Coiled-Coil Domain Containing 109B Is a Hif1α-Regulated Gene Critical For

Total Page:16

File Type:pdf, Size:1020Kb

Coiled-Coil Domain Containing 109B Is a Hif1α-Regulated Gene Critical For Xu et al. J Transl Med (2017) 15:165 DOI 10.1186/s12967-017-1266-9 Journal of Translational Medicine RESEARCH Open Access Coiled‑coil domain containing 109B is a HIF1α‑regulated gene critical for progression of human gliomas Ran Xu1, Mingzhi Han1, Yangyang Xu1, Xin Zhang1, Chao Zhang1, Di Zhang1, Jianxiong Ji1, Yuzhen Wei1,3, Shuai Wang1, Bin Huang1, Anjing Chen1, Qing Zhang1, Wenjie Li1, Tao Sun4, Feng Wang4, Xingang Li1* and Jian Wang1,2* Abstract Background: The coiled-coil domain is a structural motif found in proteins that participate in a variety of biologi- cal processes. Aberrant expression of such proteins has been shown to be associated with the malignant behavior of human cancers. In this study, we investigated the role of a specifc family member, coiled-coil domain containing 109B (CCDC109B), in human gliomas. Methods and results: We confrmed that CCDC109B was highly expressed in high grade gliomas (HGG; WHO III–IV) using immunofuorescence, western blot analysis, immunohistochemistry (IHC) and open databases. Through Cox regression analysis of The Cancer Genome Atlas (TCGA) database, we found that the expression levels of CCDC109B were inversely correlated with patient overall survival and it could serve as a prognostic marker. Then, a serious of cell functional assays were performed in human glioma cell lines, U87MG and U251, which indicated that silencing of CCDC109B attenuated glioma proliferation and migration/invasion both in vitro and in vivo. Notably, IHC staining in primary glioma samples interestingly revealed localization of elevated CCDC109B expression in necrotic areas which are typically hypoxic. Moreover, small interfering RNA (siRNA) and specifc inhibiters of HIF1α led to decreased expres- sion of CCDC109B in vitro and in vivo. Transwell assay further showed that CCDC109B is a critical factor in mediating HIF1α-induced glioma cell migration and invasion. Conclusion: Our study elucidated a role for CCDC109B as an oncogene and a prognostic marker in human gliomas. CCDC109B may provide a novel therapeutic target for the treatment of human glioma. Keywords: CCDC109B, HIF1α, Glioma, Proliferation, Invasion Background Difuse infltrative invasion of GBM cells into the adja- Glioblastoma multiforme (GBM) is the most aggres- cent normal brain areas is a major cause of invariable sive malignancy in adults and thus persists as a major recurrence and relapse after resection of primary tumors unsolved clinical challenge [1]. Despite impressive [3]. advances in surgical techniques, radiotherapy and chem- A number of pathological features in GBM provide otherapy, the median survival time of patients with GBM the basis for understanding the functional consequences remains dismally at 14.6 months [2]. of changes in gene expression. For example, hypoxia is a pathological hallmark of GBM. Hypoxia-inducible fac- *Correspondence: [email protected]; [email protected] tor 1 (HIF1), a dimeric transcription factor, is one of the 1 Department of Neurosurgery, Qilu Hospital of Shandong University primary regulators that coordinate cellular responses to and Brain Science Research Institute, Shandong University, #107 Wenhua Xi Road, Jinan 250012, China hypoxia. HIF1 is composed of α and β subunits (HIF1α; 2 Department of Biomedicine, University of Bergen, Jonas Lies vei 91, HIF1β). HIF1α is rapidly degraded under normoxic con- 5009 Bergen, Norway ditions but is often stable under hypoxic conditions. Full list of author information is available at the end of the article © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Xu et al. J Transl Med (2017) 15:165 Page 2 of 14 However, when HIF1α binds to hypoxia-responsive ele- informed consent was obtained from all patients, and ments (HREs), it activates transcription of downstream approval for experiments was obtained from Ethics genes, which are involved in tumor angiogenesis, inva- Committee of the Qilu Hospital. All surgeries and post- sion, cell survival, and glucose