Strepsiptera: Xenidae) Have Green- and UV-Sensitive Photoreceptors Marisano James1, Sri Pratima Nandamuri2,*, Aaron Stahl2 and Elke K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Midgut Ultrastructure of the Endoparasite Xenos
Arthropod Structure & Development 36 (2007) 183e197 www.elsevier.com/locate/asd The midgut ultrastructure of the endoparasite Xenos vesparum (Rossi) (Insecta, Strepsiptera) during post-embryonic development and stable carbon isotopic analyses of the nutrient uptake Fabiola Giusti a, Luigi Dallai b, Laura Beani c, Fabio Manfredini a, Romano Dallai a,* a Dipartimento di Biologia Evolutiva, University of Siena, Via A. Moro 2, 53100 Siena, Italy b CNR-Ist. Geoscienze e Georisorse, Via Moruzzi 1, 56124 Pisa, Italy c Dipartimento di Biologia Animale e Genetica ‘‘Leo Pardi’’, University of Florence, Via Romana 17, 50125 Florence, Italy Received 31 October 2006; received in revised form 9 January 2007 Abstract Females of the endoparasite Xenos vesparum (Strepsiptera, Stylopidae) may survive for months inside the host Polistes dominulus (Hyme- noptera, Vespidae). The midgut structure and function in larval instars and neotenic females has been studied by light and electron microscope and by stable carbon isotopic technique. The 1st instar larva utilizes the yolk material contained in the gut lumen, whereas the subsequent larval instars are actively involved in nutrient uptake from the wasp hemolymph and storage in the adipocytes. At the end of the 4th instar, the neotenic female extrudes with its anterior region from the host; the midgut progressively degenerates following an autophagic cell death program. First the midgut epithelial cells accumulate lamellar bodies and then expel their nuclei into the gut lumen; the remnant gut consists of a thin epithe- lium devoid of nuclei but still provided with intercellular junctions. We fed the parasitized wasps with sugar from different sources (beet or cane), characterized by their distinctive carbon isotope compositions, and measured the bulk 13C/12C ratios of both wasps and parasites. -
A New Species of the Paper Wasp Genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe Revealed by Morphometrics and Molecular Analyses
A peer-reviewed open-access journal ZooKeys 400:A 67–118new species (2014) of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae)... 67 doi: 10.3897/zookeys.400.6611 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research A new species of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe revealed by morphometrics and molecular analyses Rainer Neumeyer1,†, Hannes Baur2,‡, Gaston-Denis Guex3,§, Christophe Praz4,| 1 Probsteistrasse 89, CH-8051 Zürich, Switzerland 2 Abteilung Wirbellose Tiere, Naturhistorisches Museum der Burgergemeinde Bern, Bernastrasse 15, CH-3005 Bern, Switzerland 3 Institute of Evolutionary Biology and Environmental Studies, Field Station Dätwil, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland 4 Evolutionary Entomology, Institute of Biology, University of Neuchatel, Emile-Argand 11, CH-2000 Neuchâtel, Switzerland † http://zoobank.org/B0BFC898-8FDF-4E01-8657-CBADE08292D3 ‡ http://zoobank.org/76BB8FCD-3EC9-4774-8FF3-194D57A8A905 § http://zoobank.org/D038CAA8-4662-4BD9-931A-C0FD5FC623D8 | http://zoobank.org/0718546C-5D1A-44D4-921C-C7EA0C11BE0A Corresponding author: Rainer Neumeyer ([email protected]) Academic editor: M. Buffington | Received 13 November 2013 | Accepted 18 March 2014 | Published 11 April 2014 http://zoobank.org/91DC4784-F49A-4353-B4C8-DC0F67B1EF92 Citation: Neumeyer R, Baur H, Guex G-D, Praz C (2014) A new species of the paper wasp genus Polistes (Hymenoptera, Vespidae, Polistinae) in Europe revealed by morphometrics and molecular analyses. ZooKeys 400: 67–118. doi: 10.3897/ zookeys.400.6611 Abstract We combine multivariate ratio analysis (MRA) of body measurements and analyses of mitochondrial and nuclear data to examine the status of several species of European paper wasps (Polistes Latreille, 1802) closely related to P. -
UFRJ a Paleoentomofauna Brasileira
Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004). -
The Female Cephalothorax of Xenos Vesparum Rossi, 1793 (Strepsiptera: Xenidae) 327-347 75 (2): 327 – 347 8.9.2017
