Liquid Metal Cooled Reactors: Experience in Design and Operation

Total Page:16

File Type:pdf, Size:1020Kb

Liquid Metal Cooled Reactors: Experience in Design and Operation IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 The originating Sections of this publication in the IAEA were: INIS and Nuclear Knowledge Management and Nuclear Power Technology Development Sections International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria LIQUID METAL COOLED REACTORS: EXPERIENCE IN DESIGN AND OPERATION IAEA, VIENNA, 2007 IAEA-TECDOC-1569 ISBN 978–92–0–107907–7 ISSN 1011–4289 © IAEA, 2007 Printed by the IAEA in Austria December 2007 FOREWORD In 2002, within the framework of the Department of Nuclear Energy’s Technical Working Group on Fast Reactors (TWG-FR), and according to the expressed needs of the TWG-FR Member States to maintain and increase the present knowledge and expertise in fast reactor science and technology, the IAEA established its initiative seeking to establish a comprehensive, international inventory of fast reactor data and knowledge. More generally, at the IAEA meeting of senior officials convened to address issues of nuclear knowledge management underlying the safe and economic use of nuclear science and technology (Vienna, 17–19 June 2002), there was widespread agreement that, for sustainability reasons for fissile sources and waste management, long-term development of nuclear power as a part of the world’s future energy mix will require the fast reactor technology. Furthermore, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This consensus concluded from the recognition of immediate need gave support to the IAEA initiative for fast reactor data and knowledge presevation. To implement the IAEA initiative, the scope of fast reactor knowledge preservation activities and a road map for implementation have been developed. The IAEA supports and coordinates data retrieval and interpretation efforts in the Member States joining the initiative and ensures the collaboration with other international organizations (mainly OECD/NEA) and eventually establishes and maintains a portal for accessing the fast reactor knowledge base. The IAEA assists Member State activities by providing an umbrella for information exchange and collaborative R&D to pool resources and expertise within the framework of the TWG-FR and the Agency’s International Nuclear Information System (INIS) and Nuclear Knowledge Management Section (NKMS). The IAEA collects and summarizes the scientific and technical information on key fast reactor technology aspects in an integrative sense useful to engineers, scientists, managers, university students and professors. This publication has been prepared to contribute toward the IAEA activity to preserve the knowledge gained in the liquid metal cooled fast reactor (LMFR) technology development. This technology development and experience include aspects addressing not only experimental and demonstration reactors, but also all activities from reactor construction to decommissioning. This publication provides a survey of worldwide experience gained over the past five decades in LMFR development, design, operation and decommissioning, which has been accumulated through the IAEA programmes carried out within the framework of the TWG-FR and the Agency’s INIS and NKMS. The IAEA appreciate the advice and support of the IAEA’s TWG-FR members in the preparation of the publication. The draft of the report, compiled by A. Rineiskii (consultant), in cooperation with W. Mandl, A. Badulescu and Y.I. Kim of the IAEA, has been reviewed by the TWG-FR Members of China, France, India, Japan, Republic of Korea and the Russian Federation. The work was guided by the IAEA officers A. Stanculescu and Y. Yanev and they are responsible for this publication. EDITORIAL NOTE The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS INTRODUCTION...................................................................................................................... 1 1. LIQUID METAL COOLED FAST REACTOR DEVELOPMENT AND IAEA ACTIVITIES ................................................................................................ 2 1.1. Activities on fast reactors design and technology................................................... 2 1.2. The joint research activities on LMFR.................................................................... 6 1.2.1. Sodium void effect....................................................................................... 6 1.2.2. Intercomparison of LMFR seismic analysis codes: comparison of experimental results with computer prediction ............ 9 1.2.3. Sodium mixing problems........................................................................... 