Low Melting Point Alloys: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Safety Data Sheet According to 29CFR1910/1200 and GHS Rev
Safety Data Sheet according to 29CFR1910/1200 and GHS Rev. 3 Effective date : 02.11.2015 Page 1 of 6 Onions Fusible Alloy SECTION 1: Identification of the substance/mixture and of the supplier Product name: Onions Fusible Alloy Manufacturer/Supplier Trade name: Manufacturer/Supplier Article number: S25776A Recommended uses of the product and restrictions on use: Manufacturer Details: AquaPhoenix Scientific, Inc 9 Barnhart Drive, Hanover, PA 17331 (717) 632-1291 Supplier Details: Fisher Science Education 6771 Silver Crest Road, Nazareth, PA 18064 (724)517-1954 Emergency telephone number: Fisher Science Education Emergency Telephone No.: 800-535-5053 SECTION 2: Hazards identification Classification of the substance or mixture: Acute toxicity (oral, dermal, inhalation), category 4 Reproductive toxicity, category 1A Specific target organ toxicity following repeated exposure, category 2 Acute hazards to the aquatic environment, category 1 Chronic hazards to the aquatic environment, category 1 Hazard statements: Harmful if swallowed. Harmful if inhaled. May damage fertility or the unborn child. May cause damage to organs through prolonged or repeated exposure. Very toxic to aquatic life. Very toxic to aquatic life with long lasting effects. Precautionary statements: Wash skin thoroughly after handling. Do not eat, drink or smoke when using this product. Avoid release to the environment. Avoid breathing dust/fume/gas/mist/vapours/spray. Use only outdoors or in a well-ventilated area. Obtain special instructions before use. Do not handle until all safety precautions have been read and understood. Use personal protective equipment as required. Rinse mouth. IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. -
Electrical and Thermal Characteristics of Pb-Free Sn-Zn Alloys for an AC-Low Voltage Fuse Element
Materials Transactions, Vol. 48, No. 5 (2007) pp. 1105 to 1112 #2007 The Japan Institute of Metals EXPRESS REGULAR ARTICLE Electrical and Thermal Characteristics of Pb-Free Sn-Zn Alloys for an AC-Low Voltage Fuse Element Kazuhiro Matsugi1, Gen Sasaki1, Osamu Yanagisawa1, Yasuo Kumagai2 and Koji Fujii2 1Department of Mechanical Materials Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan 2The Chugoku Electric Power Co. Inc., Hiroshima 730-8701, Japan The temperature dependence of specific resistivity and thermal conductivity for some Sn-Zn alloys was measured to use their values in electrical and thermal calculations on the basis of Ohm’s and Fourier’s laws, in order to obtain the temperature-distribution in lead-free fuse elements of electric power line. The interaction between microstructures and their properties was also investigated in Sn-Zn alloys. Specific resistivity and thermal conductivity could be estimated as a function of temperature and alloy composition in the compositional ranges classified from the standpoint of continuity or non-continuity of constituent phases such as primary Zn, Sn-solid solution and eutectic in microstructures of Sn-1 to 100Zn alloys. In the proposed estimations, not only volume fraction of Zn and Sn-solid solution phases but morphologies of both phases were considered in Sn-Zn alloys. [doi:10.2320/matertrans.48.1105] (Received January 23, 2007; Accepted March 1, 2007; Published April 25, 2007) Keywords: specific resistivity, thermal conductivity, lead-free tin-zinc alloys, fuse element, -
Liquid Metal Cooled Reactors: Experience in Design and Operation
IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 IAEA-TECDOC-1569 Liquid Metal Cooled Reactors: Experience in Design and Operation December 2007 The originating Sections of this publication in the IAEA were: INIS and Nuclear Knowledge Management and Nuclear Power Technology Development Sections International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria LIQUID METAL COOLED REACTORS: EXPERIENCE IN DESIGN AND OPERATION IAEA, VIENNA, 2007 IAEA-TECDOC-1569 ISBN 978–92–0–107907–7 ISSN 1011–4289 © IAEA, 2007 Printed by the IAEA in Austria December 2007 FOREWORD In 2002, within the framework of the Department of Nuclear Energy’s Technical Working Group on Fast Reactors (TWG-FR), and according to the expressed needs of the TWG-FR Member States to maintain and increase the present knowledge and expertise in fast reactor science and technology, the IAEA established its initiative seeking to establish a comprehensive, international inventory of fast reactor data and knowledge. More generally, at the IAEA