metabolism [4]. Terefore, operative animal care were approved by the Institutional identifying HIF1α-targeted molecules will provide fur- Animal Care and Use Committee (IACUC) of Shandong ther understanding in the development and treatment of University (Shandong, China). Our research complies human glioma. with the commonly-accepted ‘3Rs’: replacement of ani- Coiled coils are among the most ubiquitous fold- mals by alternatives wherever possible, reduction in the ing motifs identifed in proteins and have not only been number of animals used, and refnement of experimental found in structural proteins but also play a necessary role conditions and procedures to minimize harm to animals. in various intracellular regulation processes [5]. Coiled coils are involved in signal-transducing events and act Cell culture and hypoxic treatment as a molecular recognition system. Furthermore, they Human glioma cell lines, U87MG, U251 and T98 were provide mechanical stability to cells and are involved in obtained from the Culture Collection of the Chinese movement processes [6]. Increasing evidence suggests Academy of Sciences (Shanghai, China). Te normal that aberrant expression of coiled-coil domain containing human astrocytes (NHA) cell line was a kind gift from proteins infuences the migration, invasion and prolifera- the Department of Biomedicine at the University of Ber- tion of various human cancers, including bladder cancer gen (Bergen, Norway). Cells were cultured in Dulbecco’s [7], pancreatic cancer [8], gastric cancer [9], papillary modifed Eagle’s medium (DMEM; Termo Fisher Sci- thyroid carcinoma [10], leukemia [11], prostate cancer entifc, Waltham, MA, USA) supplemented with 10% [12], breast cancer [13]. fetal bovine serum (FBS; Termo Fisher Scientifc) and CCDC109B, also known as mitochondrial calcium uni- maintained at 37 °C in a humidifed chamber contain- porter b (MCUb), is an MCU isogene [14]. CCDC109B ing 5% CO 2. For hypoxic treatment, cells were placed in is an evolutionarily conserved protein, which pos- a modulator incubator (HERAcell 150i, Termo Fisher sesses two coiled-coil domains and two transmembrane Scientifc) in 94% N2, 5% CO2, and 1% O2. For sta- domains [15]. Functionally, MCUb acts as a negative ble CCDC109B-knockdown, U87MG and U251 cells subunit of the MCU channel, and the MCU/MCUb ratio were infected with lentivirus expressing short hairpin seems to vary in diferent tissues, providing a molecular RNA (shRNA) (sh-CCDC109B-1). After 48 h, U87MG mechanism to mediate the efciency of mitochondrial or U251 cells were exposed to 0.5 or 2 µg/mL puromy- calcium (Ca2+) intake [16]. Te failure of mitochondria cin (A1113802, Termo Fisher Scientifc), respectively, to intake calcium leads to the abnormal activation of in complete DMEM for an additional 2 weeks. Cells cytosolic Ca2+-dependent enzymes, including calpain were subsequently treated with PX478 (S7612, Selleck proteases [17] and calmodulin-dependent kinases [18] Chemicals; Shanghai, China) and HIF1α siRNA to inhibit and ultimately leads to changes in cellular signaling cas- HIF1α expression and harvested after 48 h. Sequences cades which directly regulate cell growth [19], tumor of synthesized shRNAs (Genepharma; Shanghai, China) cell invasion [20]. However, the biological signifcance of were the following: sh-Negative Control (sh-NC) CCDC109B in human glioma remains unclear. 5′-TTCTCCGAACGTGTCACGTtt-3′; sh-CCDC109B-1 Here, we investigated expression of CCDC109B in 5′-CAGTCACACCATTATAGTAtt-3′; sh-CCDC109B-2 human glioma tissues and cell lines by analyzing our own 5′-CTCGACAGGATTATACTTAtt-3′; sh-CCDC109B-3 cohort and publicly available molecular databases. Ten, 5′-GCAAGTAGAAGAACTCAATtt-3′. Sequences of functional experiments were performed with model synthesized siRNAs (Genepharma) were the following: systems in vitro and in vivo. We uncovered a potential si-NC 5′-TTCTCCGAAGGTGTCACGG-3′; si-HIF1α-1 oncogenic role for CCDC109B in glioma progression and 5′TACGTTGTGAGTGGTATTATT-3′; si-HIF1α-2 5′-CT identifed HIF1α as a possible transcriptional regulator. GATGACCAGCAACTTGA-3′. Tese results, support CCDC109B as a new therapeutic target for the