Environmental Magnetism and Magnetostratigraphy of the Pliocene and Pleistocene Sediments of the Heidelberg Basin

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Magnetism and Magnetostratigraphy of the Pliocene and Pleistocene Sediments of the Heidelberg Basin Environmental magnetism and magnetostratigraphy of the Pliocene and Pleistocene sediments of the Heidelberg Basin DISSERTATION zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) in der Bayreuther Graduiertenschule für Mathematik und Naturwissenschaften (BayNAT) der Universität Bayreuth vorgelegt von Stephanie Scheidt aus Offenbach am Main, Germany Bayreuth, 2018 Die vorliegende Arbeit wurde in der Zeit von Februar 2012 bis Dezember 2017 im und in Kooperation mit dem Gesteins- und Paläomagnetiklabor Grubenhagen des Leibniz Institut für Angewandte Geophysik (LIAG) in Einbeck, Deutschland, angefertigt. Die Betreuung vor Ort oblag Herrn Dr. Christian Rolf (LIAG). An der Universität Bayreuth wurde die Arbeit durch Herrn Professor Dr. Ludwig Zöller und Herrn Dr. Ulrich Hambach (beide angehörige des Lehrstuhl Geomorphologie sowie BayCEER) betreut. Dissertation eingereicht am: 08.01.2018 Zulassung durch das Leitungsgremium: 29.01.2018 Wissenschaftliches Kolloquium: 05.06.2018 Amtierender Direktor: Prof. Dr. Dirk Schüler Prüfungsausschuss: Prof. Dr. Ludwig Zöller (Gutachter) Prof. Dr. Helga de Wall (Gutachterin) Prof. Dr. Daniel Frost (Vorsitz) Prof. Dr. Martin Obst I II Content Content ............................................................................................................................................... III List of Figures ...................................................................................................................................... VI List of Tables ..................................................................................................................................... VIII List of Abbreviations ........................................................................................................................... IX Abstract ................................................................................................................................................... 1 Zusammenfassung ................................................................................................................................... 3 1. Synopsis ........................................................................................................................................... 7 1.1. Objectives and working hypotheses........................................................................................ 7 1.2. An overview of the Heidelberg Basin ...................................................................................... 7 1.3. The Heidelberg Basin Drilling Project ...................................................................................... 9 1.4. State of the research ............................................................................................................. 10 1.4.1. Scientific work conducted at sediments of the Heidelberg Basin ................................. 11 1.4.2. Late Pliocene and Pleistocene climatic conditions in northwestern and central Europe………………………………………………………………………………………………………………………………………12 2 1.4.3. Rock magnetic and palaeomagnetic techniques applied to fluvial sediments ............. 13 1.5. Sample materials ................................................................................................................... 15 1.6. An outline of the applied methods of rock magnetism ........................................................ 16 1.6.1. Magnetic polarity stratigraphy ...................................................................................... 17 1.6.2. Magnetic mineralogy ..................................................................................................... 19 1.6.3. Environmental magnetism ............................................................................................ 21 1.7. Results and discussion ........................................................................................................... 22 1.7.1. Magnetic polarity stratigraphy ...................................................................................... 22 1.7.2. Magnetic mineral characterisation ............................................................................... 25 1.7.3. Climatic and environmental implications of the rock magnetic results ........................ 29 1.8. Conclusion ............................................................................................................................. 31 1.9. Contributions and contributors to this PhD work ................................................................. 32 1.10. References ......................................................................................................................... 35 2. Study 1: A consistent magnetic polarity stratigraphy of late Neogene to Quaternary fluvial sediments from the Heidelberg Basin (Germany): A new time frame for the Plio-Pleistocene palaeoclimatic evolution of the Rhine Basin ....................................................................................... 47 Abstract ............................................................................................................................................. 48 2.1. Introduction ........................................................................................................................... 49 2.2. Geological settings ................................................................................................................ 51 2.3. Sites and drilling procedures ................................................................................................. 