Twisted Winged Endoparasitoids an Enigma for Entomologists
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternative Transmission Patterns in Independently Acquired Nutritional Co-Symbionts of Dictyopharidae Planthoppers
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.07.438848; this version posted April 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Alternative transmission patterns in independently acquired nutritional co-symbionts of Dictyopharidae planthoppers Anna Michalik1*, Diego C. Franco2, Michał Kobiałka1, Teresa Szklarzewicz1, Adam Stroiński3, Piotr Łukasik2 1Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland 2Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland 3Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland Abstract Keywords: planthoppers, nutritional endosymbiosis, Sap-sucking hemipterans host specialized, heritable transovarial transmission microorganisms that supplement their unbalanced diet with essential nutrients. These microbes show unusual features Significance statement that provide a unique perspective on the evolution of life but Sup-sucking hemipterans host ancient heritable have not been systematically studied. Here, we combine microorganisms that supplement their unbalanced diet with microscopy with high-throughput sequencing to revisit 80- essential nutrients, and which have repeatedly been year-old reports on the diversity of symbiont transmission complemented or replaced by other microorganisms. They modes in a broadly distributed planthopper family need to be reliably transmitted to subsequent generations Dictyopharidae. We show that in all species examined, the through the reproductive system, and often they end up using ancestral nutritional endosymbionts Sulcia and Vidania are the same route as the ancient symbionts. -
Abacca Mosaic Virus
Annex Decree of Ministry of Agriculture Number : 51/Permentan/KR.010/9/2015 date : 23 September 2015 Plant Quarantine Pest List A. Plant Quarantine Pest List (KATEGORY A1) I. SERANGGA (INSECTS) NAMA ILMIAH/ SINONIM/ KLASIFIKASI/ NAMA MEDIA DAERAH SEBAR/ UMUM/ GOLONGA INANG/ No PEMBAWA/ GEOGRAPHICAL SCIENTIFIC NAME/ N/ GROUP HOST PATHWAY DISTRIBUTION SYNONIM/ TAXON/ COMMON NAME 1. Acraea acerata Hew.; II Convolvulus arvensis, Ipomoea leaf, stem Africa: Angola, Benin, Lepidoptera: Nymphalidae; aquatica, Ipomoea triloba, Botswana, Burundi, sweet potato butterfly Merremiae bracteata, Cameroon, Congo, DR Congo, Merremia pacifica,Merremia Ethiopia, Ghana, Guinea, peltata, Merremia umbellata, Kenya, Ivory Coast, Liberia, Ipomoea batatas (ubi jalar, Mozambique, Namibia, Nigeria, sweet potato) Rwanda, Sierra Leone, Sudan, Tanzania, Togo. Uganda, Zambia 2. Ac rocinus longimanus II Artocarpus, Artocarpus stem, America: Barbados, Honduras, Linnaeus; Coleoptera: integra, Moraceae, branches, Guyana, Trinidad,Costa Rica, Cerambycidae; Herlequin Broussonetia kazinoki, Ficus litter Mexico, Brazil beetle, jack-tree borer elastica 3. Aetherastis circulata II Hevea brasiliensis (karet, stem, leaf, Asia: India Meyrick; Lepidoptera: rubber tree) seedling Yponomeutidae; bark feeding caterpillar 1 4. Agrilus mali Matsumura; II Malus domestica (apel, apple) buds, stem, Asia: China, Korea DPR (North Coleoptera: Buprestidae; seedling, Korea), Republic of Korea apple borer, apple rhizome (South Korea) buprestid Europe: Russia 5. Agrilus planipennis II Fraxinus americana, -
Based on Comparative Morphological Data AF Emel'yanov Transactions of T
