Linked to Mineralisation Episode Are Included

Total Page:16

File Type:pdf, Size:1020Kb

Linked to Mineralisation Episode Are Included i Exploration and Mining Report 1073R PREDICTIVE MAGNETIC EXPLORATION MODELS FOR PORPHYRY, EPITHERMAL AND IRON OXIDE COPPER-GOLD DEPOSITS: IMPLICATIONS FOR EXPLORATION D.A. Clark, S. Geuna and P.W.Schmidt SHORT COURSE MANUAL FOR AMIRA P700 April 2003 RESTRICTED CIRCULATION This report is not to be cited in other documents without the consent of CSIRO Exploration and Mining ______________________ ii CSIRO Exploration and Mining PO Box 136, North Ryde, NSW, Australia iii iv Distribution List Copy No. AMIRA 1-8 Dr N. Phillips, Chief CSIRO Exploration and Mining 9 Mr D.A. Clark 10 Dr S. Geuna 11 Dr P.W. Schmidt 12 Records Section (North Ryde) 13 Copy no. ........................ of 19 copies v Page no. TABLE OF CONTENTS 1. INTRODUCTION 1 2. MAGNETIC PETROPHYSICS AND MAGNETIC PETROLOGY: 4 APPLICATION TO INTERPRETATION OF MAGNETIC SURVEYS AND IMPLICATIONS FOR EXPLORATION 3. MAGNETIC PETROLOGY OF IGNEOUS INTRUSIONS: 46 IMPLICATIONS FOR EXPLORATION AND MAGNETIC INTERPRETATION 4. METHODS OF DETERMINING MAGNETIC PROPERTIES WITHIN 95 MINERALISED SYSTEMS 5. GEOLOGICAL MODELS OF PORPHYRY COPPER (Mo, Au), 122 VOLCANIC-HOSTED EPITHERMAL AND IRON OXIDE COPPER- GOLD SYSTEMS 6. GEOLOGICAL AND GEOMAGNETIC FACTORS THAT 192 CONTROL MAGNETIC SIGNATURES OF PORPHYRY, EPITHERMAL AND IRON OXIDE COPPER-GOLD DEPOSITS 7. PETROPHYSICAL PROPERTIES OF VOLCANO-PLUTONIC 212 TERRAINS, PORPHYRY SYSTEMS, IRON OXIDE COPPER-GOLD SYSTEMS AND VOLCANIC-HOSTED EPITHERMAL SYSTEMS – P700 CASE STUDIES 8. MAGNETIC PROPERTIES OF PORPHYRY, EPITHERMAL AND 226 IRON OXIDE COPPER-GOLD DEPOSITS SYSTEMS - SYNTHESIS 9. MAGNETIC AND OTHER GEOPHYSICAL SIGNATURES OF 238 P700 STUDY AREAS 10. MAGNETIC SIGNATURES OF PORPHYRY, EPITHERMAL AND 274 IRON OXIDE COPPER-GOLD MINERALISATION - REVIEW AND SYNTHESIS 11. EXPLANATORY NOTES FOR THE P700 DATABASE 300 12. EXPLANATORY NOTES FOR THE P700 ATLAS OF 314 PREDICTIVE MAGNETIC EXPLORATION MODELS 13. GEOPHYSICAL EXPLORATION CRITERIA FOR PORPHYRY, 331 EPITHERMAL AND IRON OXIDE COPPER GOLD DEPOSITS 14. ACKNOWLEDGMENTS 334 15. REFERENCES AND BIBLIOGRAPHY 335 APPENDIX A - PRODUCTS DISTRIBUTED TO SPONSORS 382 INTRODUCTION 1 1. INTRODUCTION AMIRA project P700 was aimed at improving the utility of magnetic surveys in exploration for a number of deposit types: porphyry Cu (Au, Mo) and related deposits, the newly recognised category of reduced porphyry deposits, precious metal and Cu-Au volcanic-hosted epithermal deposits, and iron oxide Cu-Au deposits. In the course of the project predictive magnetic exploration models were developed for these types of deposit. The magnetic models are based on realistic geological models, a comprehensive magnetic property database, and magnetic petrological principles. Outcomes of the project include an Atlas of Predictive Magnetic Exploration Models for these types of deposit, in a wide range of geological settings, and a set of practical and easily understandable criteria for exploration using magnetics for porphyry and epithermal deposits. Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programmes for porphyry and epithermal deposits. However, the magnetic signatures of porphyry and epithermal deposits are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits is rarely successful. A number of well-known geological models of porphyry and epithermal deposits are routinely used in exploration, even though most deposits fail to match the idealised models closely, due to post-emplacement tectonic disruption and rotations, asymmetric alteration zoning due to emplacement along a contact between contrasting country rock types, and so on. These complications are taken into account by exploration geologists as geological information about a prospect accumulates. The variability of magnetic signatures of these deposits reflects: i. strong dependence of magnetic signatures on local geological setting, ii. departures of real mineralised systems from idealised geological models, iii. the direction and intensity of the geomagnetic field, which varies over the Earth, iv. differing magnetic environments (host rock magnetisation, regional gradients, interference from neighbouring anomalies etc.). Points (i)-(ii) are the most important reasons for variability of magnetic signatures of mineralised systems. Point (i) covers a number of significant geological factors, the most important of which are: tectonic setting and its influence on magma composition and mode of emplacement; influence of pre-existing structures on the geometry and depth of emplacement; and the crucial influence of host rock composition on alteration assemblages, including secondary magnetic minerals, and on the stability of primary magnetic minerals. Many porphyry systems depart