RESEARCH New Biostratigraphic Evidence of Late Permian to Late

Total Page:16

File Type:pdf, Size:1020Kb

RESEARCH New Biostratigraphic Evidence of Late Permian to Late RESEARCH New biostratigraphic evidence of Late Permian to Late Triassic deposits from Central Tibet and their paleogeographic implications Gui-chun Wu1,*, Zhan-sheng Ji2, Wei-hua Liao3, and Jian-xin Yao1 1KEY LABORATORY OF STRATIGRAPHY AND PALAEONTOLOGY, MINISTRY OF LAND AND RESOURCES, INSTITUTE OF GEOLOGY, CHINESE ACADEMY OF GEOLOGICAL SCIENCES, BEIJING 100037, CHINA 2CHINESE ACADEMY OF GEOLOGICAL SCIENCES, BEIJING 100037, CHINA 3NANJING INSTITUTE OF GEOLOGY AND PALAEONTOLOGY, CHINESE ACADEMY OF SCIENCES, NANJING, 210008, CHINA ABSTRACT Triassic deposits in the Bangong-Nujiang Suture Zone are important for understanding its tectonic nature and evolutionary history, but have not been systematically studied due to a lack of biostratigraphic data. For a long time, the Upper Triassic Quehala Group featuring clasolite has been regarded as the only rocky unit. In recent years, the silicite-dominated Gajia Formation that bears radiolarian fossils was suggested to represent Ladinian to Carnian deposits. The Upper Permian and Lower Triassic rocks have never been excavated and thus are considered to be absent. This research, however, reveals that fossils aged from the Late Permian to Anisian of the Middle Trias- sic and Norian of the Late Triassic have been preserved in the central Bangong-Nujiang Suture Zone, which provides evidence of Upper Permian to early Middle Triassic deposits and provides new insights on the Upper Triassic strata as well. A new Triassic strata succes- sion is thus proposed for the Bangong-Nujiang Suture Zone, and it demonstrates great similarities with those from Lhasa to the south and Qiangtang to the north. Therefore, we deduce that the Bangong-Nujiang Suture Zone was under a similar depositional setting as its two adjacent terranes, and it was likely a carbonate platform background because limestones were predominant across the Triassic. The newly acquired biostratigraphic data indicate that Lhasa and Qiangtang could not have been located on two separate continents with disparate sedimentary settings; therefore, the Bangong-Nujiang Suture Zone likely did not represent a large ocean between them. This conclusion is supported by lithostratigraphic and paleomagnetic research, which revealed that Lhasa and Qiangtang were positioned at low to middle latitudes during the Early Triassic. Combining this conclusion with fossil evidence, we suggest that the three main Tibetan terranes were in the same palaeobiogeographic division with South China, at least during the Latest Permian to Early Triassic. The Early Triassic conodont species Pachycladina obliqua is probably a fossil sign of middle to low latitudes in palaeogeography. LITHOSPHERE; v. 11; no. 5; p. 683–696 | Published online 27 June 2019 https://doi.org/10.1130/L1046.1 INTRODUCTION 2012). This view generally considers the Lhasa (Ji et al., 2018a), separated only by a wide sea- terrane to have remained on the north margin way rather than a large ocean (Yang et al., 1984; The Bangong-Nujiang Suture Zone (BNSZ), of Gondwanaland, while the Qiangtang terrane Chen et al., 2001). which is bounded by the Lhasa terrane to the had drifted northward as one component of the These disputes primarily resulted from rarely south and the South Qiangtang terrane to the Cimmerian Continent during the Late Permian documented stratigraphic data. The ocean opin- north, is an E–W trending tectonic unit in central to Late Triassic (Fig. 2) (Wakita and Metcalfe, ion was based on siliceous rock producing radio- Tibet (Pan et al., 2013; Zhu et al., 2016) (Fig. 1). 