The phylogeny of the Cicadina (Homoptera, Cicadina) based on comparative morphological data A.F. Emel’yanov Transactions of the All-Union Entomological Society Morphological principles of insect phylogeny The phylogenetic relationships of the principal groups of cicadine* insects have been considered on more than one occasion, commencing with Osborn (1895). Some phylogenetic schemes have been based only on data relating to contemporary cicadines, i.e. predominantly on comparative morphological data (Kirkaldy, 1910; Pruthi, 1925; Spooner, 1939; Kramer, 1950; Evans, 1963; Qadri, 1967; Hamilton, 1981; Savinov, 1984a), while others have been constructed with consideration given to paleontological material (Handlirsch, 1908; Tillyard, 1919; Shcherbakov, 1984). As the most primitive group of the cicadines have been considered either the Fulgoroidea (Kirkaldy, 1910; Evans, 1963), mainly because they possess a small clypeus, or the cicadas (Osborn, 1895; Savinov, 1984), mainly because they do not jump. In some schemes even the monophyletism of the cicadines has been denied (Handlirsch, 1908; Pruthi, 1925; Spooner, 1939; Hamilton, 1981), or more precisely in these schemes the Sternorrhyncha were entirely or partially depicted between the Fulgoroidea and the other cicadines. In such schemes in which the Fulgoroidea were accepted as an independent group, among the remaining cicadines the cicadas were depicted as branching out first (Kirkaldy, 1910; Hamilton, 1981; Savinov, 1984a), while the Cercopoidea and Cicadelloidea separated out last, and in the most widely acknowledged systematic scheme of Evans (1946b**) the last two superfamilies, as the Cicadellomorpha, were contrasted to the Cicadomorpha and the Fulgoromorpha. At the present time, however, the view affirming the equivalence of the four contemporary superfamilies and the absence of a closer relationship between the Cercopoidea and Cicadelloidea (Evans, 1963; Emel’yanov, 1977) is gaining ground. -
The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H. -
A New Species of the Genus Euricania Melichar
Zootaxa 4033 (1): 137–143 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.4033.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:8A95CF0B-BCD9-4D34-AD74-F1C3DA4616D6 A new species of the genus Euricania Melichar, 1898 (Hemiptera: Fulgoromorpha: Ricaniidae) from China, with a world checklist and a key to all species recorded for the country LAN-LAN REN1, ADAM STROIŃSKI2 & DAO-ZHENG QIN1,* 1Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education; Entomological Museum, North- west A&F University, Yangling, Shaanxi 712100, China 2Museum and Institute of Zoology, Polish Academy of Sciences, 64, Wilcza Street, 00-679 Warsaw, Poland 3Corresponding author. E-mail: [email protected] Abstract One new species of the planthopper genus Euricania Melichar, 1898 – E. paraclara sp. nov. is described from Guizhou (southwest China). A checklist of all Euricania species and an identification key to the species of the Chinese fauna are provided. Photographs of the adult and illustrations of male and female genitalia of the new species are also given. Key words: Fulgoroidea, planthopper, taxonomy, key, checklist Introduction The planthopper genus Euricania (Hemiptera: Ricaniidae) was established by Melichar (1898a) with the type species Pochazia ocellus Walker, 1851 designated subsequently by Distant (1906). It is a relatively large genus in the family Ricaniidae with 36 species and subspecies (Bourgoin 2015), widely distributed in the southeastern Palaearctic (China, Japan), Oriental Region (India, Bangladesh, Indonesia, Malaysia, Taiwan), New Guinea, Solomon Islands, Vanuatu, Fiji and North Australia (Fletcher 2008). -