from idealised models due to emplacement along geological contacts with contrasting rocks on either side, producing asymmetric zoning patterns. Point (ii) reflects not only the local geological setting at the time of emplacement, but also post-emplacement modification of deposits. Post-emplacement tilting of porphyry and epithermal systems and dismemberment by faulting are very INTRODUCTION 2 common and drastically modify the geophysical signatures. Burial of a deposit by younger sedimentary or volcanic rocks also modifies the anomaly pattern. Conversely, exhumation and partial erosion of the system produces a very different magnetic signature. In older deposits, metamorphism can substantially modify the magnetic mineralogy of the deposits and host rocks, with concomitant changes in the magnetic anomaly pattern. Although the majority of porphyry and epithermal deposits are relatively young and, at most, weakly metamorphosed, some relatively ancient deposits in metamorphosed terrains are known. There is a strong possibility that some older porphyry and epithermal deposits occur that have not been recognised, because effects of metamorphism and deformation have obscured their true nature. Points (i)-(ii) can only be satisfactorily addressed by an approach that integrates a knowledge base of magnetic properties, based on detailed sampling of a variety of deposits and modelling of their magnetic anomalies, combined with magnetic petrological principles to produce predictive magnetic exploration models that are specific to each geological setting. Given the magnetic petrophysical database and the understanding of the geological factors that create and destroy magnetic minerals in porphyry systems, however, the magnetic effects of the above-mentioned geological complications are quite predictable. The CSIRO Rock Magnetism Group is uniquely qualified to tackle predictive magnetic modelling of mineral deposit models, as it combines expertise in magnetic interpretation with extensive knowledge of magnetic petrophysics and magnetic petrology, acquired over a succession of AMIRA projects, as well as a long history of case studies of mineralised areas carried out for exploration companies. Point (iii) above is routinely addressed by reduction-to-the-pole (RTP) processing of measured total magnetic intensity (TMI) data, which is generally successful in producing more intuitively interpretable magnetic signatures that are no longer skewed by the inclination of the geomagnetic field and can therefore be directly compared with signatures from other geomagnetic latitudes. Thus it is proposed to produce the predictive magnetic exploration models predominantly in the form of calculated RTP anomalies that can be compared with RTP processed surveys, although TMI signatures at other geomagnetic latitudes will be presented for selected models. Once a generic predictive magnetic model has been produced for a particular geological setting, point (iv) above can be addressed by using the grid of predicted values as a template that can be superimposed on the measured values anywhere in the survey area to produce the predicted signature for the local magnetic environment. For example, in the presence of a steep regional field gradient, the generic signature can be grossly distorted and may easily elude recognition. Superimposing the grid values for the generic model on this gradient produces the anomaly that is to be expected at that specific locality, which may be quite different from the signature of an identical source in a different regional field. The project provided the following products: INTRODUCTION 3 • An Atlas of Predictive Magnetic Exploration Models (and case histories), based on standard geological models for porphyry copper and copper-gold deposits (including associated skarn deposits and intrusive-related breccia-hosted Au deposits), volcanic-hosted epithermal precious metal and Au-Cu deposits, and iron oxide copper-gold deposits for a wide range of geological settings (RTP images, contour maps and profiles; supplemented by TMI equivalents at a range of latitudes, for selected models). • Calculated grids for each of the models, in formats convenient for sponsors. • An extensive review and classification of observed magnetic signatures of porphyry and epithermal deposits and an analysis of the geological factors that influence those signatures, • A relational database (Access and/or Paradox) of geological, magnetic petrophysical, magnetic petrological and magnetic anomaly characteristics along with other geophysical characteristics of well-documented porphyry and epithermal deposits worldwide. An example of the type of query that can be made with
Recommended publications
  • A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
    minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2].