12 1.2.4. Core structural and fuel materials assuring high fuel burnup .................... 17 1.2.5. Concept of fuel resources and waste management .................................... 18 1.2.6. Core disruptive accident ............................................................................ 19 1.2.7. Acoustic signal processing for the detection of sodium boiling in reactor cores or leak detection and location in steam generators ....... 20 1.3. Activities on advanced fast LMFR and technology .............................................. 20 1.4. Safety research issues for advanced LMFR development..................................... 25 1.4.1. Progress made since the past...................................................................... 26 References ...................................................................................................................... 27 2. PROTOTYPE FAST REACTOR................................................................................... 29 2.1. Design features and review of operating history................................................... 29 2.2. Review of the PFR steam generator design concept and operating history .......... 32 2.2.1. PFR steam generator: choice of the design concept .................................. 34 2.2.2. Review of steam generators operating history........................................... 37 2.2.3. The under-sodium leak in PFR superheater............................................... 40 2.3. Effects of sodium aerosol deposition in LMFRs................................................... 43 2.4. The primary circuit oil spill................................................................................... 46 2.5. Cracks in the PFR air heat exchangers.................................................................. 50 2.6. Sodium mixing problems and flow and mechanically induced vibrations ........... 52 2.7. The effect of neutron-induced distortion of core components .............................. 52 2.8. Fuel development .................................................................................................. 55 Bibliography ................................................................................................................... 56 3. PHENIX AND SUPER-PHENIX REACTORS............................................................. 57 3.1. Phénix reactor........................................................................................................ 57 3.1.1. Commissioning and design features .......................................................... 57 3.1.2. Intermediate heat exchangers operating experience .................................. 64 3.1.3. Steam generator operating experience ....................................................... 66 3.1.4. Secondary circuit operating experience ..................................................... 72 3.1.5. Pumps operating experience ...................................................................... 73 3.1.6. Negative reactivity shutdowns................................................................... 74 3.1.7. Sodium aerosol deposit .............................................................................. 75 3.1.8. Sodium circuits, reactor and equipment inspection and renovation .......... 76 3.1.9. Protection for fires ..................................................................................... 79 3.1.10. Plant statistics and conclusions.................................................................. 80 3.2. Super-Phénix reactor............................................................................................. 83 3.2.1. Design features and commissioning history .............................................. 83 3.2.2. SPX steam generator: design and operating experience ............................ 88 3.2.3. Storage drum operating experience............................................................ 91 3.2.4. Primary sodium contamination .................................................................. 96 3.2.5. Argon leak from the sealing bell of the intermediate heat exchangers...... 98 Bibliography ................................................................................................................. 100 4. BN-600
Recommended publications
  • Core Safety of Indian Nuclear Power Plants (Npps) Under Extreme Conditions