Insects & Spiders of Kanha Tiger Reserve
Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal. -
UFRJ a Paleoentomofauna Brasileira
Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004). -
First Record of Nearctic Issid Planthopper Thionia Simplex (Hemiptera: Fulgoroidea: Issidae) from Europe
238 V.M. GNEZDILOV & F. POGGI. FIRST RECORD OF THIONIA SIMPLEX FROM EUROPE Figs 1–3. Thionia simplex (Germar, 1830), male, Italy. 1, dorsal view; 2, lateral view; 3, frontal view. Total length of specimen is 5.2 mm. ZOOSYSTEMATICA ROSSICA, 23(2): 238–241 25 DECEMBER 2014 First record of Nearctic issid planthopper Thionia simplex (Hemiptera: Fulgoroidea: Issidae) from Europe Первое указание неарктической иссиды Thionia simplex (Hemiptera: Fulgoroidea: Issidae) из Европы V.M. GNEZDILOV* & F. POGGI В.М. ГНЕЗДИЛОВ & Ф. ПОДЖИ V.M. Gnezdilov, Zoological Institute of the Russian Academy of Sciences, 1 Universitetskaya Emb., St Petersburg 199034, Russia. E-mails: [email protected], [email protected] F. Poggi, Via Madonnina 6, I-23873 Missaglia (LC), Italia. E-mail: [email protected] The Nearctic issid species Thionia simplex (Germar, 1830) is recorded for the first time from Europe. Other alien Auchenorrhyncha species in Europe are listed and discussed. Неарктическая иссида Thionia simplex (Germar, 1830) впервые указана из Европы. Пере- числены и обсуждены другие случаи завозов в Европу цикадовых. Key words: alien species, U.S.A., Europe, Italy, Auchenorrhyncha, Fulgoroidea, Issidae, Issini, planthopper, new record Ключевые слова: инвазивный вид, США, Европа, Италия, Auchenorrhyncha, Fulgoroi- dea, Issidae, Issini, фулгороидные цикадовые, новое указание INTRODUCTION description (including of the male genita- lia) given by Doering (1938). Italy has become the “gateway for New Thionia simplex (Germar, 1830) was de- World planthoppers in Europe” since the scribed from Kentucky in U.S.A. (Germar, last century as several species which are 1830). Currently this species is recorded adventive for Europe were first recorded from 19 states in eastern U.S.A. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
(Rhyparochromus Littoralis Dist.) (Heteroptera: Lygaeidae) on Groundnut in Yola, Adamawa State – Nigeria
IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) ISSN: 2319-2380, ISBN: 2319-2372. Volume 1, Issue 6 (Nov. - Dec. 2012), PP 53-57 www.iosrjournals.org Biology of the Groundnut Sucking Bug (Rhyparochromus Littoralis Dist.) (Heteroptera: Lygaeidae) On Groundnut in Yola, Adamawa State – Nigeria 1Samaila, A. E. And 2Malgwi, A. M. 1School of Agricultural Entrepreneurship, Benue Valley Farms, Vinde P.O. Box 1200 Yola, Adamawa State 2Department of Crop Protection, School of Agric & Agric. Technology Modibbo Adama University of Technology, Yola Adamawa State Abstract: Groundnut sucking bug, Rhyparochromus litotoralis (Dist.), is one of the most important post- harvest field insect pests of groundnut in Northern Nigeria. The biology of R. littoralis was studied under laboratory conditions at temperature range of 30 – 330C on freshly harvested groundnut with its leaves and haulms while making notable observations as well on the groundnut fields. This study was conducted in Yola, Adamawa State during 2010 and 2011 seasons to investigate the insect life history and damage caused by R. littoralis on groundnut. Duration of each of the developmental stages of the pest was determined in laboratory. The results indicated that egg incubation period was 4.0 ± 0.15 days, while the respective nymphal duration from the 1st , to the 6th instar were 1.65 ± 0.11,5.3 ± 0.18, 5.25 ± 0.14, 5.0 ± 0.25, 4.35 ± 0.26 and 4.0 ± 0.18 days, respectively. The developmental period from egg to adult stage was 30.1 ± 0.42 days. The lifespan of adult female and male was 18.2 ± 0.38 and 8.80 ± 0.36 days, respectively. -