treatment of human glioma. IHC Samples were fxed in 4% formalin, parafn-embedded, Methods and sectioned (4 µm). After de-waxing and rehydration, Ethics statement the sections were incubated with 0.01 M citrate bufer for Human brain tumor (n = 68; WHO grade II–IV) and 20 min at 95 °C for antigen retrieval. Endogenous per- non-neoplastic tissue (n = 4) samples were obtained oxidase activity and non-specifc antigens were blocked from surgeries performed at the Department of Neu- with 3% hydrogen peroxide (ZSGB-Bio; Beijing, China) rosurgery at Qilu Hospital (Shandong, China). Written and 10% normal goat serum (ZSGB-Bio) respectively, Xu et al. J Transl Med (2017) 15:165 Page 3 of 14 followed by incubation with primary antibody at 4 °C numbers were determined using Kodak MI software. overnight. Sections were rinsed with phosphate bufered Each experiment was repeated three times in
Recommended publications
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • CCDC109B (MCUB) (NM 017918) Human Untagged Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for SC327798 CCDC109B (MCUB) (NM_017918) Human Untagged Clone Product data: Product Type: Expression Plasmids Product Name: CCDC109B (MCUB) (NM_017918) Human Untagged Clone Tag: Tag Free Symbol: MCUB Synonyms: CCDC109B Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin Fully Sequenced ORF: >OriGene SC327798 ORF sequence for NM_017918, the custom clone sequence may differ by one or more nucleotides ATGTTGTCAACAGTTGGTTCATTCCTTCAGGACCTACAAAATGAAGATAAGGGTATCAAAACTGCAGCCA TCTTCACAGCAGATGGCAACATGATTTCAGCTTCTACCTTGATGGATATTTTGCTAATGAATGATTTTAA ACTTGTCATTAATAAAATAGCATATGATGTGCAGTGTCCAAAGAGAGAAAAACCAAGTAATGAGCACACT GCTGAGATGGAACACATGAAATCCTTGGTTCACAGACTATTTACAATCTTGCATTTAGAAGAGTCTCAGA AAAAGAGAGAGCACCATTTACTGGAGAAAATTGACCACCTGAAGGAACAGCTGCAGCCCCTTGAACAGGT GAAAGCTGGAATAGAAGCTCATTCGGAAGCCAAAACCAGTGGACTCCTGTGGGCTGGATTGGCACTGCTG TCCATTCAGGGTGGGGCACTGGCCTGGCTCACGTGGTGGGTGTACTCCTGGGATATCATGGAGCCAGTTA CATACTTCATCACATTTGCAAATTCTATGGTCTTTTTTGCATACTTTATAGTCACTCGACAGGATTATAC TTACTCAGCTGTTAAGAGTAGGCAATTTCTTCAGTTCTTCCACAAGAAATCAAAGCAACAGCACTTTGAT GTGCAGCAATACAACAAGTTAAAAGAAGACCTTGCTAAGGCTAAAGAATCCCTGAAACAGGCGCGTCATT CTCTCTGTTTGCAAATGCAAGTAGAAGAACTCAATGAAAAGAATTAA Restriction Sites: SgfI-MluI ACCN: NM_017918 OTI Disclaimer: Our molecular clone sequence data has been matched to the reference identifier above as a point
    [Show full text]
  • No Evidence of Association Between Complement Factor I Genetic Variant
    European Journal of Human Genetics (2012) 20, 1–3 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg LETTERS US-based sample of around 1200 cases with advanced AMD and No evidence of association 800 controls. The association signal extended over a region of about 175 kb, the most associated variant (Po10À7)beingtheSNP rs10033900 near the complement factor I (CFI) gene. Two replication between complement studies2,3 published also in this journal provided some additional support for an AMD susceptibility locus in this region. In the course factor I genetic variant of candidate gene studies of AMD, we had previously investigated SNPs spanning CFI including rs10033900 in a UK case–control rs10033900 and sample, which shows the expected associations with the well- established AMD-susceptibility loci CFH, ARMS2, CFB and C3.No age-related macular evidence of association with the CFI variants was observed. Following publication of the reports cited above we have typed rs10033900 degeneration in additional cases and controls in two independent samples from England and Scotland to investigate this further. Full details of the phenotyping criteria have been reported pre- viously.4 The English sample comprised of 859 cases with predomi- European Journal of Human Genetics (2012) 20, 1–2; nantly advanced AMD, either geographic atrophy (GA) or choroidal doi:10.1038/ejhg.2011.118; published online 12 October 2011 neovascularisation (CNV) and 423 examined controls. The Scottish sample consisted of 505 cases with either intermediate disease (age-related maculopathy, ARM) or advanced AMD, and 351 exam- In 2008, an association between age-related macular degeneration ined controls.