    [Show full text]
  • Muntean/Einaudi
    Economic Geology Vol. 95, 2000, pp. 1445–1472 Porphyry Gold Deposits of the Refugio District, Maricunga Belt, Northern Chile JOHN L. MUNTEAN†,* AND MARCO T. EINAUDI Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305-2115 Abstract The porphyry gold deposits of the Refugio district and similar deposits in the Maricunga belt contain the lowest known copper to gold ratios (% Cu/ppm Au = ~0.03) of any porphyry-type deposit. The gold deposits are associated with subvolcanic andesitic to dacitic intrusions emplaced into coeval volcanic rocks. Both the Verde and Pancho deposits are zoned in space from a deeper zone of banded quartz veinlets associated with chlorite-magnetite-albite and/or pyrite-albite-clay alteration to a shallow zone of pyrite-albite-clay and local quartz-alunite ledges. Pancho contains an additional, deepest, porphyry copperlike zone, with quartz veinlets (A-veinlets) and potassic alteration. Relative to Verde, Pancho is telescoped, with all three zones present within a 400-m-vertical interval. The porphyry copperlike zone at Pancho is characterized by A-veinlets and pervasive potassic alteration, both restricted to intrusive rocks. A-veinlets range from hairline streaks of magnetite ± biotite with minor quartz and chalcopyrite, and K feldspar alteration envelopes to sugary quartz veinlets <1 cm in width with mag- netite and chalcopyrite and no alteration envelopes. Hypersaline liquid inclusions coexisting with vapor-rich in- clusions indicate temperatures above 600°C and salinities as high as 84 wt percent NaCl equiv. A pressure es- timate of 250 bars indicates a depth of 1,000 m, assuming lithostatic pressure.
    [Show full text]
  • Relationships Between Magnetic Parameters, Chemical Composition and Clay Minerals of Topsoils Near Coimbra, Central Portugal
    Nat. Hazards Earth Syst. Sci., 12, 2545–2555, 2012 www.nat-hazards-earth-syst-sci.net/12/2545/2012/ Natural Hazards doi:10.5194/nhess-12-2545-2012 and Earth © Author(s) 2012. CC Attribution 3.0 License. System Sciences Relationships between magnetic parameters, chemical composition and clay minerals of topsoils near Coimbra, central Portugal A. M. Lourenc¸o1, F. Rocha2, and C. R. Gomes1 1Centre for Geophysics, Earth Sciences Dept., University of Coimbra, Largo Marquesˆ de Pombal, 3000-272 Coimbra, Portugal 2Geobiotec Centre, Geosciences Dept., University of Aveiro, 3810-193 Aveiro, Portugal Correspondence to: A. M. Lourenc¸o ([email protected]) Received: 6 September 2011 – Revised: 27 February 2012 – Accepted: 28 February 2012 – Published: 14 August 2012 Abstract. Magnetic measurements, mineralogical and geo- al., 1980). This methodology is fast, economic and can be ap- chemical studies were carried out on surface soil samples plied in various research fields, such as environmental mon- in order to find possible relationships and to obtain envi- itoring, pedology, paleoclimatology, limnology, archeology ronmental implications. The samples were taken over a and stratigraphy. Recent studies have demonstrated the ad- square grid (500 × 500 m) near the city of Coimbra, in cen- vantages and the potential of the environmental magnetism tral Portugal. Mass specific magnetic susceptibility ranges methods as valuable aids in the detection and delimitation between 12.50 and 710.11 × 10−8 m3 kg−1 and isothermal of areas affected by pollution (e.g. Bityukova et al., 1999; magnetic remanence at 1 tesla values range between 253 Boyko et al., 2004; Blaha et al., 2008; Lu et al., 2009; and 18 174 × 10−3 Am−1.