    Sadhan¯ a¯ Vol. 38, Part 5, October 2013, pp. 945–970. c Indian Academy of Sciences Core safety of Indian nuclear power plants (NPPs) under extreme conditions JBJOSHI1,∗, AKNAYAK2, M SINGHAL3 and D MUKHOPADHAYA4 1Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India 2Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India 3Nuclear Power Corporation of India Limited, Anushaktinagar, Mumbai 400 0094, India 4Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India e-mail: [email protected] Abstract. Nuclear power is currently the fourth largest source of electricity produc- tion in India after thermal, hydro and renewable sources of electricity. Currently, India has 20 nuclear reactors in operation and seven other reactors are under construction. Most of these reactors are indigenously designed and built Heavy Water Reactors. In addition, a 300 MWe Advanced Heavy Water Reactor has already been designed and in the process of deployment in near future for demonstration of power production from Thorium apart from enhanced safety features by passive means. India has ambi- tious plans to enhance the share of electricity production from nuclear. The recent Fukushima accident has raised concerns of safety of Nuclear Power Plants world- wide. The Fukushima accident was caused by extreme events, i.e., large earthquake followed by gigantic Tsunami which are not expected to hit India’s coast considering the geography of India and historical records. Nevertheless, systematic investigations have been conducted by nuclear scientists in India to evaluate the safety of the current Nuclear Power Plants in case of occurrence of such extreme events in any nuclear site.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0090474 A1 Sauciuc Et Al
    US 20060090474A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0090474 A1 Sauciuc et al. (43) Pub. Date: May 4, 2006 (54) METHOD AND APPARATUS FOR Publication Classification REMOVING HEAT (51) Int. Cl. F2SB 2L/02 (2006.01) (76) Inventors: Ioan Sauciuc, Phoeniz, AZ (US); Jim F28D 5/00 (2006.01) D. Williams, Banks, OR (US) F25D 23/12 (2006.01) (52) U.S. Cl. ....................... 62/3.2: 62/259.2; 165/104.22 Correspondence Address: BLAKELY SOKOLOFFTAYLOR & ZAFMAN (57) ABSTRACT 124OO WILSHIRE BOULEVARD SEVENTH FLOOR A device includes a liquid metal and a ferrofluid contained LOS ANGELES, CA 90025-1030 (US) in a closed tube. Many electrode groups are connected to the closed tube. A feedback device is connected to the electrode (21) Appl. No.: 10/976,406 groups. The feedback device switches power to each elec trode group in series to circulate the liquid metal and move (22) Filed: Oct. 29, 2004 the ferrofluid in the closed tube. 200 210 -4220 Automatic feedback system and StartUp Circuit (2) (25 260 250 Patent Application Publication May 4, 2006 Sheet 1 of 7 US 2006/0090474 A1 20 FIG. 1A F.G. 1B (Prior Art) (Pr O Art) Patent Application Publication May 4, 2006 Sheet 2 of 7 US 2006/0090474 A1 200 - Automatic feedback system and StartUp Circuit 25 (25 240 E.iSE S3 ES 230 250 FIG. 2 Patent Application Publication May 4, 2006 Sheet 3 of 7 US 2006/0090474 A1 FIG. 3 Patent Application Publication May 4, 2006 Sheet 4 of 7 US 2006/0090474 A1 400 Determine Temperature Alternate power to electrode groups to move ferrofluid 420 Circulate liquid metal Dissipate heat within the liquid metal FIG.
    [Show full text]
  • INIS-Mf —14954 CA9600857
    i-\ I- S I *• t. -^ INIS-mf —14954 III CA9600857 v // / A ^r^-14 i I ULJ n ^^ ISSN 0S3?-O299 CURRENT ISSUE PAPER i 17 NCIIERNOBYL, THREE MILE ISLAND AND BEYOND; LESSONS FOR ONTARIO? Prepared by: K. Lewis Yeagcr Research C fficer Legij'ative Research Service March 1991 y Ho-sonrch So THKSSSim Nuclear power has been a fact of life in the developed world for two generations. It is v. workhorse supplier of base electricity loads in Ontario, France. Belgium, Japan and many American states. Highly publicized accidents at Chernobyl, and .to.a.lesser..:. extent Three Mile Island, have raised public concern around the world about the safety of nuclear generatin;;, -nations. Since the planning process which will guide the Province's 'power generic:1. for <!ie next 25'years is now under way, it isimportant" that the public and elected officials understand how and why these and other nuclear accidents occurred and whether there are lessons.to.be learned in designing and-, operating CANUU facilities in Ontario. Tilts Current Issue Paper reviews major accidents which nave occurred at commercial and military nuclear facilities, and provides basic background on nuclear power and reactor design features to assist the novice in understanding the very complex technical issues surrounding these events. Above all, the role of human factors in the prevention of potential accident situations is emphasized. ih>- TABLE OF CONTENTS Page No l-xncurivr-: SUMMARY . j INTRODUCTION , ] BACKGROUND 2 . General Principles of Nuclear Power 2 Types of Reactors " " " ~ ' 3 Nuclear Safety Philosophy 5 THREE MILE ISLAND .... 8 The Plant : 8 The Accident ; ft Local Impacts .
