Ore Deposits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2]. -
Research Article LITHIUM TETRABORATE PRODUCTION from the REACTION of BORIC ACID and LITHIUM CARBONATE USING CARBON DIOXIDE Ali Y
Sigma J Eng & Nat Sci 38 (3), 2020, 1121-1132 Sigma Journal of Engineering and Natural Sciences Sigma Mühendislik ve Fen Bilimleri Dergisi Research Article LITHIUM TETRABORATE PRODUCTION FROM THE REACTION OF BORIC ACID AND LITHIUM CARBONATE USING CARBON DIOXIDE Ali YALÇIN1, Mehmet GÖNEN*2 1Süleyman Demirel University, Dept. of Chemical Engineering, ISPARTA; ORCID: 0000-0002-8722-4159 2Süleyman Demirel University, Dept. of Chemical Engineering, ISPARTA; ORCID: 0000-0001-5780-4622 Received: 26.02.2020 Revised: 30.03.2020 Accepted: 22.05.2020 ABSTRACT In this study, the synthesis of lithium tetraborate in the presence of carbon dioxide (CO2) in an aqueous phase was investigated. A two-step process has been developed in the present study. The first step includes an aqueous phase reaction of lithium carbonate and boric acid in the presence of CO2 at different pressures. The second step involves the crystallization and thermal treating of the product obtained from step one at the temperatures between 300 and 400°C for 1 hour. Characterizations of the samples were performed by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). It was characterized that amorphous lithium tetraborate of Li2B4O7.3H2O was synthesized in the first step and then it was converted into Li2B4O7 in the second step. The use of CO2 as a modifying agent in lithium tetraborate synthesis has enhanced the dissolution rate of reactants that induced a fast-aqueous phase reaction. Keywords: Lithium tetraborate, boric acid, CO2, lithium carbonate, two-step process. 1. INTRODUCTION Lithium borates are important compounds that are used as specialty chemicals in the industry. -
Zinnwald Lithium Project
Zinnwald Lithium Project Report on the Mineral Resource Prepared for Deutsche Lithium GmbH Am St. Niclas Schacht 13 09599 Freiberg Germany Effective date: 2018-09-30 Issue date: 2018-09-30 Zinnwald Lithium Project Report on the Mineral Resource Date and signature page According to NI 43-101 requirements the „Qualified Persons“ for this report are EurGeol. Dr. Wolf-Dietrich Bock and EurGeol. Kersten Kühn. The effective date of this report is 30 September 2018. ……………………………….. Signed on 30 September 2018 EurGeol. Dr. Wolf-Dietrich Bock Consulting Geologist ……………………………….. Signed on 30 September 2018 EurGeol. Kersten Kühn Mining Geologist Date: Page: 2018-09-30 2/219 Zinnwald Lithium Project Report on the Mineral Resource TABLE OF CONTENTS Page Date and signature page .............................................................................................................. 2 1 Summary .......................................................................................................................... 14 1.1 Property Description and Ownership ........................................................................ 14 1.2 Geology and mineralization ...................................................................................... 14 1.3 Exploration status .................................................................................................... 15 1.4 Resource estimates ................................................................................................. 16 1.5 Conclusions and Recommendations ....................................................................... -
THE MAGNESITE DEPOS11's of WASHINGTON Their Occurrence and Technology
WASHINGTON GEOLOGICAL SUR\ EY HENRY LANDES, State Geologist BULLETIN NO. 25 THE MAGNESITE DEPOS11'S OF WASHINGTON Their Occurrence and Technology By GEORGE E. WHITWELL and ERNEST N. P A'l1TY OLYMPIA FRANK K . LAMBORN ~ P UBLIC PRINTER 1921 BOARD O:H' GEOLOGICAL TRYEY GoYernor Lours F. HART, Olwirma11. , tatc Trea. m·cr C. L. B.,LlrocK, H('cre lary. Pre. i<l e11 t Hirn RY rz:z., 1,1.0. President EnxEt";T 0. H o1.1 .,,:--o. fuxnY L .\XOES, S ta te a,,olooisl. LETTER OF TRANSMITTAL Governor L oui::; F. Hart, Chafrman, and Members of the Board of Geologtcal t:liir·vey: GmnLEMEX : I have the honor to submit herewith a report entitled "The :Magnesite Deposits of Washing ton; Their Occurrence and Technolo 0 y ,'' hy George E. Wl1i twell and Ernest N. Patty, with the recommendation that it be printed as Bulletin No. 25 of the Sttr\·ey reports. V Cl'Y respectfully, HENRY LANDES, State Geologist. Univ er. i ty Station, Seattle, January 15, 192]. CONTENTS. Page GEXt:IIAf, STATE,\1 1•: XT. 11 Introduction . 11 Mineralogy and composition....... ........... 12 General character or magnesite..... ....... ................. 14 Comparative analyses......................... .............. 15 Dt:SCllll'TlOX OF TIU; Di::POSITS.................................... 16 Location . 16 Discovery and history of develotJment......................... 16 Transportation . 22 ~fining methods.. 23 Power . 26 Geology . 27 Occurrence and geologic relations. 27 Reserves . 28 Structural features.... 28 Genesis . 31 Prospecting . 39 Northwest Magnesite Company. 41 Finch deposit. 41 General features............. 41 Description or the deposit. 41 Mining methods employed............................. 43 Description or coarse crushing plant. ................. 44 Keystone deposit ........................................ -