52 III 2.3.1. Viernheim ...................................................................................................................... 52 2.3.2. Heidelberg ..................................................................................................................... 53 2.3.3. Ludwigshafen Parkinsel P36 .......................................................................................... 53 2.4. Sampling ................................................................................................................................ 54 2.5. Methodology ......................................................................................................................... 54 2.6. Results of the demagnetisation experiments ....................................................................... 56 2.7. Carriers of the magnetic remanence ..................................................................................... 58 2.8. Magnetic polarity stratigraphy .............................................................................................. 61 2.9. Discussion .............................................................................................................................. 64 2.10. Conclusions ........................................................................................................................ 71 Acknowledgements ........................................................................................................................... 72 References ......................................................................................................................................... 72 Remarks to study 1 ............................................................................................................................ 77 3. Study 2: A mineral magnetic characterization of the Plio-Pleistocene fluvial infill of the Heidelberg Basin (Germany) ................................................................................................................ 79 Summary ........................................................................................................................................... 80 3.1. Introduction ........................................................................................................................... 81 3.2. Geological setting, cores and samples .................................................................................. 82 3.2.1. The Viernheim drill core ................................................................................................ 84 3.2.2. The Heidelberg drill core ............................................................................................... 84 3.2.3. The Ludwigshafen drill core .......................................................................................... 85 3.2.4. Magnetic extraction procedure ..................................................................................... 85 3.2.5. Samples for the vibrating sample magnetometer (VSM) .............................................. 85 3.3. Measurement procedures ..................................................................................................... 85 3.4. Results and Interpretation .................................................................................................... 88 3.4.1. EDX / SEM ...................................................................................................................... 89 3.4.2. Thermomagnetic analyses ............................................................................................. 93 3.4.3. Magnetic susceptibility .................................................................................................. 96 3.4.4. Magnetic hysteresis ....................................................................................................... 98 3.4.5. First order reversal curves (FORCs) ............................................................................
Recommended publications
  • F a H R P L a N Realschule Plus Nentershausen
    DB Regio Bus Rhein-Mosel GmbH Niederlassung Nordost Bahnhofsplatz 1 – 3, 56410 Montabaur F A H R P L A N Realschule plus Nentershausen gültig an Schultagen ab 17.08.2020 Hinfahrten Mo – Fr Schüler 997 001 Boden, Schul-Hst 6.35 Uhr Griesar = 25 Heiligenroth DGH 6.43 Uhr Heiligenroth Ortsmitte 6.44 Uhr Goldhausen Bf 6.46 Uhr Ruppach-Goldhausen Kirche 6.47 Uhr Kleinholbach 6.53 Uhr Girod 6.55 Uhr Nentershausen Realschule plus 7.03 Uhr Nentershausen Grundschule 7.04 Uhr (gemeinsame Beförderung mit Grundschule) 450 039 Großholbach 6.55 Uhr Griesar = 24 Heilberscheid Hettensteinstr. 7.10 Uhr Nentershausen Grundschule 7.20 Uhr (gemeinsame Beförderung mit Grundschule) Fahrt 450 011 Nomborn 7.15 Uhr Griesar = 22 Nentershausen Grundschule 7.21 Uhr Fahrt 450 004 Diez, Marktplatz 6.50 Uhr Griesar = 21 Altendiez, Diezer Straße 6.53 Uhr Altendiez, Post 6.54 Uhr Altendiez, Schule 6.55 Uhr Heistenbach 6.57 Uhr Hambach, Rathaus 7.07 Uhr Nentershausen Grundschule 7.14 Uhr (weiter nach Montabaur) Fahrt 450 014 Limburg Bf 6.55 Uhr Menges = 05 Niedererbach 7.12 Uhr Nentershausen Grundschule 7.20 Uhr Fahrt 450 012 Görgeshausen 7.10 Uhr Griesar = 25 Nentershausen Grundschule 7.18 Uhr (weiter nach Montabaur) Fahrt 450 006 Diez, Marktplatz 7.05 Uhr Griesar = 26 Aull 7.10 Uhr Hambach, Rathaus 7.13 Uhr Görgeshausen 7.16 Uhr Nentershausen Grundschule 7.20 Uhr Fahrt 450 008 Aull Berg 7.10 Uhr Griesar = 26 Gückingen 7.13 Uhr Eppenrod Sporthalle 7.20 Uhr Nentershausen Grundschule 7.28 Uhr 15.04.2020 DB Regio Bus Rhein-Mosel GmbH Niederlassung Nordost Bahnhofsplatz 1 – 3, 56410 Montabaur F A H R P L A N Realschule plus Nentershausen gültig an Schultagen ab 17.08.2020 Rückfahrten 6.