2005; Muttoni et al., 2009; Metcalfe, 2013; Zhu larian fossils of the Late Triassic Carnian in the In research into dispersion, amalgamation, and et al., 2013). The other view considers Lhasa Dingqing area (Wang et al., 2002) or on the convergence between Eurasia and Gondwana- and Qiangtang to be closely connected, both radiolarian-bearing siliceous Gajia Formation in land, the tectonic background of Bangong-Nuji- having had a common migration history dur- the Nagqu area of central Tibet (Pan et al., 2012; ang during the Triassic has always been a tan- ing the Permian to Triassic (e.g., Scotese and Zhu et al., 2013). The viewpoint placing Lhasa talizing subject (Scotese and McKerrow, 1990; McKerrow, 1990; Wang et al., 2003). In this and Qiangtang in the same plate depended on Pan et al., 2012; Metcalfe, 2013). At present, opinion, disputes still exist about their deposi- different stratigraphic information. For example, disagreements abound, as represented by two tional setting. Some explained them as a land the land and continental rift opinion was based opposite opinions. The mainstream view is that since the Late Permian that began rupturing as a on the knowledge that Lower to Middle Trias- it was one part of the Tethyan Ocean between continental rift along the BNSZ at the end of the sic deposits were absent; the only affirmative Eurasia and Gondwanaland (e.g., Pan et al., Late Triassic (Zhao et al., 2001) (Fig. 3). Oth- lithological unit is the clasolite-characterized ers pointed out that Lhasa and Qiangtang were Quehala Group of the Upper Triassic (Fig. 1C). *Corresponding author: [email protected] in a similar marine setting during the Triassic In contrast, the sea perspective was due to the Geological© 2019 The SocietyAuthors. of Gold America Open |Access: LITHOSPHERE This paper | Volume is published 11 | underNumber the 5 terms| www.gsapubs.org of the CC-BY-NC license. 683 Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/11/5/683/4830227/683.pdf by guest on 25 September 2021 GUI-CHUN WU ET AL. | New biostratigraphic evidence from Central Tibet RESEARCH 82° 84° 86° 88° 90° 92° Zhapu B Lugu Dinggu Shuanghu NQ LSSZ 33° Gumu Geji RiganpeiCo Rima SQ Oma Ejiu Gaize 32 Dongco BNSZ ° DaruCo Nierong 0 60 120(km) Sailipu SelinCo Jiaqun Nima Fig.C LS Nagqu Beila Longgar Coqen Ban’ge SQ LSSZ 31° NQ A DangreyongCo Xainza BNSZ Dingqing NamuCo Fig.B Jiangrang LS ★ Lhasa Beijing IYSZ LSSZ: Longmu Tso-Shuanghu Suture Zone; BNSZ: Bangong-Nujiang Suture Zone; IYZSZ: Indus-Yarlung Fig.A Himalaya Terrane Zangbo Suture Zone; NQ: Northern Qiangtang; SQ: Southern Qiangtang; LS: Lhasa terrane 90°36′ 90°42′ ′ 0 K 4 Qusehai T3Q K1q D1d D2-3c P1x ° 1 J2-3Jn 3 Da’erdong Fm.Chaguoluoma Fm. Xiala Fm. D1d Q K Devonian Devonian B Permian K1q o Q ' Jiaqun Daruc B K q 1 T3Q J1-2X J2-3Jn K1q Quehala Gr. Xihu Gr. Jienu Gr. Q Q K Triassic Jurassic Jurassic K1q K1q P1x ′ K E K1q 5 Laqingduo J2-3Jn 3 P1x J2-3Jn T3Q ° J2-3Jn J2-3Jn Granites Granites Qushenla Fm. 1 J Jn A 2-3 3 K Cretaceous ' E Tertiary Cretaceous A K1q J2-3Jn D2-3c 1 D d n Shemari J Q 3 T Q - 3 2 J J2-3Jn Quatenary Fault Unconformity T3Q D1d Q T Q D2-3c 3 D1d Q B B' D1d A A' D2-3c T3Q D d 2X 1 D c J 1- 2-3 Shemari sections West Jiaqun 90°36′ 90°42′ section C Figure 1. Sketch map showing (A and B) the main tectonic terranes of Tibet (simplified after Pan et al., 2013), and (C) the geological map for the study area (modified after Chen et al., 2015). close marine Triassic deposits and faunas found a complete Triassic succession has been estab- comprehensive biostratigraphic investigation to in both Lhasa and Qiangtang (Yang et al., 1984; lished in accordance with the sections found in the north of Ban’ge area in the central BNSZ. As Chen et al., 2001; Ji et al., 2018a). the Coqen and Wenbudangsang areas (Ji et al., a result, deposits for the Upper Permian to early Stratigraphic evidence has invariably been 2007b; Wu et al., 2007, 2014), implying that the Middle Triassic and