    [Show full text]
  • Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony
    Supplementary Data Th2 and non-Th2 molecular phenotypes of asthma using sputum transcriptomics in UBIOPRED Chih-Hsi Scott Kuo1.2, Stelios Pavlidis3, Matthew Loza3, Fred Baribaud3, Anthony Rowe3, Iaonnis Pandis2, Ana Sousa4, Julie Corfield5, Ratko Djukanovic6, Rene 7 7 8 2 1† Lutter , Peter J. Sterk , Charles Auffray , Yike Guo , Ian M. Adcock & Kian Fan 1†* # Chung on behalf of the U-BIOPRED consortium project team 1Airways Disease, National Heart & Lung Institute, Imperial College London, & Biomedical Research Unit, Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom; 2Department of Computing & Data Science Institute, Imperial College London, United Kingdom; 3Janssen Research and Development, High Wycombe, Buckinghamshire, United Kingdom; 4Respiratory Therapeutic Unit, GSK, Stockley Park, United Kingdom; 5AstraZeneca R&D Molndal, Sweden and Areteva R&D, Nottingham, United Kingdom; 6Faculty of Medicine, Southampton University, Southampton, United Kingdom; 7Faculty of Medicine, University of Amsterdam, Amsterdam, Netherlands; 8European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, France. †Contributed equally #Consortium project team members are listed under Supplementary 1 Materials *To whom correspondence should be addressed: [email protected] 2 List of the U-BIOPRED Consortium project team members Uruj Hoda & Christos Rossios, Airways Disease, National Heart & Lung Institute, Imperial College London, UK & Biomedical Research Unit, Biomedical Research Unit, Royal
    [Show full text]
  • Primate Specific Retrotransposons, Svas, in the Evolution of Networks That Alter Brain Function
    Title: Primate specific retrotransposons, SVAs, in the evolution of networks that alter brain function. Olga Vasieva1*, Sultan Cetiner1, Abigail Savage2, Gerald G. Schumann3, Vivien J Bubb2, John P Quinn2*, 1 Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, U.K 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK 3 Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, D-63225 Germany *. Corresponding author Olga Vasieva: Institute of Integrative Biology, Department of Comparative genomics, University of Liverpool, Liverpool, L69 7ZB, [email protected] ; Tel: (+44) 151 795 4456; FAX:(+44) 151 795 4406 John Quinn: Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3BX, UK, [email protected]; Tel: (+44) 151 794 5498. Key words: SVA, trans-mobilisation, behaviour, brain, evolution, psychiatric disorders 1 Abstract The hominid-specific non-LTR retrotransposon termed SINE–VNTR–Alu (SVA) is the youngest of the transposable elements in the human genome. The propagation of the most ancient SVA type A took place about 13.5 Myrs ago, and the youngest SVA types appeared in the human genome after the chimpanzee divergence. Functional enrichment analysis of genes associated with SVA insertions demonstrated their strong link to multiple ontological categories attributed to brain function and the disorders. SVA types that expanded their presence in the human genome at different stages of hominoid life history were also associated with progressively evolving behavioural features that indicated a potential impact of SVA propagation on a cognitive ability of a modern human.