    [Show full text]
  • Core Design and Optimization of the High Conversion Small Modular Reactor
    Technische Universität München Fakultät für Maschinenwesen Lehrstuhl für Nukleartechnik Core Design and Optimization of the High Conversion Small Modular Reactor Denis Janin Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen Universität München zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Prof. Phaedon-Stelios Koutsourelakis, PhD Prüfer der Dissertation: 1. Prof. Rafael Macián-Juan, PhD 2. Prof. Dr. Jean-Baptiste Thomas Die Dissertation wurde am 08.05.2018 bei der Technischen Universität München eingereicht und durch die Fakultät für Maschinenwesen am 01.11.2018 angenommen. ABSTRACT This research work investigates the design and optimization of the high conversion small modular reactor (HCSMR) core. The HCSMR has a thermal output of 600 MW for 200 MW electrical. It is an integrated PWR with a tightened fuel assembly lattice. The rod-to-rod pitch is 1.15 cm in a hexagonal fuel assembly geometry. As a result the moderation ratio (1.0) is reduced compared to large PWRs (around 2.0) and the HCSMR has an improved ability to convert 238U into 239Pu and use plutonium isotopes more efficiently. The core is loaded with MOX fuel. The HCSMR concept finds its roots both in large high conversion light water reactors and small modular reactor (SMR) concepts. The reduced core size results in an increased neutron leakage rate compared to large cores. This intrinsically supports the core behavior in voided situations. The necessity to introduce fertile fuel materials in the core to keep negative void coefficients is reduced, contributing to the HCSMR safety and limited core heterogeneity.
    [Show full text]
  • Description of the Advanced Gas Cooled Type of Reactor (AGR)
    Nordisk Nordisk Poh|oismaincn Nordic kerne- karn- ydin- nuclear sikkerheds- sakcrhets- turvallisuus- safely forskning forskning lutkimus research KAK-2 NKS/RAK2(96)TR-C2 DK9700041 Description of the Advanced Gas Cooled Type of Reactor (AGR) Erik Nonbel Riso National Laboratory Roskilde, Denmark November 1996 Abstract The present report comprises a technical description of the Advanced Gas cooled Reactor (AGR), a reactor type which has only been built in Great Britain 14 AGR reactors have been built, located at 6 different sites and each station is supplied with twin-reactors The Torness AGR plant on the Lothian coastline of Scotland, 60 km east of Edinburgh, has been chosen as the reference plant and is described in some detail Data on the other 6 stations, Dungeness B, Hinkley Point B, Hunterston B, Hartlepool, Heysham I and Heysham II, are given only in tables with a summary of design data Where specific data for Torness AGR has not been available, corresponding data from other AGR plants has been used, primarily from Heysham II, which belongs to the same generation of AGR reactors The information presented is based on the open literature The report is written as a part of the NKS/RAK-2 subproject 3 "Reactors in Nordic Surroundings", which comprises a description of nuclear power plants neighbouring the Nordic countries NKS/RAK-2(96)TR-C2 ISBN 87-550-2264-2 Graphic Service, Riso, 1996 Tlic report can be obtained from NKS Secretariat Phone +45 46 77 40 45 POBox49 Fax +45 46 35 92 73 DK-4000 Roskildc hUp/Auuv nsoc dk/nks Denmark e-mail anncttc.lemmensfr nsoe dk -3- Contents 1 INTRODUCTION 8 2 SUMMARY OF DESIGN DATA 10 3 SITE AND REGION 13 3.1 Selection of the site 13 4 SAFETY CRITERIA 14 5 TECHNICAL DESCRIPTION AND DESIGN EVALUATION 15 5.1 Plant arrangement 15 5.2 Buildings and structures 16 5.3 Reactor core and other reactor vessel internals 17 5.3.1 Mechanical design..