    [Show full text]
  • Relationships Between Magnetic Parameters, Chemical Composition and Clay Minerals of Topsoils Near Coimbra, Central Portugal
    Nat. Hazards Earth Syst. Sci., 12, 2545–2555, 2012 www.nat-hazards-earth-syst-sci.net/12/2545/2012/ Natural Hazards doi:10.5194/nhess-12-2545-2012 and Earth © Author(s) 2012. CC Attribution 3.0 License. System Sciences Relationships between magnetic parameters, chemical composition and clay minerals of topsoils near Coimbra, central Portugal A. M. Lourenc¸o1, F. Rocha2, and C. R. Gomes1 1Centre for Geophysics, Earth Sciences Dept., University of Coimbra, Largo Marquesˆ de Pombal, 3000-272 Coimbra, Portugal 2Geobiotec Centre, Geosciences Dept., University of Aveiro, 3810-193 Aveiro, Portugal Correspondence to: A. M. Lourenc¸o ([email protected]) Received: 6 September 2011 – Revised: 27 February 2012 – Accepted: 28 February 2012 – Published: 14 August 2012 Abstract. Magnetic measurements, mineralogical and geo- al., 1980). This methodology is fast, economic and can be ap- chemical studies were carried out on surface soil samples plied in various research fields, such as environmental mon- in order to find possible relationships and to obtain envi- itoring, pedology, paleoclimatology, limnology, archeology ronmental implications. The samples were taken over a and stratigraphy. Recent studies have demonstrated the ad- square grid (500 × 500 m) near the city of Coimbra, in cen- vantages and the potential of the environmental magnetism tral Portugal. Mass specific magnetic susceptibility ranges methods as valuable aids in the detection and delimitation between 12.50 and 710.11 × 10−8 m3 kg−1 and isothermal of areas affected by pollution (e.g. Bityukova et al., 1999; magnetic remanence at 1 tesla values range between 253 Boyko et al., 2004; Blaha et al., 2008; Lu et al., 2009; and 18 174 × 10−3 Am−1.