meeting of senior officials convened to address issues of nuclear knowledge management underlying the safe and economic use of nuclear science and technology (Vienna, 17–19 June 2002), there was widespread agreement that, for sustainability reasons for fissile sources and waste management, long-term development of nuclear power as a part of the world’s future energy mix will require the fast reactor technology. Furthermore, given the decline in fast reactor development projects, data retrieval and knowledge preservation efforts in this area are of particular importance. This consensus concluded from the recognition of immediate need gave support to the IAEA initiative for fast reactor data and knowledge presevation. -
(12) Patent Application Publication (10) Pub. No.: US 2006/0090474 A1 Sauciuc Et Al
US 20060090474A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0090474 A1 Sauciuc et al. (43) Pub. Date: May 4, 2006 (54) METHOD AND APPARATUS FOR Publication Classification REMOVING HEAT (51) Int. Cl. F2SB 2L/02 (2006.01) (76) Inventors: Ioan Sauciuc, Phoeniz, AZ (US); Jim F28D 5/00 (2006.01) D. Williams, Banks, OR (US) F25D 23/12 (2006.01) (52) U.S. Cl. ....................... 62/3.2: 62/259.2; 165/104.22 Correspondence Address: BLAKELY SOKOLOFFTAYLOR & ZAFMAN (57) ABSTRACT 124OO WILSHIRE BOULEVARD SEVENTH FLOOR A device includes a liquid metal and a ferrofluid contained LOS ANGELES, CA 90025-1030 (US) in a closed tube. Many electrode groups are connected to the closed tube. A feedback device is connected to the electrode (21) Appl. No.: 10/976,406 groups. The feedback device switches power to each elec trode group in series to circulate the liquid metal and move (22) Filed: Oct. 29, 2004 the ferrofluid in the closed tube. 200 210 -4220 Automatic feedback system and StartUp Circuit (2) (25 260 250 Patent Application Publication May 4, 2006 Sheet 1 of 7 US 2006/0090474 A1 20 FIG. 1A F.G. 1B (Prior Art) (Pr O Art) Patent Application Publication May 4, 2006 Sheet 2 of 7 US 2006/0090474 A1 200 - Automatic feedback system and StartUp Circuit 25 (25 240 E.iSE S3 ES 230 250 FIG. 2 Patent Application Publication May 4, 2006 Sheet 3 of 7 US 2006/0090474 A1 FIG. 3 Patent Application Publication May 4, 2006 Sheet 4 of 7 US 2006/0090474 A1 400 Determine Temperature Alternate power to electrode groups to move ferrofluid 420 Circulate liquid metal Dissipate heat within the liquid metal FIG. -
Fire Detection Fusible Links
9 FIRE DETECTION FUSIBLE LINKS A fusible link is a mechanical part that breaks at a preset temperature, they are used in fire detection system to open or close door, dampers, vents etc..., if ambient temperature rise upon a certain value. The professional solution: an extended, rational, and consistent range of products Technical catalogue for R&D department Edition 27/02/2013 JPC sas, 2 voie Gallo Romaine, ZAC de la Bonne Rencontre, 77860 Quincy Voisins, France Tel: +33(0)1 60046644 Fax: +33(0)1 60048444 E-Mail: [email protected] Web: www.jpcfrance.fr General Terms of Sales GENERAL: our sales are made under the here below terms of sales. Any contrary conditions provided by the buyer shall not be binding and shall not have any legal effect. The execution and delivery of any purchase order is made in conformity with the present general terms of sales and it is noted that the buyer first has full knowledge of these terms. In case of dispute on any of the herein below terms, we will consider ourselves as completely free from any contract related to the execution of any pending order. If some specific conditions are stated by the buyer, these conditions will be considered by us as a formal acceptance only after our written consent. ORDER: we will commit only on orders for which an order acknowledgement has been issued. The sale is regarded executed at the date of order acceptance by JPC. Any cessation or cancellation of pending orders, for whatever reasons, cannot be accepted by JPC without a compensation equal to the ordered goods value. -
Liquid-Based Reconfigurable Antenna Technology