the Norian of the Upper Tri- a main contributor to interpretations of tec- west Lhasa terrane was in a carbonate platform assic were first discovered in the study area. The tonic nature. However, Triassic sedimentary setting during the Triassic (Ji et al., 2018a; Wu et details are given in the following sections. data remain rare at present, especially in the al., 2018). Similar deposits were found in South BNSZ, where a Lower Triassic deposit has Qiangtang as well (Guizhou Institute of Geologi- GEOLOGICAL SETTING never been reported and is thus believed to be cal Survey, 2005; Zhang et al., 2005; Li et al., missing, which contrasts greatly with adjacent 2018). The common sedimentary evidence dis- The investigated area is located south and areas where Triassic marine sediments were dis- covered on both sides suggests that they should southwest of Daruco Lake (Fig. 1). Tectonically, closed to be well developed. For example, in be affiliated with a similar carbonate platform it belongs to the Dongkaco substratigraphic divi- the Lhasa terrane to the south, Lower Triassic setting. As a tectonic zone between these two ter- sion in central BNSZ. According to a 1:250000 deposits are widespread in the western portion ranes, biostratigraphic research in the BNSZ will Geological survey on the Ban’ge Sheet (Chen (Ji et al., 2006, 2007a, 2007b, 2007c; Wu et al., be helpful in providing crucial evidence to sup- et al., 2015), the rocky units in this area consist 2007, 2014, 2017, 2018; Zheng et al., 2007), and port this hypothesis. Accordingly, we launched a primarily of the Lower Devonian Da’erdong Geological Society of America | LITHOSPHERE | Volume 11 | Number 5 | www.gsapubs.org 684 Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/11/5/683/4830227/683.pdf by guest on 25 September 2021 GUI-CHUN WU ET AL. | New biostratigraphic evidence from Central Tibet RESEARCH Under this stratigraphic background, the Palaeozoic rocks are commonly treated as bro- Siberia ken blocks inserted within the Mesozoic strata, Jungar Greenland and the Upper Permian to the Triassic strata Tarim Panthalassa below the Quehala Group clasolite was thought Kazakhstan Qaidam Ocean 30ºN to be absent (Fig.
Recommended publications
  • A New Species of Saurichthys from the Middle Triassic (Anisian)
    第56卷 第4期 古 脊 椎 动 物 学 报 pp. 273–294 2018年10月 VERTEBRATA PALASIATICA figs. 1–9 DOI: 10.19615/j.cnki.1000-3118.171023 A new species of Saurichthys from the Middle Triassic (Anisian) of southwestern China WU Fei-Xiang1,2 SUN Yuan-Lin3* FANG Geng-Yu4 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044) (2 CAS Center for Excellence in Life and Paleoenvironment Beijing 100044) (3 Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University Beijing 100871 * Corresponding author: [email protected]) (4 School of Public Health, Peking University Beijing 100191) Abstract The saurichthyiform fishes were effective predators and hence the significant consumers in the aquatic ecosystems during the Early Mesozoic. They showed a notable diversification in the Anisian (Middle Triassic) Lagerstätten of southwestern China. In this contribution, we report a new species of Saurichthys from the Anisian of Yunnan, China, that displays some peculiar modifications of the axial skeleton and the longate body of the group. This new species, Saurichthys spinosa is a small-sized saurichthyid fish characterized by a very narrow interorbital region of the skull roof, an anteriorly expansive and ventrally arched cleithrum, proportionally large abdominal vertebrae lacking neural spines and alternately bearing laterally- stretching paraneural plates, few fin rays in the median fins, and two paralleling rows of needle- like flank scales with strong thorns. This fish has slimmed down the body by reducing the depth of the head and the epaxial part of the trunk.