Economic Evaluation and Perspectives of the Magnesite Mine in the Deposit “Dubovc”
Modern Environmental Science and Engineering (ISSN 2333-2581) September 2016, Volume 2, No. 9, pp. 620-624 Doi: 10.15341/mese(2333-2581)/09.02.2016/006 Academic Star Publishing Company, 2016 www.academicstar.us Economic Evaluation and Perspectives of the Magnesite Mine in the Deposit “Dubovc” Ramiz Krasniqi1, Arta Xhylani2, Jahir Gashi1, and Fadil Bajraktari3 1. Independent Commission for Mines and Mineral, Armend Daci No. 1, Prishtinë, Kosovo 2. University of Prishtina, Kosovo 3. Ministy of Environment and spatial Planning, Kosovo Abstract: In The magnesite deposit “Dubovc” is located in the area of the village with the same name, about 10 km, in Southwest of Vushtrri in the north slopes of Çiçavice mountain. The deposit has been explored in the great mass with a relatively dense network of underground mining operations and drilling so today we can say that the exploration level of deposits is satisfactory. The deposit is represented by two great magnesite veins laying in the North west and South southeast direction, and according to the data of exploration operations it lays in the NE direction, except in the deeper parts dictated of surrounding rocks the vein will entirely change the angle and direction of dipping. The done studies in the period from the mining interruption until now has denied the opinion of some previous researchers of this deposit, that calculate only for main veins of the deposit “Dubovc”, the deposit contains 1.5-2 million tons of reserves. The general final calculated reserves for all deposit “Dubovc” are 964 949 tons, from which the North part 409 898 ton, and South part 555 051 ton magnesite. -
High Purity Inorganics
High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality. -
Preliminary Report Magnesite Deposits
State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development ED DAVIS, Director DIVISION OF GEOLOGY HAROLD E. CULVER, Supervisor Report of Investigations No. 5 PRELIMINARY REPORT ON MAGNESITE DEPOSITS OF STEVENS COUNTY, WASHINGTON By W. A.G. BENNETT OLYMPIA STATE PRINTING Pl.ANT CONTENTS Page Introduction . 3 Earlier investigations . 4 Field work . 6 Acknowledgments . 6 Rocks of the magnesite belt . .. .............................. ......... 7 Deer Trail group ................................................ 7 Huckleberry conglomerate ....................................... 8 Huckleberry greenstone ......................................... 8 Addy quartzite ............ .......................... .......... 9 Undifferentiated limestone ................................... .. 9 Igneous rocks .................................................... 10 Structure . 10 Folds ....................................................... 10 Faults ............... ...... .................... · · · · · · · · · · · 11 Magnesite deposits . .............. ......... .. .............. .. 12 Mineralogy . .. ... ........................... .............. 12 Texture of the magnesite and dolomite ............................ 12 Stratigraphic position ................................ .......... 12 Origin ..... ................................... ..... ......... 13 Extensions of the Stensgar dolomite .................. ............. 14 Description ..................................................... 14 Area north of the Finch quarry. -
MAGNESITE CRYSTALS from ORANGEDALE, NOVA SCOTIA Lrruax M
JOURNAL MINERALOGICAL SOCIETY OF AMERICA 223 FeO.AlzOa.4SiOr 952 FeO.SiOz 48.97 MnO.SiOz 37.99 CaO.SiOz 3.83 HrO 037 100.68 Two other triclinic substances appear also to belong to the rhodonite-babingtonite group. One is the mineral sobralite,2aa metasilicate of manganese, iron, lime, and magnesia, and the other is a siag product, called vogtite,2swhich is apparently like the triclinic babingtoniteJike slag crystals described by Vogt.26 These crystals have pyroxene-like cleavagesand angles and were thought by their discoverersto belong with rhodonite and babing- tonite' suuuenv New determinations of the chemical and optical properties and the density of babingtonite have been made. Its unlikeness to the monocUnic pyroxenes has been discussed. The arbitrary character of the boundaries of mineral groups, especialy triclinic groups, is mentioned, and it is suggested that babingtonite, rhodonite, pyroxmangite, and sobralite are sufficiently alike, and also unlike the pyroxenes and other mineral groups, to be grouped by themselves. MAGNESITE CRYSTALS FROM ORANGEDALE, NOVA SCOTIA Lrruax M. Donr:rr.,Stanford. [Inivers,ity The unusual rarity of euhedral crystals of magnesite led the writer to make a special study of some obtained from Ward's Natural ScienceEstablishment by Dr. A. F. Rogers a few years ago. The crystals come from a magnesitedeposit near Orangedale, fnverness County, Nova Scotia, the occurrence of which was describedby A. O. Hayes in 1916.r According to Hayes, the deposit was discovered by Alexander Mcleod on the f4rm of John Martin, Mclean point road, about 2aJ. Palmgren,Bull. Geotr.Inst. (Jnia.Upsola, 14, l}g, (lgll). -