    [Show full text]
  • Nuclear Fuel Cycle, KD2430
    Nuclear Fuel Cycle 2011 Lecture 8: Reactor Concepts Fission Exotherm process for all nuclides with more than 130 nucleons (A>130) Activation energy for A=130 is very high; 100 MeV For A > 230 the activation energy is <10 MeV Fission with thermal (slow) neutrons is only possible for (even,odd) or (odd,odd) nuclei with Z>90 Nuclear chain reaction 235U + n fission products + 2.4 n + 210 MeV Fission of 235U with thermal neutrons Thermal neutron is captured and forms an excited compound nuclueus 235U + n (236U)* Excitation energy = captured neutron’s binding energy (6.8 MeV). Compound nucleus must emit energy. Either as γ or by fission. Probability for these can be expressed as cross sections σn,γ and σn,f 2 fission products + ν neutrons (236U)* 236U + γ => 85% of captured neutrons will cause fission Energy balance Binding energy/nucleon for heavy nuclei: 7.6 MeV Binding energy/nucleon for semi-heavy nuclei (A=80-150): 8.5 MeV Difference: 0.9 MeV For U-235: 235×0.9 MeV = 210 MeV Kinetic energy of fission products: 175 MeV Kinetic energy of neutrons: 5 MeV Kinetic energy of γ: 7 MeV β from fission products: 7 MeV γ from fission products 6 MeV Neutrinos (energy is lost): 10 MeV Effective neutron multiplication factor, k • If the number of produced neutrons, k > 1 Supercritical => Atomic explosion • If k< 1 Subcritical=> Chain reaction will die out • In a nuclear reactor k is controlled to be 1 (critical) with control rods (containing neutron-absorbent) Moderating neutrons • Fast and slow (thermal) neutrons are produced.
    [Show full text]
  • Liquid-Based Reconfigurable Antenna Technology
    sensors Review Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future Habshah Abu Bakar 1, Rosemizi Abd Rahim 2,* , Ping Jack Soh 2,3 and Prayoot Akkaraekthalin 4,* 1 Department of Electrical Engineering, Politeknik Sultan Abdul Halim Muadzam Shah, Jitra 06000, Kedah, Malaysia; [email protected] 2 Faculty of Electronic Engineering Technology, Pauh Putra Campus, Universiti Malaysia Perlis, Pauh 02600, Perlis, Malaysia; [email protected] 3 Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia 4 Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand * Correspondence: [email protected] (R.A.R.); [email protected] (P.A.) Abstract: Advances in reconfigurable liquid-based reconfigurable antennas are enabling new pos- sibilities to fulfil the requirements of more advanced wireless communication systems. In this review, a comparative analysis of various state-of-the-art concepts and techniques for designing reconfigurable antennas using liquid is presented. First, the electrical properties of different liquids at room temperature commonly used in reconfigurable antennas are identified. This is followed by a discussion of various liquid actuation techniques in enabling high frequency reconfigurability. Next, the liquid-based reconfigurable antennas in literature used to achieve
    [Show full text]
  • Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report
    NUREG-1251 Vol. I Implications of the Accident at Chernobyl for Safety Regulation of Commercial Nuclear Power Plants in the United States Final Report Main Report U.S. Nuclear Regulatory Commission p. o AVAILABILITY NOTICE Availability of Reference Materials Cited in NRC Publications Most documents cited in NRC publications will be available from one of the following sources: 1. The NRC Public Document Room, 2120 L Street, NW, Lower Level, Washington, DC 20555 2. The Superintendent of Documents, U.S. Government Printing Office, P.O. Box 37082, Washington, DC 20013-7082 3. The National Technical Information Service, Springfield, VA 22161 Although the listing that follows represents the majority of documents cited in NRC publica- tions, it is not intended to be exhaustive. Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investi- gation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence. The following documents in the NUREG series are available for purchase from the GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceed- ings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regula- tions in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances. Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.
