Magnetostratigraphy of Permian/Triassic Boundary Sequences in the Cis-Urals, Russia: No Evidence for a Major Temporal Hiatus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Capitanian (Permian) Kamura Cooling Event
Palaeoworld 16 (2007) 16–30 Research paper The Capitanian (Permian) Kamura cooling event: The beginning of the Paleozoic–Mesozoic transition Yukio Isozaki a,∗, Hodaka Kawahata b, Kayo Minoshima c a Department of Earth Science and Astronomy, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan b Graduate School of Frontier Sciences and Ocean Research Institute, The University of Tokyo, Minamidai, Nakano, Tokyo 164-8639, Japan c Geological Survey of Japan, AIST, Tsukuba 305-8567, Japan Received 4 January 2007; received in revised form 12 May 2007; accepted 15 May 2007 Available online 25 May 2007 Abstract 13 The Capitanian (late Guadalupian) high positive plateau interval of carbonate carbon isotope ratio (␦ Ccarb) was recognized lately in a mid-Panthalassan paleo-atoll limestone in Japan as the Kamura event. This unique episode in the late-middle Permian indicates high productivity in the low-latitude superocean likely coupled with resultant global cooling. This event ended shortly before the Guadalupian–Lopingian (middle-late Permian) boundary (ca. 260 Ma); however, its onset time has not been ascertained previously. Through a further analysis of the Wordian (middle Guadalupian) to lower Capitanian interval in the same limestone at 13 Kamura in Kyushu, we have found that the ␦ Ccarb values started to rise over +4.5‰ and reached the maximum of +7.0‰ within the Yabeina (fusuline) Zone of the early-middle Capitanian. Thus the total duration of the Kamura event is estimated over 3–4 million years, given the whole Capitanian ranging for 5.4 million years. This 3–4 million years long unique cooling event occurred clearly after the Gondwana glaciation period (late Carboniferous to early Permian) in the middle of the long-term warming trend toward the Mesozoic. -
Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna. -
Guadalupian, Middle Permian) Mass Extinction in NW Pangea (Borup Fiord, Arctic Canada): a Global Crisis Driven by Volcanism and Anoxia
The Capitanian (Guadalupian, Middle Permian) mass extinction in NW Pangea (Borup Fiord, Arctic Canada): A global crisis driven by volcanism and anoxia David P.G. Bond1†, Paul B. Wignall2, and Stephen E. Grasby3,4 1Department of Geography, Geology and Environment, University of Hull, Hull, HU6 7RX, UK 2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK 3Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada 4Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary Alberta, T2N 1N4, Canada ABSTRACT ing gun of eruptions in the distant Emeishan 2009; Wignall et al., 2009a, 2009b; Bond et al., large igneous province, which drove high- 2010a, 2010b), making this a mid-Capitanian Until recently, the biotic crisis that oc- latitude anoxia via global warming. Although crisis of short duration, fulfilling the second cri- curred within the Capitanian Stage (Middle the global Capitanian extinction might have terion. Several other marine groups were badly Permian, ca. 262 Ma) was known only from had different regional mechanisms, like the affected in equatorial eastern Tethys Ocean, in- equatorial (Tethyan) latitudes, and its global more famous extinction at the end of the cluding corals, bryozoans, and giant alatocon- extent was poorly resolved. The discovery of Permian, each had its roots in large igneous chid bivalves (e.g., Wang and Sugiyama, 2000; a Boreal Capitanian crisis in Spitsbergen, province volcanism. Weidlich, 2002; Bond et al., 2010a; Chen et al., with losses of similar magnitude to those in 2018). In contrast, pelagic elements of the fauna low latitudes, indicated that the event was INTRODUCTION (ammonoids and conodonts) suffered a later, geographically widespread, but further non- ecologically distinct, extinction crisis in the ear- Tethyan records are needed to confirm this as The Capitanian (Guadalupian Series, Middle liest Lopingian (Huang et al., 2019). -
Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends. -
GEOLOGIC TIME SCALE V
