Electrochemically-Modulated Semiconductor Crystal Growth from Liquid Metal Electrodes
Total Page:16
File Type:pdf, Size:1020Kb
ELECTROCHEMICALLY-MODULATED SEMICONDUCTOR CRYSTAL GROWTH FROM LIQUID METAL ELECTRODES by Eli Fahrenkrug A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in The University of Michigan 2016 Doctoral Committee: Professor Stephen Maldonado, Chair Professor Adam J. Matzger Professor Michael D. Morris Professor Jamie D. Phillips © Eli Fahrenkrug All Rights Reserved 2016 DEDICATION To the notion that “only the ideas that we really live have any value.” H.H. ii ACKNOWLEDGEMENTS I thank my parents for all of life, my friends and family for giving it color, and my wife Kate, for helping me relish in all of its grandeur. Beyond that, I’m not much for hierarchies of gratitude. I have had the great fortune to work within a constellation of fantastic people – you know who you are. iii TABLE OF CONTENTS DEDICATION................................................................................................................... ii ACKNOWLEDGEMENTS ............................................................................................ iii LIST OF FIGURES ......................................................................................................... vi LIST OF TABLES ......................................................................................................... xix ABSTRACT ..................................................................................................................... xx CHAPTER 1 Introduction ............................................................................................... 1 1.1. Context and Importance ....................................................................................... 1 1.2. Technical Background.......................................................................................... 3 1.3. Content Description............................................................................................ 16 1.4. References .......................................................................................................... 20 CHAPTER 2 Electrochemical Liquid Liquid Solid Epitaxial Crystal Growth of Single-Crystalline Germanium Nanowires at Room Temperature in Water ........... 22 2.1. Introduction ........................................................................................................ 22 2.2. Methods .............................................................................................................. 23 2.3. Results ................................................................................................................ 26 2.4. Discussion .......................................................................................................... 39 2.5. Conclusions ........................................................................................................ 42 2.6. References .......................................................................................................... 43 CHAPTER 3 Direct Aqueous Electrodeposition of Crystalline Germanium Microwire Films on Hard and Soft Conductive Substrates ........................................ 45 3.1. Introduction ........................................................................................................ 45 3.2. Methods .............................................................................................................. 47 3.3. Results ................................................................................................................ 51 3.4. Discussion .......................................................................................................... 73 3.5. Conclusions ........................................................................................................ 78 3.6. References .......................................................................................................... 80 CHAPTER 4 Electrodeposition of Crystalline GaAs on Liquid Gallium Electrodes in Aqueous Electrolytes ...................................................................................................... 82 4.1. Introduction ........................................................................................................ 82 4.2. Methods .............................................................................................................. 84 4.3. Results ................................................................................................................ 89 4.4. Discussion ........................................................................................................ 114 4.5. Conclusions ...................................................................................................... 120 4.6. References ........................................................................................................ 122 iv CHAPTER 5 Electrochemically-Gated Alloy Formation of Crystalline InAs Thin Films at Room Temperature in Aqueous Electrolytes .............................................. 125 5.1. Introduction ...................................................................................................... 125 5.2. Methods ............................................................................................................ 126 5.3. Results .............................................................................................................. 130 5.4. Discussion ........................................................................................................ 153 5.5. Conclusions ...................................................................................................... 159 5.6. References ........................................................................................................ 161 CHAPTER 6 Conclusions and Prospects for ec-LLS ................................................ 163 2.1. Conclusions ...................................................................................................... 163 2.2. Future Work ..................................................................................................... 164 2.3. References ........................................................................................................ 181 APPENDIX A – CAD Drawings .................................................................................. 183 v LIST OF FIGURES Figure 1.1. Drawings of (a) a conventional planar MOSFET device used commonly in integrated circuitry and (b) a 3D vertically-integrated nanowire transistor design that decreases the component’s areal footprint without compromising channel length or performance. ....................................................................................................................... 2 Figure 1.2. Free energy of crystal nucleation shown as a function of nuclei radius. Nuclei with radii smaller than the critical size are driven to dissolve, while larger nuclei represent a new phase more stable than the old phase. ...................................................................... 4 Figure 1.3. Schematic representations of select semiconductor crystal growth strategies including (a) liquid phase epitaxy, (b) vapor-liquid-solid or solution-liquid-solid growth, (c) vapor phase deposition, and (d) conventional electrodeposition. Not drawn to scale. 8 Figure 1.4. Comparing experimental setups for (a) LPE, (b) MBE, (c) electrodeposition. 9 Figure 1.5. General classification of different crystallization pathways. (a) is a high temperature reversible liquid phase crystallization like melt or solution-based growth, (b) is a high temperature reversible path from vapor, and (c) is low temperature irreversible mode like conventional electrodeposition. ....................................................................... 11 Figure 1.6. Schematic depictions of the experimental setup and steps (insets) of ec-LLS semiconductor crystal growth from (a) bulk and (b) nano/micro scale liquid metal droplet electrodes. Ec-LLS proceeds through (1) electrochemical reduction of a dissolved ionic precursor in the electrolyte solution followed by (2) dissolution of the zero-valent semiconductor into the liquid metal electrode. In (a), steps (3) and (4) highlight homogeneous nucleation and subsequent crystal growth, respectively. In (b), step (3) depicts heterogeneous nucleation at a crystal seed interface and subsequent layer by layer crystal growth. Not drawn to scale. .................................................................................. 13 Figure 1.7. Optical photographs of a bulk Hg(l) electrode (a) before and (b) after room temperature Ge ec-LLS at -2.7 V vs. Ag/AgCl from an aqueous electrolyte containing 0.05 M GeO2 and 0.01 M Na2B4O7. (c) Corresponding electron micrograph and powder X-ray diffraction pattern collected from the as-deposited material shown in b). Optical photographs of a bulk Ga(l) electrode (d) before and (e) after room temperature Ge ec-LLS at -1.6 V vs. Ag/AgCl from the same aqueous electrolyte as that used in (b). (f) Tilted vi electron micrograph and powder X-ray diffractogram (inset) of crystals produced in (e). Optical photographs of a bulk Ga(l) electrode (g) before and (h) after Si ec-LLS at 20 mA -2 cm for two hours at 100 °C from a propylene carbonate electrolyte with 0.5 M SiCl4 and 0.2 M TBACl. (i) Scanning electron micrograph and diffraction pattern (inset) of crystals produced in h). Scales are 2 mm for (a,b,d,e,g,h) and 1 µm for (c,f,i).. ........................... 15 Figure 2.1. (a)