    [Show full text]
  • Geology, Petrology and Geochemical Characteristics of Alteration Zones Within the Seridune Prospect, Kerman, Iran
    Geology, petrology and geochemical characteristics of alteration zones within the Seridune prospect, Kerman, Iran Von der Fakultät für Georessourcen und Materialtechnik der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation vorgelegt von M.Sc. Hassan Barzegar aus Shiraz, Iran Berichter: Univ.-Prof. Dr.rer.nat. Franz Michael Meyer Univ.-Prof. Dr.rer.nat. Ulrich Kramm Tag der mündlichen Prüfung: 27. August 2007 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar For Melika and Mojan FOREWORD This research project was fully facilitated by the Institute of Mineralogy and Economic Geology, Rheinisch Westfälischen Technischen Hochschule (RWTH) Aachen University and supported by the Research Department of National Iranian Copper Industries Company (NICICO). The Institute of Mineralogy and Economic Geology, RWTH Aachen University sponsored sample preparations and geochemical analyses. First, I would like to thank my supervisor, Prof. Dr. F. Michael Meyer, Head of the Department of Mineralogy and Economic Geology, RWTH Aachen University, for his worthy support, guidance, continued interest, encouragement during this work, and for many hours of his time spent in discussions; Dr. Jochen Kolb who gave me guidance and encouragement through each stage of the work, for his interest, time spent in discussions and proof-reading this thesis; Annika Dziggel, Ph.D for her assistance and discussion and Dr. Sven Sindern for his support and assistance in XRF analyses. This thesis is also benefited by the suggestions and guidance of Prof. Dr. Ulrich Kramm and Prof. Dr. Helge Stanjek. Their interests are highly appreciated. My sincere thanks go to manager of Exploration Office, Dr.
    [Show full text]
  • Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, SM
    Originally published as: Bianchi, M., Heit, B., Jakovlev, A., Yuan, X., Kay, S.M., Sandvol, E., Alonso, R.N., Coira, B., Brown, L., Kind, R., Comte, D. (2013): Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions. ‐ Tectonophysics, 586, 65‐83 DOI: 10.1016/j.tecto.2012.11.016 *Manuscript Click here to download Manuscript: Bianchi-etal.doc Click here to view linked References Teleseismic tomography of the southern Puna plateau in Argentina and adjacent regions 1 2 3 M. Bianchi 1, B. Heit 1,*, A. Jakovlev 2, X. Yuan 1, S. M. Kay 3, E. Sandvol 4, R. N. Alonso 5, B. 4 5 6 Coira 6, R. Kind 1,7 7 8 9 1 Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany 10 11 12 13 2 Institute of Geology, SB RAS, Novosibirsk, Russia 14 15 16 3 Cornell University, EAS, Snee Hall, Ithaca, NY, 14850. 17 18 19 4 Department of Geological Sciences, University of Missouri, Columbia MO 65211 20 21 22 23 5 Universidad Nacional de Salta, Buenos Aires 177, 4400-Salta, Argentina 24 25 26 6 CONICET, Instituto de Geología y Minería, Universidad Nacional de Jujuy, Avda. Bolivia 1661, 27 28 29 4600-San Salvador de Jujuy, Argentina 30 31 32 7 Freie Universität Berlin, Maltesserstr. 74-100, 12227 Berlin, Germany 33 34 35 36 * Corresponding author, [email protected]. 37 38 39 40 41 42 43 ABSTRACT 44 45 46 An array of 74 seismological stations was deployed in the Argentine Puna and adjacent regions for 47 48 a period of two years.