GSA GEOLOGIC TIME SCALE v. 4.0 CENOZOIC MESOZOIC PALEOZOIC PRECAMBRIAN MAGNETIC MAGNETIC BDY. AGE POLARITY PICKS AGE POLARITY PICKS AGE PICKS AGE . N PERIOD EPOCH AGE PERIOD EPOCH AGE PERIOD EPOCH AGE EON ERA PERIOD AGES (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) (Ma) HIST HIST. ANOM. (Ma) ANOM. CHRON. CHRO HOLOCENE 1 C1 QUATER- 0.01 30 C30 66.0 541 CALABRIAN NARY PLEISTOCENE* 1.8 31 C31 MAASTRICHTIAN 252 2 C2 GELASIAN 70 CHANGHSINGIAN EDIACARAN 2.6 Lopin- 254 32 C32 72.1 635 2A C2A PIACENZIAN WUCHIAPINGIAN PLIOCENE 3.6 gian 33 260 260 3 ZANCLEAN CAPITANIAN NEOPRO- 5 C3 CAMPANIAN Guada- 265 750 CRYOGENIAN 5.3 80 C33 WORDIAN TEROZOIC 3A MESSINIAN LATE lupian 269 C3A 83.6 ROADIAN 272 850 7.2 SANTONIAN 4 KUNGURIAN C4 86.3 279 TONIAN CONIACIAN 280 4A Cisura- C4A TORTONIAN 90 89.8 1000 1000 PERMIAN ARTINSKIAN 10 5 TURONIAN lian C5 93.9 290 SAKMARIAN STENIAN 11.6 CENOMANIAN 296 SERRAVALLIAN 34 C34 ASSELIAN 299 5A 100 100 300 GZHELIAN 1200 C5A 13.8 LATE 304 KASIMOVIAN 307 1250 MESOPRO- 15 LANGHIAN ECTASIAN 5B C5B ALBIAN MIDDLE MOSCOVIAN 16.0 TEROZOIC 5C C5C 110 VANIAN 315 PENNSYL- 1400 EARLY 5D C5D MIOCENE 113 320 BASHKIRIAN 323 5E C5E NEOGENE BURDIGALIAN SERPUKHOVIAN 1500 CALYMMIAN 6 C6 APTIAN LATE 20 120 331 6A C6A 20.4 EARLY 1600 M0r 126 6B C6B AQUITANIAN M1 340 MIDDLE VISEAN MISSIS- M3 BARREMIAN SIPPIAN STATHERIAN C6C 23.0 6C 130 M5 CRETACEOUS 131 347 1750 HAUTERIVIAN 7 C7 CARBONIFEROUS EARLY TOURNAISIAN 1800 M10 134 25 7A C7A 359 8 C8 CHATTIAN VALANGINIAN M12 360 140 M14 139 FAMENNIAN OROSIRIAN 9 C9 M16 28.1 M18 BERRIASIAN 2000 PROTEROZOIC 10 C10 LATE -
Late Permian Tethyan Conodonts from West Texas and Their Significance for World-Wide Correlation of the Guadalupian-Dzhulfian Boundary
Geol. Paläont. Mitt. Innsbruck, ISSN 0378-6870, Bd. 18, S. 179-186, 1991/92 LATE PERMIAN TETHYAN CONODONTS FROM WEST TEXAS AND THEIR SIGNIFICANCE FOR WORLD-WIDE CORRELATION OF THE GUADALUPIAN-DZHULFIAN BOUNDARY Heinz Kozur With 21 figures Abstract: With the discovery of Tethyan Late Permian conodonts in the uppermost Altuda Formation, a direct correlation of the lower part of the Tethyan Late Permian (Dzhulfian) with the 'latest Capitanian' in the Glass Mountains, West Texas is possible. In the Glass Mts. there is a major overlap of the 'Capitanian' with the Dzhulfian (or Wuchiapingian) Stage. In agreement with the historic definition, the top of the Guadalupian Series (= top of the Capitanian Stage) can now be defined with the transition from Mesogondolella 'babcockP (guideform of most of the Lamar Limestone, uppermost unit of type Guadalupian Series) to Clarkina cf. changxingensis within a phylomorphogenetic continuum. The now clarified relation between the Guadalupian Series and the Tethyan Late Permian removes the last obstacle for using the Guadalupian Series (comprised of Roadian, Wordian and Capitanian stages, in ascending order) as an international reference for the Middle Permian. Zusammenfassung: Die Entdeckung tethyaler oberpermischer Conodonten in der obersten Altuda-Formation ermöglicht eine direkte Korre- lation des unteren tethyalen Oberperm (Dzhulfian) mit dem „obersten Capitanian" der Glass mts., West-Texas. In den Glass mts. gibt es eine beträchtliche Überlappung des dortigen „Capitanian" mit dem tethyalen Dzhulfian (oder Wuchia- pingian). Die Obergrenze der Guadalupe-Serie (= Obergrenze des Capitanian) kann nun, in Übereinstimmung mit der his- torischen Definition in den Guadalupe Mts., mit dem kontinuierlichen phylomorphogenetischen Übergang von Meso- gondolella „babcocki" (Leitform des größten Teils des Lamar-Kalksteins, der obersten lithostratigraphischen Einheit des Guadalupian in dessen Typusregion) zu Clarkina cf. -
Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids. -
New Radiometric 40Ar–39Ar Dates and Faunistic Analyses Refine