    [Show full text]
  • Bud13 Promotes a Type I Interferon Response by Countering Intron
    bioRxiv preprint doi: https://doi.org/10.1101/443820; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 3 4 5 6 7 8 9 Bud13 Promotes a Type I Interferon Response by 10 Countering Intron Retention in Irf7 11 12 13 Luke S. Frankiw1,2, Devdoot Majumdar1,2, Christian Burns1, Logan Vlach1, Annie Moradian1, 14 Michael J. Sweredoski1, David Baltimore1,3* 15 16 1Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, 17 USA 18 2These authors contributed equally 19 3Lead Contact 20 *Correspondence: [email protected] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 bioRxiv preprint doi: https://doi.org/10.1101/443820; this version posted October 15, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 53 SUMMARY 54 55 Intron retention (IR) has emerged as an important mechanism of gene expression control. Despite 56 this, the factors that control IR events remain poorly understood. We observed consistent IR in one 57 intron of the Irf7 gene and identified Bud13 as an RNA-binding protein that acts at this intron to 58 increase the amount of successful splicing. Deficiency in Bud13 led to increased IR, decreased 59 mature Irf7 transcript and protein levels, and consequently to a dampened type I interferon 60 response.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • CCDC109B CRISPR/Cas9 KO Plasmid (M): Sc-426204
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . CCDC109B CRISPR/Cas9 KO Plasmid (m): sc-426204 BACKGROUND APPLICATIONS The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CCDC109B CRISPR/Cas9 KO Plasmid (m) is recommended for the disruption CRISPR-associated protein (Cas9) system is an adaptive immune response of gene expression in mouse cells. defense mechanism used by archea and bacteria for the degradation of foreign genetic material (4,6). This mechanism can be repurposed for other 20 nt non-coding RNA sequence: guides Cas9 functions, including genomic engineering for mammalian systems, such as to a specific target location in the genomic DNA gene knockout (KO) (1,2,3,5). CRISPR/Cas9 KO Plasmid products enable the U6 promoter: drives gRNA scaffold: helps Cas9 identification and cleavage of specific genes by utilizing guide RNA (gRNA) expression of gRNA bind to target DNA sequences derived from the Genome-scale CRISPR Knock-Out (GeCKO) v2 library developed in the Zhang Laboratory at the Broad Institute (3,5). Termination signal Green Fluorescent Protein: to visually REFERENCES verify transfection CRISPR/Cas9 Knockout Plasmid CBh (chicken β-Actin 1. Cong, L., et al. 2013. Multiplex genome engineering using CRISPR/Cas hybrid) promoter: drives expression of Cas9 systems. Science 339: 819-823. 2A peptide: allows production of both Cas9 and GFP from the 2. Mali, P., et al. 2013. RNA-guided human genome engineering via Cas9. same CBh promoter Science 339: 823-826. Nuclear localization signal 3. Ran, F.A., et al. 2013. Genome engineering using the CRISPR-Cas9 system . Nuclear localization signal SpCas9 ribonuclease Nat.
    [Show full text]
  • Identification of Expression Qtls Targeting Candidate Genes For
    ISSN: 2378-3648 Salleh et al. J Genet Genome Res 2018, 5:035 DOI: 10.23937/2378-3648/1410035 Volume 5 | Issue 1 Journal of Open Access Genetics and Genome Research RESEARCH ARTICLE Identification of Expression QTLs Targeting Candidate Genes for Residual Feed Intake in Dairy Cattle Using Systems Genomics Salleh MS1,2, Mazzoni G2, Nielsen MO1, Løvendahl P3 and Kadarmideen HN2,4* 1Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark Check for 2Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark updates 3Department of Molecular Biology and Genetics-Center for Quantitative Genetics and Genomics, Aarhus University, AU Foulum, Tjele, Denmark 4Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark *Corresponding author: Kadarmideen HN, Department of Applied Mathematics and Computer Science, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark, E-mail: [email protected] Abstract body weight gain and net merit). The eQTLs and biological pathways identified in this study improve our understanding Background: Residual feed intake (RFI) is the difference of the complex biological and genetic mechanisms that de- between actual and predicted feed intake and an important termine FE traits in dairy cattle. The identified eQTLs/genet- factor determining feed efficiency (FE). Recently, 170 can- ic variants can potentially be used in new genomic selection didate genes were associated with RFI, but no expression methods that include biological/functional information on quantitative trait loci (eQTL) mapping has hitherto been per- SNPs. formed on FE related genes in dairy cows. In this study, an integrative systems genetics approach was applied to map Keywords eQTLs in Holstein and Jersey cows fed two different diets to eQTL, RNA-seq, Genotype, Data integration, Systems improve identification of candidate genes for FE.