    [Show full text]
  • Ortssippenbücher and Similar Sources Held by the St. Louis County Library History Genealogy Department by Village Locality Area Or District State Country Call No
    Ortssippenbücher and similar sources held by the St. Louis County Library History Genealogy Department By village Locality Area or district State Country Call no. Complete title Deutsche OSB series Volume (Band) Abbehausen Ostfriesland Niedersachsen Germany R 943.5917 M612H Historisches Familienbuch der Kirchengemeinden Firrel, Hollen, Ockenhausen, und Uplengen (Remels), Vol. 2 Abschwangen Eylau Ostpreussen Germany R 947.24 B899O Ortsfamilienbuch des Kirchspiels Almenhausen / 00.576 Abschwangen (Ostpreußen, Kr. Pr.Eylau) Abschwangen Kaliningrad Russia R 947.24 B899O Ortsfamilienbuch des Kirchspiels Almenhausen / 00.576 Abschwangen (Ostpreußen, Kr. Pr.Eylau) Absteinach Bergstraße / Hessen Germany R 943.416 W373F Familienbuch der Gemeinde Abtsteinach: Ober- 00.648 Darmstadt Absteinach, Unter-Absteinach, un Mackenheimer Familien, 1808-1950 Achmer Osnabrück Niedersachsen Germany R 943.5911 N671L Leben und Sterben im Kirchspiel Bramsche / Hase: Ein Familienbuch Ackendorf Börde Sachsen-Anhalt Germany R 943.18 B283F Familienbuch Ackendorf (Landkreis Börde) Sachsen- 00.707 Anhalt : 1580 bis 1875 Adenau Ahrweiler Rheinland-Pfalz Germany R 943.432 K18F Familienbuch der Katholischen Kirchengemeinde Adenau, A 539 1628-1798 Adorf Waldeck Hessen Germany R 943 E53W Waldeckische Ortssippenbücher: Adorf A 238 Affstätt Böblingen Baden-Württemberg Germany R 943.46 B899O Ortssippenbuch der Gemeinde Affstätt (heute 71038 00.903 Herrenberg-Kuppingen, Landkries Böblingen), 1560 bis 1930 Affstätt Böblingen Baden-Württemberg Germany R 943.471 B899O Ortssippenbuch
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]
  • Magnetic Mineral Assemblages in Soils and Paleosols As the Basis for Paleoprecipitation Proxies: a Review of Magnetic Methods and Challenges
    Earth-Science Reviews 155 (2016) 28–48 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges Daniel P. Maxbauer a,b,⁎, Joshua M. Feinberg a,b, David L. Fox a a Department of Earth Sciences, University of Minnesota, Minneapolis, MN, United States b Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN, United States article info abstract Article history: Magnetic iron oxide minerals, principally magnetite, maghemite, hematite, and goethite are formed in well- Received 10 August 2015 drained soils in response to a suite of physical, chemical, and biological factors. Despite a wide range of complex- Received in revised form 11 January 2016 ity in the pedogenic processes that lead to magnetic mineral formation, dissolution, and transformation, there are Accepted 26 January 2016 well-documented empirical relationships between various magnetic mineral assemblages in soils with environ- Available online 27 January 2016 mental and climatic conditions. Recently there has been an increase in the number of quantitative magnetic Keywords: paleoprecipitation proxies that have been developed, and there is great potential for magnetic methods to be Paleoprecipitation used in the geologic record to develop reconstructions of past climates. Magnetic paleoprecipitation proxies Proxy have been widely utilized in Quaternary or younger loess–paleosol systems; however, they have yet to be utilized Soil magnetism in the pre-Quaternary fossil record. Future studies of magnetic mineralogy of soils and paleosols should aim to Paleosols explore non-loessic modern soils and pre-Quaternary paleosols with more focus on understanding the interac- Iron oxides tion between magnetic mineral assemblages and soil moisture.
    [Show full text]
  • Magnetic Properties of Rocks and Minerals