www.nature.com/scientificreports OPEN New radiometric 40Ar–39Ar dates and faunistic analyses refne evolutionary dynamics of Neogene vertebrate assemblages in southern South America Francisco J. Prevosti1,2*, Cristo O. Romano2,3, Analía M. Forasiepi2,3, Sidney Hemming4, Ricardo Bonini2,5, Adriana M. Candela2,6, Esperanza Cerdeño2,3, M. Carolina Madozzo Jaén2,7,8, Pablo E. Ortiz2,7, François Pujos2,3, Luciano Rasia2,6, Gabriela I. Schmidt2,9, Matias Taglioretti10,11,12, Ross D. E. MacPhee13 & Ulyses F. J. Pardiñas2,14,15 The vertebrate fossil record of the Pampean Region of Argentina occupies an important place in South American vertebrate paleontology. An abundance of localities has long been the main basis for constructing the chronostratigraphical/geochronological scale for the late Neogene–Quaternary of South America, as well as for understanding major patterns of vertebrate evolution, including the Great American Biotic Interchange. However, few independently-derived dates are available for constraining this record. In this contribution, we present new 40Ar/39Ar dates on escorias (likely the product of meteoric impacts) from the Argentinean Atlantic coast and statistically-based biochronological analyses that help to calibrate Late Miocene–Pliocene Pampean faunal successions. For the type areas of the Montehermosan and Chapadmalalan Ages/Stages, our results delimit their age ranges to 4.7–3.7 Ma and ca. 3.74–3.04 Ma, respectively. Additionally, from Buenos Aires Province, dates of 5.17 Ma and 4.33 Ma were recovered for “Huayquerian” and Montehermosan faunas. This information helps to better calibrate important frst appearances of allochthonous taxa in South America, including one of the oldest records for procyonids (7.24–5.95 Ma), cricetids (6.95– 5.46 Ma), and tayassuids (> 3.74 Ma, oldest high-confdence record). -
An Abrupt Extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and Its Link to Anoxia and Acidification
An abrupt extinction in the Middle Permian (Capitanian) of the Boreal Realm (Spitsbergen) and its link to anoxia and acidification David P.G. Bond1,†, Paul B. Wignall2, Michael M. Joachimski3, Yadong Sun3,4, Ivan Savov2, Stephen E. Grasby5,6, Benoit Beauchamp6, and Dierk P.G. Blomeier7 1Department of Geography, Environment and Earth Sciences, University of Hull, Hull, HU6 7RX, United Kingdom 2School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, United Kingdom 3Geozentrum Nordbayen, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany 4State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 470073, Hubei Province, P.R. China 5Geological Survey of Canada, 3303 33rd Street N.W., Calgary, Alberta, T2L 2A7, Canada 6Department of Geoscience, University of Calgary, 2500 University Drive N.W., Calgary Alberta, T2N 1N4, Canada 7Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway ABSTRACT mass extinction events; it is regarded as either sil ranges in the Kapp Starostin Formation of one of the greatest of all Phanerozoic crises, Spitsbergen, a Permian-aged mixed spiculite The controversial Capitanian (Middle ranking alongside the “Big 5” (Stanley and chert-carbonate unit that formed in cool, shelf Permian, 262 Ma) extinction event is only Yang, 1994; Bond et al., 2010a), or, in a funda- seas of the Boreal Ocean (Ehrenberg et al., known from equatorial latitudes, and conse- mentally different appraisal, it is viewed not as 2001; Stemmerik and Worsley, 2005; Blomeier quently its global extent is poorly resolved. a mass extinction but as a protracted and gradu- et al., 2013; Dustira et al., 2013). -
Geochronological Applications
Paleomagnetism: Chapter 9 159 GEOCHRONOLOGICAL APPLICATIONS As discussed in Chapter 1, geomagnetic secular variation exhibits periodicities between 1 yr and 105 yr. We learn in this chapter that geomagnetic polarity intervals have a range of durations from 104 to 108 yr. In the next chapter, we shall see that apparent polar wander paths represent motions of lithospheric plates over time scales extending to >109 yr. As viewed from a particular location, the time intervals of magnetic field changes thus range from decades to billions of years. Accordingly, the time scales of potential geochrono- logic applications of paleomagnetism range from detailed dating within the Quaternary to rough estimations of magnetization ages of Precambrian rocks. Geomagnetic field directional changes due to secular variation have been successfully used to date Quaternary deposits and archeological artifacts. Because the patterns of secular variation are specific to subcontinental regions, these Quaternary geochronologic