sensors Review Liquid-Based Reconfigurable Antenna Technology: Recent Developments, Challenges and Future Habshah Abu Bakar 1, Rosemizi Abd Rahim 2,* , Ping Jack Soh 2,3 and Prayoot Akkaraekthalin 4,* 1 Department of Electrical Engineering, Politeknik Sultan Abdul Halim Muadzam Shah, Jitra 06000, Kedah, Malaysia; [email protected] 2 Faculty of Electronic Engineering Technology, Pauh Putra Campus, Universiti Malaysia Perlis, Pauh 02600, Perlis, Malaysia; [email protected] 3 Advanced Communication Engineering (ACE) Centre of Excellence, Universiti Malaysia Perlis, Kangar 01000, Perlis, Malaysia 4 Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518 Pracharat 1 Rd., Wongsawang, Bangsue, Bangkok 10800, Thailand * Correspondence: [email protected] (R.A.R.); [email protected] (P.A.) Abstract: Advances in reconfigurable liquid-based reconfigurable antennas are enabling new pos- sibilities to fulfil the requirements of more advanced wireless communication systems. In this review, a comparative analysis of various state-of-the-art concepts and techniques for designing reconfigurable antennas using liquid is presented. First, the electrical properties of different liquids at room temperature commonly used in reconfigurable antennas are identified. This is followed by a discussion of various liquid actuation techniques in enabling high frequency reconfigurability. Next, the liquid-based reconfigurable antennas in literature used to achieve -
Solder Alloy Directory Indalloy® Specialty Alloys Sorted by Temperature
Solder Alloy Directory Indalloy® Specialty Alloys Sorted by Temperature Coefficient Temperature °C (°F) Density Electrical Thermal of Thermal Latent Specific Heat Elemental Conductivity Conductivity Expansion Tensile Shear Young’s Heat of ® Indalloy Composition (1.72µohms-cm) @ 85°C @ 20°C Strength Strength Modulus Elongation Brinell Fusion SOLID LIQUID Number Liquidus Solidus (% By Mass) lb/in3 gm/cm3 % of IACS W/cm-° C PPM/° C PSI PSI PSI x 10 6 % Hardness J/g J/g- ° C J/g- ° C Comments 61.0Ga/25.0In/ 46L 8 (46) 7 (44) 0.2348 6.50 Liquid metal used as a replacement for mercury 13.0Sn/1.0Zn 66.5Ga/20.5In/ 51E 11 (52) E 0.2283 6.32 13.0Sn 60 16 (60) E 75.5Ga/24.5In 0.2294 6.35 62.5Ga/21.5In/ 51 17 (63) 11 (51) 0.2348 6.50 16.0Sn 77 25 (77) 16 (60) 95.0Ga/5.0In 0.2222 6.15 14 30 (86) MP 100.0Ga 0.2133 5.90 42.9Bi/21.7Pb/ 15 43 (109) 38 (100) 18.3In/8.0Sn/ 0.3353 9.28 5.1Cd/4.0Hg 44.7Bi/22.6Pb/ 117 47 (117) E 19.1In/8.3Sn/ 0.3310 9.16 4.5 .15 25 5400 37.5 note 4 16.5 note1 36.8 0.163 0.197 See Table 1 5.3Cd 44.7Bi/22.6Pb/ 16 52 (126) 47 (117) 16.1In/11.3Sn/ 0.3310 9.16 5.3Cd 49.1Bi/20.9In/ 17 56 (133) 54 (129) 17.9Pb/11.6Sn/ 0.3255 9.01 0.5Cd 49.0Bi/21.0In/ Poor wettability but adequate for mechanical joining of metallic substrates when highly active flux is 136 58 (136) E 0.3255 9.01 2.43 .10 23 6300 20 note 4 16.5 note1 28.9 0.167 0.201 18.0Pb/12.0Sn used. -
A Complete Interfacial System Solution for Liquid Metal Electronics
A Complete Interfacial System Solution for Liquid Metal Electronics A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Materials Science & Engineering of the College of Engineering & Applied Science by Sarah E. Holcomb B.S., Rensselaer Polytechnic Institute, 2013 Committee Chair: Jason C. Heikenfeld, Ph.D. Abstract Liquid metal electronic devices have numerous advantages over traditional solid devices such as the ability to be flexed and stretched or reconfigured. Examples of such devices are wires, switches, polarizers, and antennas. Previously, mercury has been used as the room temperature liquid metal of choice but has been recently replaced by gallium liquid metal alloys (GaLMAs) which are non-toxic, have extremely low vapor pressures, and can remain liquid at temperatures as low as -19°C. A key difference in the performance of GaLMAs vs. mercury is the mechanically stabilizing, passivating oxide which forms instantly on the surface of GaLMAs in as little as 1 ppm oxygen environments. This oxide presents a significant challenge for reconfigurable device applications because it “sticks” to most surfaces, preventing reversible shape change, which alters the desired electrical performance. Proposed here are two novel methods of overcoming this challenge. These methods enable new capabilities for reconfigurable electronic devices. The first approach involves removing the oxide in situ as it is continuously formed in all practically achievable device environments. Oxide removal is commonly done through the use of hydrochloric acid (aqueous or vapor), which reacts with the gallium oxide to produce gallium chloride, which is not mechanically stabilizing, and water. -
Study of Electrochemical Properties of Liquid Gallium
University of Wollongong Research Online University of Wollongong Thesis Collection 2017+ University of Wollongong Thesis Collections 2017 Study of electrochemical properties of liquid gallium Yuchen Chen University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses1 University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Chen, Yuchen, Study of electrochemical properties of liquid gallium, Master of Philosophy thesis, Institute for Superconducting and Electronic Materials, University of Wollongong, 2017. https://ro.uow.edu.au/ theses1/14 Research Online is the open access institutional repository for the University of Wollongong. -