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2017 Band/Volume: 75 Autor(en)/Author(s): Richter Adrian, Wipfler Benjamin, Beutel Rolf Georg, Pohl Hans Artikel/Article: The female cephalothorax of Xenos vesparum Rossi, 1793 (Strepsiptera: Xenidae) 327-347 75 (2): 327 – 347 8.9.2017 © Senckenberg Gesellschaft für Naturforschung, 2017. The female cephalothorax of Xenos vesparum Rossi, 1793 (Strepsiptera: Xenidae) Adrian Richter, Benjamin Wipfler, Rolf G. Beutel & Hans Pohl* Entomology Group, Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich-Schiller-Universität Jena, Erbert- straße 1, 07743 Jena, Germany; Hans Pohl * [[email protected]] — * Corresponding author Accepted 16.v.2017. Published online at www.senckenberg.de/arthropod-systematics on 30.viii.2017. Editors in charge: Christian Schmidt & Klaus-Dieter Klass Abstract The female cephalothorax of Xenos vesparum (Strepsiptera, Xenidae) is described and documented in detail. The female is enclosed by exuvia of the secondary and tertiary larval stages and forms a functional unit with them. Only the cephalothorax is protruding from the host’s abdomen. The cephalothorax comprises the head and thorax, and the anterior half of the first abdominal segment. Adult females and the exuvia of the secondary larva display mandibles, vestigial antennae, a labral field, and a mouth opening. Vestiges of maxillae are also recognizable on the exuvia but almost completely reduced in the adult female. A birth opening is located between the head and prosternum of the exuvia of the secondary larva. A pair of spiracles is present in the posterolateral region of the cephalothorax. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Hymenoptera: Vespidae, Polistinae)
Phylogenetic Relationships among European Polistes and the Evolution ofSocial Parasitism (Hymenoptera: Vespidae, Polistinae) James M. CARPENTER Department ofEntomology, American Museum ofNatural History, Central Park West at 79th Street, New York, NY 10024, U.S.A. ABSTRACT Cladistic analysis of the European species ofPolistes is used to investigate the evolution .of social parasitism in the genus. The three species of social parasites (formerly the genus Sulcopolistes) are all inquilines: lacking a worker caste, and dependent on uSUIping the colony ofa host species to obtain a worker force. El:vlERY'S Rule states that social parasites are more closely related to their hosts than to any other species. Previously published allozyme (CARPENTER et aI., 1993) and mtDNA (CHOUDHARY et aI., 1994) data did not support this hypothesis, but did not resolve relationships among the species of social parasites. Morphological characters are adduced which resolve the phylogenetic relationships among these three species, and the combination of the morphological and molecular data sets largely resolves the relationships among all nine European species. Cladistic optimization oftraits associated with social parasitism on the resulting cladogram shows: (1) El:vlERy's'Rule is rejected; (2) the scenario proposed by TAYLOR (1939) for the evolution of social parasitism is not supported either. The predatory behavior ofthe inquiline P. atn"mandibularis, with separate "supply" and "nursery" nests, is evidently secondary, as .. is its initially passive invasion behavior. - La phylogenie des Polistes d'Europe et revolution du parasitisme social (Hymenoptera: Vespidae, Polistinae) L'analyse cladistique des especes de Polistes europeennes est utilisee pour etudier l'evolution du parasitisme social dans Ie geme. -
Ireland's Biodiversity in 2010
Biodiversity in 2010 State of Knowledge Ireland’s Biodiversity in 2010: State of Knowledge Editors: Úna FitzPatrick, Eugenie Regan and Liam Lysaght Citation: FitzPatrick, Ú., Regan, E. and Lysaght, L. (editors)(2010) Ireland’s Biodiversity in 2010: State of Knowledge. National Biodiversity Data Centre, Waterford. © National Biodiversity Data Centre 2010 ISBN 978-1-906304-15-7 Contents Foreword 1 Introduction 3 Habitats (non-marine) 7 Vegetation 8 Fungi 9 Lichens 11 Bryophytes 12 Algae 13 Vascular plants 15 Non-insect invertebrates 17 Insects 21 Tunicates & lancelets 24 Marine fishes 25 Freshwater fishes 27 Amphibians & reptiles 29 Birds 31 Land mammals 33 Bats 34 Marine mammals 35 References 36 Appendix 41 The National Biodiversity Data Centre is an initiative of the Heritage Council and is operated under a service level agreement by Compass Informatics. The Centre is funded by the Department of the Environment, Heritage and Local Government. Foreword Dr Liam Lysaght Ireland, along with its EU partners, agreed to ‘Halt biodiversity loss by 2010’. Before we can halt biodiversity loss, we need to have some understanding of what that biodiversity resource is. As a contribution to this target, and to mark International Year of Biodiversity 2010, the National Biodiversity Data Centre set out to produce an overview of the state of knowledge on Ireland’s biodiversity. The scope of this task relates only to knowledge on what species and habitats occur in Ireland, how they are distributed, and how their range and/or populations are changing. Ecosystem function and conservation management are outside the remit of the Centre thus are not addressed in this document. -