    MagneticProperties of Rocksand Minerals ChristopherP. Hunt, BruceM. Moskowitz,Subir K. Banerjee 1. INTRODUCTION composition-dependentmagnetic parameters of a varietyof iron-bearingminerals. This is an updatedcollation of magneticparameters of rocksand mineralsfor geologists,geochemists, and geo- 2. MAGNETIC SUSCEPTIBILITY physicists.Since the publication of theprevious edition of Handbookof PhysicalConstants [74], two othercollations Magnetic susceptibilityis a measureof the magnetic have appeared[16, 18]. In addition,selected magnetic responseof a materialto an externalmagnetic field. The parametershave alsobeen assembled[19, 22, 38, 41, 88]. volumesusceptibility k, measuredin dimensionlessunits, is Ratherthan produce a fully comprehensivecollection, we definedas the ratio of thematerial magnetization J (perunit have aimed for high-precisiondata obtainedfrom well- volume) to the weak externalmagnetic field H: characterizedsamples. Bothtables and figures have been used for presentingthe J=kH. (1) data,and best-fit equations have been provided for someof thedisplayed data so that interpolations can be made easily. Alternatively,the specificor masssusceptibility Z, mea- In an attemptto discouragethe useof the outdatedcgs suredin units of rn3kg4, isdefined as the ratio of the material system,all valuesare in theSI system(see Moskowitz, this magnetizationJ (per unit mass)to the weak externalmag- volume). Referenceshave been cited for the sourcesused netic field H: here. However,a morecomprehensive bibliography has alsobeen provided from which
    [Show full text]
  • Landschaftsplanverzeichnis Rheinland-Pfalz
    Landschaftsplanverzeichnis Rheinland-Pfalz Dieses Verzeichnis enthält die dem Bundesamt für Naturschutz gemeldeten Datensätze mit Stand 15.11.2010. Für Richtigkeit und Vollständigkeit der gemeldeten Daten übernimmt das BfN keine Gewähr. Titel Landkreise Gemeinden [+Ortsteile] Fläche Einwohner Maßstäbe Auftraggeber Planungsstellen Planstand weitere qkm Informationen LP Adenau Ahrweiler Adenau 257 13.000 10.000 VG Adenau Brandenfels 1974; 1974 Od 130 LP Adenau (1.FS) Ahrweiler Adenau 257 13.000 5.000 VG Adenau, Uni. Inst. f. Städtebau, Uni 1988; 1989 10.000 Bonn Bonn / Oyen LP Adenau (2.FS) Ahrweiler Adenau 258 15.423 10.000 VG Adenau Nick, C+S Consult 1996 LP Altenahr Ahrweiler Ahrbrück, Altenahr, Berg, Dernau, 153 11.200 10.000 VG Ahrweiler Brandenfels u. Pahl 1984 Heckenbach, Hönningen, Kalenborn, Kesseling, Kirchsahr, Lind, Mayschoß, Rech LP Altenahr (FS) Ahrweiler Ahrbrück, Altenahr, Berg, Dernau, 154 12.000 5.000 VG Altenahr Bauabteilung i.B. Heckenbach, Hönningen, 10.000 Kalenborn, Kesseling, Kirchsahr, Lind, Mayschoß, Rech LP Bad Breisig Ahrweiler Bad Breisig, Brohl-Lützing, 50 10.100 5.000 VG Bad Breisig LSRP 1984 Gönnersdorf, Waldorf 10.000 LP Bad Breisig (FS) Ahrweiler Bad Breisig, Brohl-Lützing, 42 13.027 5.000 VG Bad Breisig Sprengnetter u. i.B. Gönnersdorf, Waldorf 10.000 Partner LP Bad Ahrweiler Bad Neuenahr-Ahrweiler 64 28.300 10.000 ST Bad Neuenahr Penker 1976; 1976 Neuenahr-Ahrweiler 50.000 LP Bad Ahrweiler Bad Neuenahr-Ahrweiler 63 27.456 10.000 ST Bad Neuenahr Terporten i.B. Neuenahr-Ahrweiler (FS) LP Brohltal Ahrweiler
    [Show full text]
  • Der Aar-Höhenweg Hambach Lahn Gückingen
    Abfahrt Görgeshausen B 49 Diez Abfahrt Limburg Nord Der Aar-Höhenweg Hambach Lahn Gückingen 1| Grafenschloß Diez Abfahrt Heistenbach Limburg Süd B 417 Limburg Geschichte Aar Diez 137,063 Langenscheid Birlenbach 2|Burg Ardeck Holzheim Holzheim Brechen Oberbrechen Balduinstein B 417 und Natur hautnah Cramberg Flacht Scheidt B 54 Lahn Niederneisen Selters Oberneisen 3| Rundkirche Oberneisen Lohrheim Heringen Hahnstätten Kirberg Bad Camberg Kaltenholzhausen Schönborn Abfahrt 5| Römerquelle Zollhaus Bad Camberg 4| Naturerlebnispfad Johannis Brunnen Hahnstätten Zollhaus Burgschwalbach 6| Burg und Domäne Hohlenfels 9| Märchenwald Burgschwalbach Schiesheim 8| Burg Schwalbach 7| Schloß Katzenelnbogen Katzenelnbogen Rückershausen B 8 E1 – Europ. Fernwanderweg 10| Antonius-Sprudel Hausen Rückershausen Aarbergen Aar-Höhenweg Kettenbach 11| Walderlebnispfad Panrod Aartalradweg Berndroth B 417 Rettert Michelbach