronics simulating code, equipped with the cross sections library JEFF 3.1, was employed to perform these calculations. For each 5 cm step in the central irradiation channel, a separate model was executed. To see the influence of the control rods, the MCNP calculations were performed.
    [Show full text]
  • NRC Collection of Abbreviations
    I Nuclear Regulatory Commission c ElLc LI El LIL El, EEELIILE El ClV. El El, El1 ....... I -4 PI AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001 2. The Superintendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC 20402-9328 3. The National Technical Information Service, Springfield, VA 22161-0002 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, inspection and investigation notices; licensee event reports; vendor reports and correspondence; Commission papers; and applicant and licensee docu- ments and correspondence. The following documents in the NUREG series are available for purchase from the Government Printing Office: formal NRC staff and contractor reports, NRC-sponsored conference pro- ceedings, international agreement reports, grantee reports, and NRC booklets and bro- chures. Also available are regulatory guides, NRC regulations in the Code of Federal Regula- tions, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service Include NUREG-series reports and technical reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission. Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions.
    [Show full text]