    [Show full text]
  • Triassic- Jurassic Stratigraphy Of
    Triassic- Jurassic Stratigraphy of the <JF C7 JL / Culpfeper and B arbour sville Basins, VirginiaC7 and Maryland/ ll.S. PAPER Triassic-Jurassic Stratigraphy of the Culpeper and Barboursville Basins, Virginia and Maryland By K.Y. LEE and AJ. FROELICH U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1472 A clarification of the Triassic--Jurassic stratigraphic sequences, sedimentation, and depositional environments UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1989 DEPARTMENT OF THE INTERIOR MANUEL LUJAN, Jr., Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging in Publication Data Lee, K.Y. Triassic-Jurassic stratigraphy of the Culpeper and Barboursville basins, Virginia and Maryland. (U.S. Geological Survey professional paper ; 1472) Bibliography: p. Supt. of Docs. no. : I 19.16:1472 1. Geology, Stratigraphic Triassic. 2. Geology, Stratigraphic Jurassic. 3. Geology Culpeper Basin (Va. and Md.) 4. Geology Virginia Barboursville Basin. I. Froelich, A.J. (Albert Joseph), 1929- II. Title. III. Series. QE676.L44 1989 551.7'62'09755 87-600318 For sale by the Books and Open-File Reports Section, U.S. Geological Survey, Federal Center, Box 25425, Denver, CO 80225 CONTENTS Page Page Abstract.......................................................................................................... 1 Stratigraphy Continued Introduction... ..........................................................................................
    [Show full text]
  • Conodonts and Foraminifers
    Journal of Asian Earth Sciences 108 (2015) 117–135 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China ⇑ Daniel J. Lehrmann a, , Leanne Stepchinski a, Demir Altiner b, Michael J. Orchard c, Paul Montgomery d, Paul Enos e, Brooks B. Ellwood f, Samuel A. Bowring g, Jahandar Ramezani g, Hongmei Wang h, Jiayong Wei h, Meiyi Yu i, James D. Griffiths j, Marcello Minzoni k, Ellen K. Schaal l,1, Xiaowei Li l, Katja M. Meyer l,2, Jonathan L. Payne l a Geoscience Department, Trinity University, San Antonio, TX 78212, USA b Department of Geological Engineering, Middle East Technical University, Ankara 06531, Turkey c Natural Resources Canada-Geological Survey of Canada, Vancouver, British Columbia V6B 5J3, Canada d Chevron Upstream Europe, Aberdeen, Scotland, UK e Department of Geology, University of Kansas, Lawrence, KS 66045, USA f Louisiana State University, Baton Rouge, LA 70803, USA g Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA h Guizhou Geological Survey, Bagongli, Guiyang 550011, Guizhou Province, China i College of Resource and Environment Engineering, Guizhou University, Caijiaguan, Guiyang 550003, Guizhou Province, China j Chemostrat Ltd., 2 Ravenscroft Court, Buttington Cross Enterprise Park, Welshpool, Powys SY21 8SL, UK k Shell International Exploration and Production, 200 N. Dairy Ashford, Houston, TX 77079, USA l Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA article info abstract Article history: The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the Received 13 October 2014 end-Permian extinction and biotic recovery in south China.