    [Show full text]
  • Ore Deposits
    EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 20, No. 3 (September, 2016 ) : A1 - A10 ORE DEPOSITS Occurrence of Cr-bearing beryl in stream sediment from Eskişehir, NW Turkey Hülya Erkoyun and Selahattin Kadir * Eskişehir Osmangazi University, Deparment of Geological Engineering, TR−26480 Eskişehir, Turkey [email protected] [email protected] *corresponding author ABSTRACT Keywords: Beryl, Kaymaz, schist, SEM-EDX, IR. Beryl crystals are found within stream sediments transecting schists in the northeast of Eskişehir, western Anatolia. This paper studied the Eskişehir beryl crystals with optical microscopy, scanning electron microscopy (SEM-EDX), infrared spectroscopy (IR) and geochemical analyses. Beryl is accompanied by garnet, glaucophane, quartz, epidote, muscovite and chlorite in the stream sediments. The crystals are euhedral emerald (green gem beryl) and light bluish- green aquamarine, with ideal sharp IR bands. Wet chemical analysis of Eskişehir beryl yielded 61.28% SiO2, 15.13% Al2O3, 12.34% BeO, 0.18% Cr2O3, 1.49% MgO, 1.69% Na2O, 0.98% Fe2O3, and 0.008% V2O3, resulting in the formula (Al1.75Cr0.01Mg0.22Fe0.08)(Be2.90Si6.00)(Na0.32)O18. Large Ion Lithophile Elements (LILE) (barium, strontium), some transition metals (cobalt, except nickel) and High Field Strength Elements (HFSE) (niobium, zirconium, and yttrium) in stream sediments that are associated with beryl exhibited low content about metamorphic rocks. Beryl formation appears to be controlled by upthrust faults and fractures that juxtaposed them with Cr-bearing ophiolitic units and a regime of metasomatic reactions. Such beryl crystals have also been found in detrital sediments that are derived from the schists. Presencia de berilios relacionados con Cromo en corrientes sedimentarias de Eskisehir, noroeste de Turquía RESUMEN Cristales de berilio fueron encontrados en sedimentos de corrientes que atraviesan en esquistos en el noreste de Palabras clave: Berilio, Kaymaz, esquistos, Eskisehir, al oeste de Anatolia.
    [Show full text]
  • Indium-Bearing Paragenesis from the Nueva Esperanza and Restauradora Veins, Capillitas Mine, Argentina
    Journal of Geosciences, 65 (2020), 97–109 DOI: 10.3190/jgeosci.304 Original paper Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina María Florencia MÁRQUEZ-ZAVALÍA1,2*, Anna VYMAZALOVÁ3, Miguel Ángel GALLISKI1, Yasushi WATANABE4, Hiroyasu MURAKAMI5 1 IANIGLA, CCT-Mendoza (CONICET), Avda. A. Ruiz Leal s/n, Parque San Martin, CC330, (5500) Mendoza, Argentina; [email protected] 2 Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina 3 Department of Rock Geochemistry, Czech Geological Survey, Geologická 6, 152 00 Prague 5, Czech Republic 4 Faculty of International Resource Sciences, Mining Museum of Akita University, 28-2 Osawa, Tegata, Akita, 010-8502 Japan 5 Coal Business Planning Group, Coal Business Office, Resources & Power Company, JXTG Nippon Oil & Energy Corporation, 1-2, Otemachi 1-chome, Chiyoda-ku, Tokyo 100-8162 Japan * Corresponding author The Nueva Esperanza and Restauradora are two of the twenty-three veins described at Capillitas mine, an epithermal precious- and base-metal vein deposit located in northern Argentina. Capillitas is genetically linked to other minera- lizations of the Farallón Negro Volcanic Complex, which hosts several deposits. These include two world-class (La Alumbrera and Agua Rica) and some smaller (e.g., Bajo El Durazno) porphyry deposits, and a few epithermal deposits (Farallón Negro, Alto de la Blenda, Cerro Atajo and Capillitas). The main hypogene minerals found at these two ve- ins include pyrite, sphalerite, galena, chalcopyrite, tennantite-(Zn) and tennantite-(Fe). Accessory minerals comprise hübnerite, gold, silver, stannite, stannoidite and mawsonite, and also diverse indium- and tellurium-bearing minerals.