(Hemiptera: Heteroptera: Cydnidae) from Caribbean
Advances in Entomology, 2014, 2, 87-91 Published Online April 2014 in SciRes. http://www.scirp.org/journal/ae http://dx.doi.org/10.4236/ae.2014.22015 A New Species of Dallasiellus Berg (Hemiptera: Heteroptera: Cydnidae) from Caribbean Leonel Marrero Artabe1*, María C. Mayorga Martínez2 1University of Matanzas, Matanzas, Cuba 2Institute of Biology, Universidad Nacional Autónoma de México (UNAM), México City, México Email: *[email protected] Received 7 February 2014; revised 21 March 2014; accepted 1 April 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The genus Dallasiellus Berg (Hemiptera: Cydnidae) is revised with the description of a new species from Caribbean, Dallasiellus varaderensis nov. sp. A diagnosis of species is based on external morphology of males and genitalia examination. Dorsal view of adults and parameres are illu- strated. Notes about their biology and host plants are briefly discussed. Keywords Burrower Bugs, Dallasiellus, New Species, Diagnoses, Turfgrass, Caribbean 1. Introduction Members of the Cydnidae family are called burrowing bugs; more than 88 genera and about 680 species are recorded [1]. They have generally been considered of little economic importance, but up to date almost 30 spe- cies have been reported as pests [2]-[4]. Some species causing damages on turfgrass in a Golf Club from Carib- bean have been detected recently [5]. However, the biological information about these insects is not very well-known yet. One of the most important studies of this group was the Revision of the Western Hemisphere fauna of Cydni- dae carried out by Froeschner [6]. -
Large Positive Ecological Changes of Small Urban Greening Actions Luis Mata, Amy K. Hahs, Estibaliz Palma, Anna Backstrom, Tyler King, Ashley R
Large positive ecological changes of small urban greening actions Luis Mata, Amy K. Hahs, Estibaliz Palma, Anna Backstrom, Tyler King, Ashley R. Olson, Christina Renowden, Tessa R. Smith and Blythe Vogel WebPanel 2 Table S2.1. List of the 94 insect species that were recorded during the study. DET: Detritivore; HER: Herbivore; PRE: Predator; PAR: Parasitoid. All species are indigenous to the study area, excepting those marked with an *. Year 0 Year 1 Year 2 Year 3 Species/morphospecies Common name Family DET HER PRE PAR [2016] [2017] [2018] [2019] Hymenoptera | Apocrita Apocrita 5 Apocrita 5 Apocrita 33 Apocrita 33 Apocrita 36 Apocrita 36 Apocrita 37 Apocrita 37 Apocrita 40 Apocrita 40 Apocrita 44 Apocrita 44 Apocrita 46 Apocrita 46 Apocrita 48 Apocrita 48 Apocrita 49 Apocrita 49 Apocrita 51 Apocrita 51 Apocrita 52 Apocrita 52 Apocrita 53 Apocrita 53 Apocrita 54 Apocrita 54 Apocrita 55 Apocrita 55 Apocrita 56 Apocrita 56 Apocrita 57 Apocrita 57 Apocrita 58 Apocrita 58 Apocrita 59 Apocrita 59 Apocrita 60 Apocrita 60 Apocrita 61 Apocrita 61 Apocrita 62 Apocrita 62 Apocrita 65 Apocrita 65 Apocrita 74 Apocrita 74 Apocrita 89 Apocrita 89 Apocrita 90 Apocrita 90 Apocrita 91 Apocrita 91 Hymenoptera | Apoidea | Anthophila Anthophila 1 Anthophila 1 Anthophila 3 Anthophila 3 Apis mellifera* European honeybee Apidae Diptera | Brachycera Brachycera 2 Brachycera 2 Brachycera 7 Brachycera 7 Brachycera 8 Brachycera 8 Brachycera 14 Brachycera 14 Brachycera 15 Brachycera 15 Brachycera 16 Brachycera 16 Brachycera 18 Brachycera 18 Brachycera 19 Brachycera