By Stylops (Strepsiptera, Stylopidae) and Revised Taxonomic Status of the Parasite
A peer-reviewed open-access journal ZooKeys 519:Rediscovered 117–139 (2015) parasitism of Andrena savignyi Spinola (Hymenoptera, Andrenidae)... 117 doi: 10.3897/zookeys.519.6035 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Rediscovered parasitism of Andrena savignyi Spinola (Hymenoptera, Andrenidae) by Stylops (Strepsiptera, Stylopidae) and revised taxonomic status of the parasite Jakub Straka1, Abdulaziz S. Alqarni2, Katerina Jůzová1, Mohammed A. Hannan2,3, Ismael A. Hinojosa-Díaz4, Michael S. Engel5 1 Department of Zoology, Charles University in Prague, Viničná 7, CZ-128 44 Praha 2, Czech Republic 2 Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Kingdom of Saudi Arabia 3 Current address: 6-125 Cole Road, Guelph, Ontario N1G 4S8, Canada 4 Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, DF, Mexico 5 Division of Invertebrate Zoology (Entomology), American Museum of Natural Hi- story; Division of Entomology, Natural History Museum, and Department of Ecology and Evolutionary Biology, 1501 Crestline Drive – Suite 140, University of Kansas, Lawrence, Kansas 66045-4415, USA Corresponding authors: Jakub Straka ([email protected]); Abdulaziz S. Alqarni ([email protected]) Academic editor: Michael Ohl | Received 29 April 2015 | Accepted 26 August 2015 | Published 1 September 2015 http://zoobank.org/BEEAEE19-7C7A-47D2-8773-C887B230C5DE Citation: Straka J, -
Sperm Cells of a Primitive Strepsipteran
Insects 2013, 4, 463-475; doi:10.3390/insects4030463 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Article Sperm Cells of a Primitive Strepsipteran James B. Nardi 1,*, Juan A. Delgado 2, Francisco Collantes 2, Lou Ann Miller 3, Charles M. Bee 4 and Jeyaraney Kathirithamby 5 1 Department of Entomology, University of Illinois, 320 Morrill Hall, 505 S. Goodwin Avenue, Urbana, IL 61801, USA 2 Department of Zoology and Physical Anthropology, Faculty of Biology, University of Murcia, Murcia 30100, Spain; E-Mails: [email protected] (J.A.D.); [email protected] (F.C.) 3 Biological Electron Microscopy, Frederick Seitz Materials Research Laboratory, Room 125, University of Illinois, 104 South Goodwin Avenue, Urbana, IL 61801, USA; E-Mail: [email protected] 4 Imaging Technology Group, Beckman Institute for Advanced Science and Technology, University of Illinois, 405 N. Mathews Avenue, Urbana, IL 61801, USA; E-Mail: [email protected] 5 Department of Zoology, South Parks Road, Oxford OX1 3PS, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-217-333-6590; Fax: +1-217-244-3499. Received: 1 July 2013; in revised form: 7 August 2013 / Accepted: 15 August 2013 / Published: 4 September 2013 Abstract: The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera²the order now considered the most closely related to Strepsiptera based on recent genomic evidence. -
Entomological Society of America
ENTOMOLOGICAL SOCIETY OF AMERICA 10001 Derekwood Lane, Suite 100, Lanham, MD 20706-4876 Phone: (301) 731-4535 • Fax: (301) 731-4538 E-mail: [email protected] • http://www.entsoc.org Proposal Form for new Common Name or Change of ESA-Approved Common Name Complete this form and send or e-mail to the above address. Submissions will not be considered unless this form is filled out completely. The proposer is expected to be familiar with the rules, recommendations, and procedures outlined in the “Use and Submission of Common Names” on the ESA website and with the discussion by A.B. Gurney, 1953, Journal of Economic Entomology 46:207-211. 1. Proposed new common name: European paper wasp 2. Previously approved common name (if any): None 3. Scientific name (genus, species, author): Polistes dominula (Christ) Order: Hymenoptera Family: Vespidae Supporting Information 4. Reasons supporting the need for the proposed common name: Since its introduction into North America (ca. 1968 New Jersey, ca. 1976 Boston area), this vespid has become widespread throughout the northern half of the United States and southern Canada. It some locations it has become the dominant Polistes species and a very visible insect in yards and gardens. 5. Stage or characteristic to which the proposed common name refers: “Paper wasp” refers to its habit of constructing a multi-celled umbrella-form nest. This is typical of Polistes spp., including those currently recognized as “paper wasps” in the ESA Common Names listing (e.g., Polistes aurifer/golden paper wasp, Polistes olivaceous/Macao paper wasp). This insect is native to Europe and a recent colonizer of North America. -
Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4