    [Show full text]
  • Magnetic Properties of Rocks and Minerals
    MagneticProperties of Rocksand Minerals ChristopherP. Hunt, BruceM. Moskowitz,Subir K. Banerjee 1. INTRODUCTION composition-dependentmagnetic parameters of a varietyof iron-bearingminerals. This is an updatedcollation of magneticparameters of rocksand mineralsfor geologists,geochemists, and geo- 2. MAGNETIC SUSCEPTIBILITY physicists.Since the publication of theprevious edition of Handbookof PhysicalConstants [74], two othercollations Magnetic susceptibilityis a measureof the magnetic have appeared[16, 18]. In addition,selected magnetic responseof a materialto an externalmagnetic field. The parametershave alsobeen assembled[19, 22, 38, 41, 88]. volumesusceptibility k, measuredin dimensionlessunits, is Ratherthan produce a fully comprehensivecollection, we definedas the ratio of thematerial magnetization J (perunit have aimed for high-precisiondata obtainedfrom well- volume) to the weak externalmagnetic field H: characterizedsamples. Bothtables and figures have been used for presentingthe J=kH. (1) data,and best-fit equations have been provided for someof thedisplayed data so that interpolations can be made easily. Alternatively,the specificor masssusceptibility Z, mea- In an attemptto discouragethe useof the outdatedcgs suredin units of rn3kg4, isdefined as the ratio of the material system,all valuesare in theSI system(see Moskowitz, this magnetizationJ (per unit mass)to the weak externalmag- volume). Referenceshave been cited for the sourcesused netic field H: here. However,a morecomprehensive bibliography has alsobeen provided from which
    [Show full text]
  • THE MAGNESITE DEPOS11's of WASHINGTON Their Occurrence and Technology
    WASHINGTON GEOLOGICAL SUR\ EY HENRY LANDES, State Geologist BULLETIN NO. 25 THE MAGNESITE DEPOS11'S OF WASHINGTON Their Occurrence and Technology By GEORGE E. WHITWELL and ERNEST N. P A'l1TY OLYMPIA FRANK K . LAMBORN ~ P UBLIC PRINTER 1921 BOARD O:H' GEOLOGICAL TRYEY GoYernor Lours F. HART, Olwirma11. , tatc Trea. m·cr C. L. B.,LlrocK, H('cre lary. Pre. i<l e11 t Hirn RY rz:z., 1,1.0. President EnxEt";T 0. H o1.1 .,,:--o. fuxnY L .\XOES, S ta te a,,olooisl. LETTER OF TRANSMITTAL Governor L oui::; F. Hart, Chafrman, and Members of the Board of Geologtcal t:liir·vey: GmnLEMEX : I have the honor to submit herewith a report entitled "The :Magnesite Deposits of Washing­ ton; Their Occurrence and Technolo 0 y ,'' hy George E. Wl1i twell and Ernest N. Patty, with the recommendation that it be printed as Bulletin No. 25 of the Sttr\·ey reports. V Cl'Y respectfully, HENRY LANDES, State Geologist. Univ er. i ty Station, Seattle, January 15, 192]. CONTENTS. Page GEXt:IIAf, STATE,\1 1•: XT. 11 Introduction . 11 Mineralogy and composition....... ........... 12 General character or magnesite..... ....... ................. 14 Comparative analyses......................... .............. 15 Dt:SCllll'TlOX OF TIU; Di::POSITS.................................... 16 Location . 16 Discovery and history of develotJment......................... 16 Transportation . 22 ~fining methods.. 23 Power . 26 Geology . 27 Occurrence and geologic relations. 27 Reserves . 28 Structural features.... 28 Genesis . 31 Prospecting . 39 Northwest Magnesite Company. 41 Finch deposit. 41 General features............. 41 Description or the deposit. 41 Mining methods employed............................. 43 Description or coarse crushing plant. ................. 44 Keystone deposit ........................................