Holzhausen a.d. Haide Abfahrt Idstein Laufenselden Idstein Hohenstein 12| Hofgut Georgenthal B 275 13| Burg Hohenstein Breithardt B 260 14| Limesturm Orlen Ober- Burg Hohenstein Steckenroth seelbach Limes-Wanderweg Orlen Neuhof 16| Aar-Quelle Niedern- Taunusstein hausen Adolfseck 15| Justinus-Felsen Adolfseck Aar Bad Schwalbach Hahn Wehen 17| Pfarrkirche St. Ferrutius Der Aar-Höhenweg Bleidenstadt B 275 19| Schloss Wehen B 54 Infos Hettenhain B 417 Entdecken, erleben & erholen 18| Kurhaus Bad Schwalbach www.taunusstein.de Telefon 06128/241-0 Wiesbaden entlang der Aar www.bad-schwalbach.de Telefon 06124/502-433 o. -434 www.hohenstein-hessen.de
    [Show full text]
  • Geochronological Applications
    Paleomagnetism: Chapter 9 159 GEOCHRONOLOGICAL APPLICATIONS As discussed in Chapter 1, geomagnetic secular variation exhibits periodicities between 1 yr and 105 yr. We learn in this chapter that geomagnetic polarity intervals have a range of durations from 104 to 108 yr. In the next chapter, we shall see that apparent polar wander paths represent motions of lithospheric plates over time scales extending to >109 yr. As viewed from a particular location, the time intervals of magnetic field changes thus range from decades to billions of years. Accordingly, the time scales of potential geochrono- logic applications of paleomagnetism range from detailed dating within the Quaternary to rough estimations of magnetization ages of Precambrian rocks. Geomagnetic field directional changes due to secular variation have been successfully used to date Quaternary deposits and archeological artifacts. Because the patterns of secular variation are specific to subcontinental regions, these Quaternary geochronologic applications require the initial determination of the secular variation pattern in the region of interest (e.g., Figure 1.8). Once this regional pattern of swings in declination and inclination has been established and calibrated in absolute age, patterns from other Quaternary deposits can be matched to the calibrated pattern to date those deposits. This method has been developed and applied in western Europe, North America, and Australia. The books by Thompson and Oldfield (1986) and Creer et al. (1983) present detailed developments. Accordingly, this topic will not be developed here. This chapter will concentrate on the most broadly applied of geochronologic applications of paleomag- netism: magnetic polarity stratigraphy. This technique has been applied to stratigraphic correlation and geochronologic calibration of rock sequences ranging in age from Pleistocene to Precambrian.
    [Show full text]
  • Magnetostratigraphy and Tectonosedimentology Qilian Shan
    Downloaded from http://sp.lyellcollection.org/ by guest on November 19, 2013 Geological Society, London, Special Publications Oligocene slow and Miocene−Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology Xiaomin Fang, Dongliang Liu, Chunhui Song, Shuang Dai and Qingquan Meng Geological Society, London, Special Publications 2013, v.373; p149-171. doi: 10.1144/SP373.5 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by guest on November 19, 2013 Oligocene slow and Miocene–Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology XIAOMIN FANG1,2*, DONGLIANG LIU1,3, CHUNHUI SONG2, SHUANG DAI2 & QINGQUAN MENG2 1Key Laboratory of Continental Collision and Plateau Uplift & Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China 2Key Laboratory of Western China’s Environmental Systems (Ministry of Education of China) and College of Resources and Environment, Lanzhou University, Gansu 730000, China 3Key Laboratory of Continental Dynamics of the Ministry of Land and Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China *Corresponding author (e-mail: [email protected]) Abstract: Most existing tectonic models suggest Pliocene–Quaternary deformation and uplift of the NE Tibetan Plateau in response to the collision of India with Asia.