    [Show full text]
  • Albertiana 45 39 a CANDIDATE GSSP for the BASE of the ANISIAN from KÇIRA, ALBANIA
    Albertiana 45 39 Research Article A CANDIDATE GSSP FOR THE BASE OF THE ANISIAN FROM KÇIRA, ALBANIA Giovanni Muttoni1*, Alda Nicora1, Marco Balini1, Miriam Katz2, Morgan Schaller2, Dennis V. Kent3, Matteo Maron1, Selam Meço4, Roberto Rettori5, Viktor Doda6, and Shaquir Nazaj4 1Dipartimento di Scienze della Terra ‘Ardito Desio’, via Mangiagalli 34, 20133 Milan, Italy. 2Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York, 12180, USA. 3Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey, USA and Paleomagnetics Lab, Lamont-Doherty Earth Observatory, Palisades New York 10964, USA. 4Faculty of Geology and Mining, Tiranë, Albania. 5Dipartimento di Scienze della Terra, Piazza Università, 06100 Perugia, Italy. 6Albanian Geological Survey, Myslym Keta, Tiranë, Albania. *Corresponding author, Email: [email protected] Abstract– We present a summary of previously published Olenekian–Anisian boundary magnetostratigraphic and biostratigraphic results from the Kçira area of northern Albania. We focus on the stratigraphically complete Kçira-A section that represents a potential candidate Global Boundary Stratotype Section and Point (GSSP) for the base of the Anisian Stage of the Triassic System. The previously published conodont biostratigraphy from Kçira-A and ancillary sections located nearby has been updated using modern taxonomic criteria and correlated to the available ammonoid and benthic foraminifera biostratigraphy. Previously published magnetobiostratigraphic data reveal the occurrence at Kçira-A, and ancillary sections, of a well-defined magnetic polarity reversal pattern of primary origin that allows global correlations ensuring the exportability of biostratigraphic datums (e.g., the first occurrence of conodontChiosella timorensis) falling close to the Kclr/Kc2n polarity transition. A suite of pilot samples has also been studied for bulk carbon and oxygen isotopes stratigraphy, yielding reasonable values that suggest good preservation of primary material.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • Early Triassic (Induan) Radiolaria and Carbon-Isotope Ratios of a Deep-Sea Sequence from Waiheke Island, North Island, New Zealand Rie S
    Available online at www.sciencedirect.com Palaeoworld 20 (2011) 166–178 Early Triassic (Induan) Radiolaria and carbon-isotope ratios of a deep-sea sequence from Waiheke Island, North Island, New Zealand Rie S. Hori a,∗, Satoshi Yamakita b, Minoru Ikehara c, Kazuto Kodama c, Yoshiaki Aita d, Toyosaburo Sakai d, Atsushi Takemura e, Yoshihito Kamata f, Noritoshi Suzuki g, Satoshi Takahashi g , K. Bernhard Spörli h, Jack A. Grant-Mackie h a Department of Earth Sciences, Graduate School of Science and Engineering, Ehime University 790-8577, Japan b Department of Earth Sciences, Faculty of Culture, Miyazaki University, Miyazaki 889-2192, Japan c Center for Advanced Marine Core Research, Kochi University 783-8502, Japan d Department of Geology, Faculty of Agriculture, Utsunomiya University, Utsunomiya 321-8505, Japan e Geosciences Institute, Hyogo University of Teacher Education, Hyogo 673-1494, Japan f Research Institute for Time Studies, Yamaguchi University, Yamaguchi 753-0841, Japan g Institute of Geology and Paleontology, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan h Geology, School of Environment, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand Received 23 June 2010; received in revised form 25 November 2010; accepted 10 February 2011 Available online 23 February 2011 Abstract This study examines a Triassic deep-sea sequence consisting of rhythmically bedded radiolarian cherts and shales and its implications for early Induan radiolarian fossils. The sequence, obtained from the Waipapa terrane, Waiheke Island, New Zealand, is composed of six lithologic Units (A–F) and, based on conodont biostratigraphy, spans at least the interval from the lowest Induan to the Anisian.