    [Show full text]
  • A Complete Interfacial System Solution for Liquid Metal Electronics
    A Complete Interfacial System Solution for Liquid Metal Electronics A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Materials Science & Engineering of the College of Engineering & Applied Science by Sarah E. Holcomb B.S., Rensselaer Polytechnic Institute, 2013 Committee Chair: Jason C. Heikenfeld, Ph.D. Abstract Liquid metal electronic devices have numerous advantages over traditional solid devices such as the ability to be flexed and stretched or reconfigured. Examples of such devices are wires, switches, polarizers, and antennas. Previously, mercury has been used as the room temperature liquid metal of choice but has been recently replaced by gallium liquid metal alloys (GaLMAs) which are non-toxic, have extremely low vapor pressures, and can remain liquid at temperatures as low as -19°C. A key difference in the performance of GaLMAs vs. mercury is the mechanically stabilizing, passivating oxide which forms instantly on the surface of GaLMAs in as little as 1 ppm oxygen environments. This oxide presents a significant challenge for reconfigurable device applications because it “sticks” to most surfaces, preventing reversible shape change, which alters the desired electrical performance. Proposed here are two novel methods of overcoming this challenge. These methods enable new capabilities for reconfigurable electronic devices. The first approach involves removing the oxide in situ as it is continuously formed in all practically achievable device environments. Oxide removal is commonly done through the use of hydrochloric acid (aqueous or vapor), which reacts with the gallium oxide to produce gallium chloride, which is not mechanically stabilizing, and water.
    [Show full text]
  • Study of Electrochemical Properties of Liquid Gallium
    University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 Study of electrochemical properties of liquid gallium Yuchen Chen University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Chen, Yuchen, Study of electrochemical properties of liquid gallium, Master of Philosophy thesis, Institute for Superconducting and Electronic Materials, University of Wollongong, 2017. https://ro.uow.edu.au/ theses1/14 Research Online is the open access institutional repository for the University of Wollongong.
    [Show full text]
  • Tuning Surface Texture of Liquid Metal Particles by Exploiting Material Metastability Joel Cutinho Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Tuning surface texture of liquid metal particles by exploiting material metastability Joel Cutinho Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Cutinho, Joel, "Tuning surface texture of liquid metal particles by exploiting material metastability" (2017). Graduate Theses and Dissertations. 16118. https://lib.dr.iastate.edu/etd/16118 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tuning surface texture of liquid metal particles by exploiting material metastability by Joel Cutinho A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Materials Science and Engineering Program of Study Committee: Martin Thuo, Major Professor Shan Jiang Jaime Juarez The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred Iowa State University Ames, Iowa 2017 Copyright © Joel Cutinho, 2017. All rights reserved. ii DEDICATION I dedicate this work primarily to my family, who have taught me to believe in God, myself and follow my desires.
    [Show full text]
  • Monte Calrlo Modelling of Void Coefficient of Reactivity Experiment
    MONTE CALRLO MODELLING OF VOID COEFFICIENT OF REACTIVITY EXPERIMENT R. KHAN, M. VILLA, H. BÖCK Vienna University of Technology Atominstitute Stadionallee 2, A-1020, Vienna, Austria ABSTRACT The Atominstitute (ATI) of the Vienna University of Technology utilizes a TRIGA Mark II research reactor for last fourty eight years at a nominal reactor power of 250 kW (thermal). It has a completely mixed core and employing three different types of fuels i.e. aluminium clad fuel with 20% enrichment, stainless steel (SS) clad fuel with 20% enrichment and SS clad FLIP fuel with 70% enrichment. The current core loading is 83 fuel elements. The reactor core is equipped with many irradiation facilities inside the core to irradiate samples at different flux levels. These irradiation facilities include the Central Channel (CC which is used to irradiate samples at maximum flux. This paper presents the calculations and measurements of the void coefficient of reactivity in CC. For this purpose, a cylindrical void of 66.47 cm3 was inserted into the CC and moved from bottom to top of the core along the axial length of the channel in steps of 5 cm. For each step, the effect of void sample on the core reactivity was measured by the regulating control rod position. This experiment was performed at 10W in automatic mode of operation. Monte Carlo neutronics simulating code, equipped with the cross sections library JEFF 3.1, was employed to perform these calculations. For each 5 cm step in the central irradiation channel, a separate model was executed. To see the influence of the control rods, the MCNP calculations were performed.
    [Show full text]