Tuning Surface Texture of Liquid Metal Particles by Exploiting Material Metastability Joel Cutinho Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 Tuning surface texture of liquid metal particles by exploiting material metastability Joel Cutinho Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Materials Science and Engineering Commons, and the Mechanics of Materials Commons Recommended Citation Cutinho, Joel, "Tuning surface texture of liquid metal particles by exploiting material metastability" (2017). Graduate Theses and Dissertations. 16118. https://lib.dr.iastate.edu/etd/16118 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tuning surface texture of liquid metal particles by exploiting material metastability by Joel Cutinho A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Materials Science and Engineering Program of Study Committee: Martin Thuo, Major Professor Shan Jiang Jaime Juarez The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred Iowa State University Ames, Iowa 2017 Copyright © Joel Cutinho, 2017. All rights reserved. ii DEDICATION I dedicate this work primarily to my family, who have taught me to believe in God, myself and follow my desires. -
Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics
IAEA-TECDOC-1520 Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics Proceedings of a technical meeting held in Karlsruhe, Germany, 28–31 October 2003 October 2006 IAEA-TECDOC-1520 Theoretical and Experimental Studies of Heavy Liquid Metal Thermal Hydraulics Proceedings of a technical meeting held in Karlsruhe, Germany, 28–31 October 2003 October 2006 The originating Section of this publication in the IAEA was: Radiation and Transport Safety Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria THEORETICAL AND EXPERIMENTAL STUDIES OF HEAVY LIQUID METAL THERMAL HYDRAULICS IAEA, VIENNA, 2006 IAEA-TECDOC-1520 ISBN 92–0–111806–6 ISSN 1011–4289 © IAEA, 2006 Printed by the IAEA in Austria October 2006 FOREWORD Through the Nuclear Energy Department’s Technical Working Group on Fast Reactors (TWG-FR), the IAEA provides a forum for exchange of information on national programmes, collaborative assessments, knowledge preservation, and cooperative research in areas agreed by the Member States with fast reactor and partitioning and transmutation development programmes (e.g. accelerator driven systems (ADS)). Trends in advanced fast reactor and ADS designs and technology development are periodically summarized in status reports, symposia, and seminar proceedings prepared by the IAEA to provide all interested IAEA Member States with balanced and objective information. The use of heavy liquid metals (HLM) is rapidly diffusing in different research and industrial fields. The detailed knowledge of the basic thermal hydraulics phenomena associated with their use is a necessary step for the development of the numerical codes to be used in the engineering design of HLM components. -
Chapter 8: Ionic Compounds
210-239_Ch08-866418 5/8/06 5:22 PM Page 210 CHAPTER 8 Ionic Compounds Chemistry 1.d, 1.g, 1.i, 2.a, 2.c, 2.e, 7.b I&E 1.b, 1.c, 1.d, 1.l What You’ll Learn ▲ You will define a chemical bond. ▲ You will describe how ions form. ▲ You will identify ionic bonding and the character- istics of ionic compounds. ▲ You will name and write formulas for ionic compounds. ▲ You will relate metallic bonds to the characteristics of metals. Why It’s Important The world around you is com- posed mainly of compounds. The properties of each com- pound are based on how the compound is bonded. The salts dissolved in Earth’s oceans and the compounds that make up most of Earth’s crust are held together by ionic bonds. Visit the Chemistry Web site at chemistrymc.com to find links about ionic compounds. The rock surface, the climbers’ equipment, the atmosphere, and even the climbers are composed almost entirely of compounds and mixtures of compounds. 210 Chapter 8 210-239_Ch08-866418 5/8/06 5:22 PM Page 211 DISCOVERY LAB An Unusual Alloy ost metals that you encounter are solids. Can a metal melt at a Mtemperature below the boiling point of water? You will use a metal alloy called Onion’s Fusible Alloy to answer this question. Safety Precautions Use caution around the heat source and the heated beaker and its contents. Procedure 1. Carefully place a small piece of Onion’s Fusible Alloy into a 250-mL beaker.