    [Show full text]
  • North American Coral Recovery After the End-Triassic Mass Extinction, New York Canyon, Nevada, USA
    North American coral recovery after the end-Triassic mass extinction, New York Canyon, Nevada, USA Montana S. Hodges* and George D. Stanley Jr., University of INTRODUCTION Montana Paleontology Center, 32 Campus Drive, Missoula, Mass extinction events punctuate the evolution of marine envi- Montana 59812, USA ronments, and recovery biotas paved the way for major biotic changes. Understanding the responses of marine organisms in the ABSTRACT post-extinction recovery phase is paramount to gaining insight A Triassic-Jurassic (T/J) mass extinction boundary is well repre- into the dynamics of these changes, many of which brought sented stratigraphically in west-central Nevada, USA, near New sweeping biotic reorganizations. One of the five biggest mass York Canyon, where the Gabbs and Sunrise Formations contain a extinctions was that of the end-Triassic, which was quickly continuous depositional section from the Luning Embayment. followed by phases of recovery in the Early Jurassic. The earliest The well-exposed marine sediments at the T/J section have been Jurassic witnessed the loss of conodonts, severe reductions in extensively studied and reveal a sedimentological and paleonto- ammonoids, and reductions in brachiopods, bivalves, gastropods, logical record of intense environmental change and biotic turn- and foraminifers. Reef ecosystems nearly collapsed with a reduc- over, which has been compared globally. Unlike the former Tethys tion in deposition of CaCO3. Extensive volcanism in the Central region, Early Jurassic scleractinian corals surviving the end- Atlantic Magmatic Province and release of gas hydrates and other Triassic mass extinction are not well-represented in the Americas. greenhouse gases escalated CO2 and led to ocean acidification of Here we illustrate corals of Early Sinemurian age from Nevada the end-Triassic (Hautmann et al., 2008).
    [Show full text]
  • China Shaping Tibet for Strategic Leverage
    MANEKSHAW PAPER No. 70, 2018 China Shaping Tibet for Strategic Leverage Praggya Surana D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Lt Gen Balraj Nagal ISSN 23939729 D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in CLAWS Army No. 33098 The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think-tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2018, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of the Ministry of Defence (MoD) (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents Introduction 1 1.
    [Show full text]
  • The Design of the Ali CMB Polarization Telescope Receiver
    The design of the Ali CMB Polarization Telescope receiver M. Salatinoa,b, J.E. Austermannc, K.L. Thompsona,b, P.A.R. Aded, X. Baia,b, J.A. Beallc, D.T. Beckerc, Y. Caie, Z. Changf, D. Cheng, P. Chenh, J. Connorsc,i, J. Delabrouillej,k,e, B. Doberc, S.M. Duffc, G. Gaof, S. Ghoshe, R.C. Givhana,b, G.C. Hiltonc, B. Hul, J. Hubmayrc, E.D. Karpela,b, C.-L. Kuoa,b, H. Lif, M. Lie, S.-Y. Lif, X. Lif, Y. Lif, M. Linkc, H. Liuf,m, L. Liug, Y. Liuf, F. Luf, X. Luf, T. Lukasc, J.A.B. Matesc, J. Mathewsonn, P. Mauskopfn, J. Meinken, J.A. Montana-Lopeza,b, J. Mooren, J. Shif, A.K. Sinclairn, R. Stephensonn, W. Sunh, Y.-H. Tsengh, C. Tuckerd, J.N. Ullomc, L.R. Valec, J. van Lanenc, M.R. Vissersc, S. Walkerc,i, B. Wange, G. Wangf, J. Wango, E. Weeksn, D. Wuf, Y.-H. Wua,b, J. Xial, H. Xuf, J. Yaoo, Y. Yaog, K.W. Yoona,b, B. Yueg, H. Zhaif, A. Zhangf, Laiyu Zhangf, Le Zhango,p, P. Zhango, T. Zhangf, Xinmin Zhangf, Yifei Zhangf, Yongjie Zhangf, G.-B. Zhaog, and W. Zhaoe aStanford University, Stanford, CA 94305, USA bKavli Institute for Particle Astrophysics and Cosmology, Stanford, CA 94305, USA cNational Institute of Standards and Technology, Boulder, CO 80305, USA dCardiff University, Cardiff CF24 3AA, United Kingdom eUniversity of Science and Technology of China, Hefei 230026 fInstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 gNational Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 hNational Taiwan University, Taipei 10617 iUniversity of Colorado Boulder, Boulder, CO 80309, USA jIN2P3, CNRS, Laboratoire APC, Universit´ede Paris, 75013 Paris, France kIRFU, CEA, Universit´eParis-Saclay, 91191 Gif-sur-Yvette, France lBeijing Normal University, Beijing 100875 mAnhui University, Hefei 230039 nArizona State University, Tempe, AZ 85004, USA oShanghai Jiao Tong University, Shanghai 200240 pSun Yat-Sen University, Zhuhai 519082 ABSTRACT Ali CMB Polarization Telescope (AliCPT-1) is the first CMB degree-scale polarimeter to be deployed on the Tibetan plateau at 5,250 m above sea level.