applications require the initial determination of the secular variation pattern in the region of interest (e.g., Figure 1.8). Once this regional pattern of swings in declination and inclination has been established and calibrated in absolute age, patterns from other Quaternary deposits can be matched to the calibrated pattern to date those deposits. This method has been developed and applied in western Europe, North America, and Australia. The books by Thompson and Oldfield (1986) and Creer et al. (1983) present detailed developments. Accordingly, this topic will not be developed here. This chapter will concentrate on the most broadly applied of geochronologic applications of paleomag- netism: magnetic polarity stratigraphy. This technique has been applied to stratigraphic correlation and geochronologic calibration of rock sequences ranging in age from Pleistocene to Precambrian. -
Magnetostratigraphy and Tectonosedimentology Qilian Shan
Downloaded from http://sp.lyellcollection.org/ by guest on November 19, 2013 Geological Society, London, Special Publications Oligocene slow and Miocene−Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology Xiaomin Fang, Dongliang Liu, Chunhui Song, Shuang Dai and Qingquan Meng Geological Society, London, Special Publications 2013, v.373; p149-171. doi: 10.1144/SP373.5 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by guest on November 19, 2013 Oligocene slow and Miocene–Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: evidence from high-resolution magnetostratigraphy and tectonosedimentology XIAOMIN FANG1,2*, DONGLIANG LIU1,3, CHUNHUI SONG2, SHUANG DAI2 & QINGQUAN MENG2 1Key Laboratory of Continental Collision and Plateau Uplift & Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China 2Key Laboratory of Western China’s Environmental Systems (Ministry of Education of China) and College of Resources and Environment, Lanzhou University, Gansu 730000, China 3Key Laboratory of Continental Dynamics of the Ministry of Land and Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China *Corresponding author (e-mail: [email protected]) Abstract: Most existing tectonic models suggest Pliocene–Quaternary deformation and uplift of the NE Tibetan Plateau in response to the collision of India with Asia. -
Proposal of Guadalupian and Component Roadian, Wordian And
Permophiles Issue #34 1999 REPORTS Proposal of Guadalupian and Component morphoclines, absolute dates, and paleomagnetics. Roadian, Wordian and Capitanian Stages as International Standards for the Middle Permian Historic Preamble Prolonged deliberation of SPS members culminated in the man- Series dated formal postal vote by Titular (voting) Members that approved subdivision of the Permian System into three series, in ascending Brian F. Glenister order Cisuralian, Guadalupian and Lopingian (Report of Presi- University of Iowa dent Jin Yugan, Permophiles #29, p. 2). The “——usage of the Department of Geology Guadalupian Series and constituent stages, i.e. the Roadian, the Iowa City, IA 52242, USA Wordian and the Capitanian Stage for the middle part of the Per- mian.” was approved unanimously by 15 voting members. Pro- Bruce R. Wardlaw posal of the Guadalupian as a chronostratigraphic unit of series U. S. Geological Survey rank (Girty, 1902) predates any potential competitors by decades 926A National Center (Glenister et al., 1992). Of the three component stages currently Reston, VA 22092-0001, USA recognized, the upper two (Wordian and Capitanian) enjoy com- parable priority. Capitanian was first employed in a Lance L. Lambert lithostratigraphic sense by Richardson (1904) for the massive reef Department of Physics limestones of the Guadalupe Mountains of New Mexico and West Southwest Texas State University Texas, and the Word was used by Udden et al. (1916) for the San Marcos, TX 78666-4616, USA interbedded clastic/carbonate sequence in the adjacent Glass Moun- tains. Both were used in a strictly chronostratigraphic sense first Claude Spinosa by Glenister and Furnish (1961) as substages of the Guadalupian Stage, referenced by their nominal formations and recognized else- Permian Research Institute where through “ammonoid and fusuline faunas”.