    [Show full text]
  • Rock-Magnetism and Ore Microscopy of the Magnetite-Apatite Ore Deposit from Cerro De Mercado, Mexico
    Earth Planets Space, 53, 181–192, 2001 Rock-magnetism and ore microscopy of the magnetite-apatite ore deposit from Cerro de Mercado, Mexico L. M. Alva-Valdivia1, A. Goguitchaichvili1, J. Urrutia-Fucugauchi1, C. Caballero-Miranda1, and W. Vivallo2 1Instituto de Geof´ısica, Universidad Nacional Autonoma´ de Mexico,´ Del. Coyoacan 04510 D. F., Mexico´ 2Servicio Nacional de Geolog´ıa y Miner´ıa, Chile (Received July 14, 2000; Revised December 19, 2000; Accepted January 24, 2001) Rock-magnetic and microscopic studies of the iron ores and associated igneous rocks in the Cerro de Mercado, Mexico, were carried out to determine the magnetic mineralogy and origin of natural remanent magnetization (NRM), related to the thermo-chemical processes due to hydrothermalism. Chemical remanent magnetization (CRM) seems to be present in most of investigated ore and wall rock samples, replacing completely or partially an original thermoremanent magnetization (TRM). Magnetite (or Ti-poor titanomagnetite) and hematite are commonly found in the ores. Although hematite may carry a stable CRM, no secondary components are detected above 580◦, which probably attests that oxidation occurred soon enough after the extrusion and cooling of the ore-bearing magma. NRM polarities for most of the studied units are reverse. There is some scatter in the cleaned remanence directions of the ores, which may result from physical movement of the ores during faulting or mining, or from perturbation of the ambient field during remanence acquisition by inhomogeneous internal fields within these strongly magnetic ore deposits. The microscopy study under reflected light shows that the magnetic carriers are mainly titanomagnetite, with significant amounts of ilmenite-hematite minerals, and goethite-limonite resulting from alteration processes.
    [Show full text]
  • Magnetostratigraphy and Rock Magnetism of the Boom Clay (Rupelian Stratotype) in Belgium
    Netherlands Journal of Geosciences / Geologie en Mijnbouw 83 (3): 209-225 (2004) Magnetostratigraphy and rock magnetism of the Boom Clay (Rupelian stratotype) in Belgium D. Lagrou1*, N. Vandenberghe1, S. Van Simaeys1 & J. Hus2 1 Historische Geologie, KU Leuven, Redingenstraat 16, 3000 Leuven, Belgium 2 Centre de Physique du Globe de 1'IRM, 5670 Dourbes, Belgium * Corresponding author: D. Lagrou, presently at the Flemish Institute for Technological Research (Vito), Boeretang 200, B-2400 Mol, Belgium. E-mail: [email protected] Manuscript received: February 2004; accepted: August 2004 N G Abstract This paper presents the results of a detailed rock magnetic and magnetostratigraphic study of the Lower Oligocene Rupelian unit-stratotype. Notwithstanding the relatively low intensity of the natural remanent magnetisation and the diverse and often unstable behaviour during demagnetisation, close-spaced sampling and accurate polarity determinations allowed us to determine the magnetic polarity zonation.The recognition of the characteristic magnetic polarity and the correlation with the standard magnetobiochronologic time scale yields an accurate chronostratigraphic dating of the Boom Clay Formation. The boundary between the geomagnetic chrons C12n and C12r nearly coincides with the hthostratigraphic boundary between theTerhagen and Putte Members. Rock magnetic techniques point to magnetite and probably also iron sulphides as the main magnetic remanence carriers. These magnetic minerals could, however, not be identified with classical mineralogical
    [Show full text]