    [Show full text]
  • Twenty Million Years of Continuous Deformation Along Thekarakorum Fault, Western Tibet: a Thermochronological Analysis
    Twenty million years of continuous deformation along theKarakorum fault, western Tibet: A thermochronological analysis. Franck Valli, Nicolas Arnaud, Philippe-Hervé Leloup, Edward Sobel, Gweltaz Mahéo, R. Lacassin, Stéphane Guillot, Haibing Li, Paul Tapponnier, Xu Zhiquin To cite this version: Franck Valli, Nicolas Arnaud, Philippe-Hervé Leloup, Edward Sobel, Gweltaz Mahéo, et al.. Twenty million years of continuous deformation along theKarakorum fault, western Tibet: A ther- mochronological analysis.. Tectonics, American Geophysical Union (AGU), 2007, 26, pp.TC4004. 10.1029/2005TC001913. hal-00197561 HAL Id: hal-00197561 https://hal.archives-ouvertes.fr/hal-00197561 Submitted on 17 Dec 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 20 million years of continuous deformation along the Karakorum fault, Western Tibet: a thermochronological analysis Franck Valli (1), Nicolas Arnaud (2), Philippe Hervé Leloup (3), Edward R. Sobel (4) Gweltaz Mahéo, (3) Robin Lacassin (1) Stéphane Guillot (5), Haibing Li (6-1) Paul Tapponnier (1), Zhiqin Xu (6) (1) UMR7578-CNRS Institut de Physique du Globe de Paris, 75252, Paris, France, (2) Géosciences Montpellier, Université de Montpellier 2, CNRS UMR5243, 34095, Montpellier, France, (3) UMR5570-CNRS Univ. Claude Bernard, 69622, Villeurbanne, France, (4) Univ.
    [Show full text]
  • Mesozoic Marine Reptile Palaeobiogeography in Response to Drifting Plates
    ÔØ ÅÒÙ×Ö ÔØ Mesozoic marine reptile palaeobiogeography in response to drifting plates N. Bardet, J. Falconnet, V. Fischer, A. Houssaye, S. Jouve, X. Pereda Suberbiola, A. P´erez-Garc´ıa, J.-C. Rage, P. Vincent PII: S1342-937X(14)00183-X DOI: doi: 10.1016/j.gr.2014.05.005 Reference: GR 1267 To appear in: Gondwana Research Received date: 19 November 2013 Revised date: 6 May 2014 Accepted date: 14 May 2014 Please cite this article as: Bardet, N., Falconnet, J., Fischer, V., Houssaye, A., Jouve, S., Pereda Suberbiola, X., P´erez-Garc´ıa, A., Rage, J.-C., Vincent, P., Mesozoic marine reptile palaeobiogeography in response to drifting plates, Gondwana Research (2014), doi: 10.1016/j.gr.2014.05.005 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Mesozoic marine reptile palaeobiogeography in response to drifting plates To Alfred Wegener (1880-1930) Bardet N.a*, Falconnet J. a, Fischer V.b, Houssaye A.c, Jouve S.d, Pereda Suberbiola X.e, Pérez-García A.f, Rage J.-C.a and Vincent P.a,g a Sorbonne Universités CR2P, CNRS-MNHN-UPMC, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, CP 38, 57 rue Cuvier,
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]