    [Show full text]
  • PRODUCT SPECIFICATION Product Datasheet
    Product Datasheet QPrEST PRODUCT SPECIFICATION Product Name QPrEST MCUB Mass Spectrometry Protein Standard Product Number QPrEST37525 Protein Name Mitochondrial calcium uniporter regulatory subunit MCUb Uniprot ID Q9NWR8 Gene CCDC109B Product Description Stable isotope-labeled standard for absolute protein quantification of Mitochondrial calcium uniporter regulatory subunit MCUb. Lys (13C and 15N) and Arg (13C and 15N) metabolically labeled recombinant human protein fragment. Application Absolute protein quantification using mass spectrometry Sequence (excluding ERCQFVVKPMLSTVGSFLQDLQNEDKGIKTAAIFTADGNMISASTLMDIL fusion tag) LMNDFKLVINKIAYDVQCPKRE Theoretical MW 25882 Da including N-terminal His6ABP fusion tag Fusion Tag A purification and quantification tag (QTag) consisting of a hexahistidine sequence followed by an Albumin Binding Protein (ABP) domain derived from Streptococcal Protein G. Expression Host Escherichia coli LysA ArgA BL21(DE3) Purification IMAC purification Purity >90% as determined by Bioanalyzer Protein 230 Purity Assay Isotopic Incorporation >99% Concentration >5 μM after reconstitution in 100 μl H20 Concentration Concentration determined by LC-MS/MS using a highly pure amino acid analyzed internal Determination reference (QTag), CV ≤10%. Amount >0.5 nmol per vial, two vials supplied. Formulation Lyophilized in 100 mM Tris-HCl 5% Trehalose, pH 8.0 Instructions for Spin vial before opening. Add 100 μL ultrapure H2O to the vial. Vortex thoroughly and spin Reconstitution down. For further dilution, see Application Protocol. Shipping Shipped at ambient temperature Storage Lyophilized product shall be stored at -20°C. See COA for expiry date. Reconstituted product can be stored at -20°C for up to 4 weeks. Avoid repeated freeze-thaw cycles. Notes For research use only Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use.
    [Show full text]
  • Expression of Mrna Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal
    Edinburgh Research Explorer Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling Citation for published version: Work enabled by Edinburgh Genomics 2016, 'Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling', PLoS ONE, vol. 11, no. 2, 0148164. https://doi.org/10.1371/journal.pone.0148164 Digital Object Identifier (DOI): 10.1371/journal.pone.0148164 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: PLoS ONE Publisher Rights Statement: Copyright: © 2016 Márkus et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 RESEARCH ARTICLE Expression of mRNA Encoding Mcu and Other Mitochondrial Calcium Regulatory Genes Depends on Cell Type, Neuronal Subtype, and Ca2+ Signaling Nóra M.
    [Show full text]
  • CCDC109B (MCUB) (NM 017918) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC229163L1 CCDC109B (MCUB) (NM_017918) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: CCDC109B (MCUB) (NM_017918) Human Tagged ORF Clone Tag: Myc-DDK Symbol: MCUB Synonyms: CCDC109B Vector: pLenti-C-Myc-DDK (PS100064) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: None ORF Nucleotide The ORF insert of this clone is exactly the same as(RC229163). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_017918 ORF Size: 744 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 CCDC109B (MCUB) (NM_017918) Human Tagged ORF Clone – RC229163L1 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_017918.4, NP_060388.1 RefSeq Size: 1298 bp RefSeq ORF: 1011 bp Locus ID: 55013 UniProt ID: Q9NWR8 Domains: DUF607 Protein Families: Transmembrane MW: 28.8 kDa Gene Summary: Negatively regulates the activity of MCU, the mitochondrial inner membrane calcium uniporter, and thereby modulates calcium uptake into the mitochondrion.
    [Show full text]