Case Study at Lokop, Dairi, Latong, Tanjung Balit and Tuboh)
INDONESIAN MINING JOURNAL Vol. 17, No. 3, October 2014 : 122 - 133 MINERALIZATION OF THE SELECTED BASE METAL DEPOSITS IN THE BARISAN RANGE, SUMATERA, INDONESIA (CASE STUDY AT LOKOP, DAIRI, LATONG, TANJUNG BALIT AND TUBOH) MINERALISASI CEBAKAN LOGAM DASAR TERPILIH DI BUKIT BARISAN, SUMATERA - INDONESIA (STUDI KASUS DI LOKOP, DAIRI, LATONG, TANJUNG BALIT DAN TUBOH) HAMDAN Z. ABIDIN and HARRY UTOYO Geological Survey Centre Jalan Diponegoro 57 Bandung, Indonesia e-mail: [email protected] ABSTRACT Three types of base metal occurrences discovered along the Barisan Range, Sumatera are skarn, sedex and hydrothermal styles. The skarn styles include Lokop, Latong and Tuboh, while Dairi and Tanjung Balit belong to sedex and hydrothermal deposits, respectively. The Lokop deposit is dominated by galena with minor pyrite and is hosted within interbedded meta-sandstone, slate, phyllite, hornfels and quartzite of the Kluet Forma- tion. The Skarn Latong deposit consists of galena with minor sphalerite and chalcopyrite with skarn minerals of magnetite, garnet and calcite. It is hosted within the meta-limestone of the Kuantan Formation. The Skarn Tuboh deposit is dominated by sphalerite with minor galena, pyrite, manganese, hematite and magnetite. It is hosted within interbedded meta-sandstone and meta-limestone of the Rawas Formation. The Dairi deposit belongs to the sedimentary exhalative (sedex) type. It is hosted within the sedimentary sequence of the Kluet Formation. Two ore types known are Julu and Jehe mineralization. The Julu mineralization referring to as sediment exhalative (sedex), was formed syngenetically with carbonaceous shale. Ore mineralogies consist of galena, sphalerite and pyrite. The deposit was formed within the temperature range of 236-375°C with salinity ranges from 9,3-23% wt.NaCl. -
Guidelines for XRF Analysis Setting up Programmes for WDXRF and EDXRF
Announcing the publication of a unique new XRF book Guidelines for XRF Analysis Setting up programmes for WDXRF and EDXRF James Willis Clive Feather Ken Turner Website: www.xrfguidelines.co.za Guidelines for XRF Analysis contains everything you’ve ever wanted to know about setting up successful XRF analytical programmes. This book is loaded with detailed analytical guidelines for geological materials, commodities and industrial materials that are suited to analysis by XRF. It is a one stop XRF reference manual, and no XRF laboratory should be without it. Sample preparation describes well-tried and tested methods, and there is sufficient theory to enable the reader to gain maximum advantage from the book. Trace elements, grouped by spectral region, are carefully evaluated, and the authors, with a combined XRF experience of over 130 man years, share with you their accumulated knowledge, “tricks-of- the-trade”, and information on • Optimum settings for WDXRF and EDXRF instrumentation • The most suitable analyte spectral lines • The best background positions to measure • Identification and correction of line overlap, and • Choice of procedures for matrix correction Determine with confidence fluorine to uranium, atomic number 9 to 92, in a wide range of materials. If you are working on any of the following commodities or materials, you need this book. Commodities and materials chapters are self-contained and have all the information needed to analyse: • Silicate rocks • Refractories and ceramics • Exploration samples • Plastics and polymers -
Minerals Found in Michigan Listed by County
Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee, -
Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-16-2014 Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine Kimberly T. Clark University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Geochemistry Commons, and the Geology Commons Recommended Citation Clark, Kimberly T., "Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine" (2014). University of New Orleans Theses and Dissertations. 1786. https://scholarworks.uno.edu/td/1786 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Contact Zone Mineralogy and Geochemistry of the Mt. Mica Pegmatite, Oxford County, Maine A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science In Earth and Environmental Science By Kimberly T. Clark B.S.