    [Show full text]
  • Economic Evaluation and Perspectives of the Magnesite Mine in the Deposit “Dubovc”
    Modern Environmental Science and Engineering (ISSN 2333-2581) September 2016, Volume 2, No. 9, pp. 620-624 Doi: 10.15341/mese(2333-2581)/09.02.2016/006 Academic Star Publishing Company, 2016 www.academicstar.us Economic Evaluation and Perspectives of the Magnesite Mine in the Deposit “Dubovc” Ramiz Krasniqi1, Arta Xhylani2, Jahir Gashi1, and Fadil Bajraktari3 1. Independent Commission for Mines and Mineral, Armend Daci No. 1, Prishtinë, Kosovo 2. University of Prishtina, Kosovo 3. Ministy of Environment and spatial Planning, Kosovo Abstract: In The magnesite deposit “Dubovc” is located in the area of the village with the same name, about 10 km, in Southwest of Vushtrri in the north slopes of Çiçavice mountain. The deposit has been explored in the great mass with a relatively dense network of underground mining operations and drilling so today we can say that the exploration level of deposits is satisfactory. The deposit is represented by two great magnesite veins laying in the North west and South southeast direction, and according to the data of exploration operations it lays in the NE direction, except in the deeper parts dictated of surrounding rocks the vein will entirely change the angle and direction of dipping. The done studies in the period from the mining interruption until now has denied the opinion of some previous researchers of this deposit, that calculate only for main veins of the deposit “Dubovc”, the deposit contains 1.5-2 million tons of reserves. The general final calculated reserves for all deposit “Dubovc” are 964 949 tons, from which the North part 409 898 ton, and South part 555 051 ton magnesite.
    [Show full text]
  • Preliminary Report Magnesite Deposits
    State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development ED DAVIS, Director DIVISION OF GEOLOGY HAROLD E. CULVER, Supervisor Report of Investigations No. 5 PRELIMINARY REPORT ON MAGNESITE DEPOSITS OF STEVENS COUNTY, WASHINGTON By W. A.G. BENNETT OLYMPIA STATE PRINTING Pl.ANT CONTENTS Page Introduction . 3 Earlier investigations . 4 Field work . 6 Acknowledgments . 6 Rocks of the magnesite belt . .. .............................. ......... 7 Deer Trail group ................................................ 7 Huckleberry conglomerate ....................................... 8 Huckleberry greenstone ......................................... 8 Addy quartzite ............ .......................... .......... 9 Undifferentiated limestone ................................... .. 9 Igneous rocks .................................................... 10 Structure . 10 Folds ....................................................... 10 Faults ............... ...... .................... · · · · · · · · · · · 11 Magnesite deposits . .............. ......... .. .............. .. 12 Mineralogy . .. ... ........................... .............. 12 Texture of the magnesite and dolomite ............................ 12 Stratigraphic position ................................ .......... 12 Origin ..... ................................... ..... ......... 13 Extensions of the Stensgar dolomite .................. ............. 14 Description ..................................................... 14 Area north of the Finch quarry.
    [Show full text]
  • Lithospheric Delamination Beneath the Southern Puna Plateau Resolved by Local Earthquake Tomography
    Confidential manuscript submitted to replace this text with name of AGU journal Lithospheric delamination beneath the southern Puna plateau resolved by local earthquake tomography Jing Chen1,2, Sofia-Katerina Kufner2,3, Xiaohui Yuan2, Benjamin Heit2, Hao Wu1, Dinghui Yang1, Bernd Schurr2, and Suzanne Kay4 1Tsinghua University, Beijing, China. 2Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany. 3British Antarctica Survey, Cambridge, UK. 4Cornell University, Ithaca, USA Corresponding author: Jing Chen ([email protected]) Key Points: • A local earthquake tomography is performed in the southern Puna plateau and adjacent region • A high mantle Vp anomaly beneath Cerro Galan provides evidence for lithospheric delamination • A low Vp zone is observed beneath Ojos del Salado, reflecting the melt supplied by slab dehydration reaction at two depths This paper has been submitted for publication in Journal of Geophysical Research: Solid Earth. Confidential manuscript submitted to replace this text with name of AGU journal Abstract We present a local earthquake tomography to illuminate the crustal and uppermost mantle structure beneath the southern Puna plateau and to test the delamination hypothesis. Vp and Vp/Vs ratios were obtained using travel time variations recorded by 75 temporary seismic stations between 2007 and 2009. In the upper crust, prominent low Vp anomalies are found beneath the main volcanic centers, indicating the presence of magma and melt beneath the southern Puna plateau. In the lowlands to the southeast of the Puna plateau, below the Sierras Pampeanas, a high Vp body is observed in the crust. Beneath the Moho at around 90 km depth, a strong high Vp anomaly is detected just west of the giant backarc Cerro Galan Ignimbrite caldera with the robustness of this feature being confirmed by multiple synthetic tests.
    [Show full text]