Braided Rivers: Perspectives and Problems

Total Page:16

File Type:pdf, Size:1020Kb

Braided Rivers: Perspectives and Problems Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 Braided rivers: perspectives and problems C. S. BRISTOW 1 & J. L. BEST 2 1 Research School of Geological and Geophysical Sciences, Birkbeck College, Gower Street, London WCIE 6BT, UK 2 Department of Earth Sciences, The University, Leeds, West Yorkshire LS2 9JT, UK Abstract: Progress towards a fuller understanding of the dynamics and deposits of braided rivers demands an interdisciplinary approach to a host of unresolved problems. Although many advances have been made within recent years in interpreting the mechanics of flow, transport of sediment and sedimentary architecture of braided rivers many key issues remain to be addressed. In particular, several areas demand attention: the mechanisms of braid bar initiation; confluence-diffluence dynamics, the nature of sedimentary facies over a range of grain sizes and the influence of flow stage and aggradational regime upon the depositional architecture over a range of channel scales. This paper focuses upon these issues and highlights several areas of fruitful future interdisciplinary collaboration. Braided rivers form important topics of study for braided rivers may be fruitfully extended by many scientists and one of the primary aims of adopting such an interdisciplinary scope. this volume is to bring together work from many disciplines in an integrated approach to braided Zones of flow convergence and divergence rivers. For the geomorphologist braided fluvial systems are abundant within upland and pro- Braided rivers are characterized by 'having a glacial settings and are agents of considerable number of alluvial channels with bars and islands erosion and sediment transport. For engineers .between meeting and dividing again, and pre- the high rates of sediment transport, deposition senting from the air the intertwining effect of a and erosion combined with frequent channel braid' (Lane 1957). The division and joining of shifting and rapid bank erosion may pose con- channels are essential features of braided rivers siderable design problems both to within- and, whilst the bars within these rivers have channel structures, such as bridge piers (e.g. received attention from both geomorphologists Mosley 1982a; Sutherland 1986) and braidplain and sedimentologists, the areas of flow con- edge constructions such as roads and railways vergence and divergence have not been incor- Finally, for the geologist braided rivers form porated into braided river depositional models. important agents of deposition that have been The flow dynamics and morphology of channel responsible for the accumulation of many sedi- confluences have been studied by several mentary sequences that form valuable aquifers, researchers (e.g. Mosley 1976, 1982a; Best 1986, hydrocarbon reservoirs and sites for heavy 1987, 1988; Best & Roy 1991; Roy & Roy 1988; mineral accumulation. Because of these abun- Roy & Bergeron 1990; Roy et al. 1988), and dant and diverse applications, knowledge of the recent attention has highlighted the abundant mechanics and deposits of braided rivers is vital confluences within braided rivers (Ashmore within many areas and yet, when compared to 1982; Ashmore & Parker 1983; Klaassen & the wealth of literature upon meandering Vermeer 1988). However, the link between flow systems, they have been comparatively under- convergence and the downstream division of studied. This may, in part, be due to the diffi- flow has been neglected, despite the fact that this culty of measuring flow, sediment transport and transition is the area which may be of funda- morphology in the rapidly shifting braided river mental importance to the development of braid environment. Future progress in understanding bars (e.g. Ashmore 1991; Ashworth et al. 1992). the mechanics and morphology of braided rivers Although some depositional models of braided demands interdisciplinary collaboration and rivers are beginning to recognise and incor- calls for a more integrated approach across the porate confluence scour and fill (Cowan 1991; sciences than may have been present until com- Bristow et al. 1993; Bridge this volume; Huggen- paratively recently. This paper highlights some berger this volume; Seigenthaler & Huggen- specific areas upon which our knowledge of berger this volume), areas of flow divergence From Best, J. L. & Bristow, C. S. (eds), 1993, Braided Rivers, Geological Society Special Publication No. 75, pp. 1-H. Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 2 C. S. BRISTOW & J. L. BEST are less well understood and ignored in these erosional and depositional modification related models. In general, flow divergence is associated to changes in stage. At higher flow stages when with flow deceleration and sediment deposition the largest volumes of sediment are transported, and, once deposition has been initiated, the the channels are often scoured, bars may be sediment accumulation is likely to promote reduced in height or in some cases completely further flow division, deposition and bar forma- eroded. However, during falling stage maximum tion. Divergent flow may also impinge on the deposition occurs as discharge and flow com- bank at an increased angle leading to bank petence are reduced. Channel beds aggrade, the erosion, channel widening and a local increase in high stage bedforms may be modified and new available sediment, all of which are likely to lead bars may be formed or enlarged as sediment is to the development of a new braid bar (Carson deposited. As discharge continues to fall, bars 1984; Thorne et al. this volume). The deposits may become emergent and dissected by low of diffluence areas may therefore form the stage channels. Additionally, the nature of the foundations of braid bars but there are no known falling limb recession (rate and length of reces- descriptions of these deposits and their internal sion) will be important not only in the reworking structure. It is possible that some sedimentation of higher stage sediments, but also in the may occur by vertical or even upstream accre- deposition and spatial distribution of the finer tion in the diffluence areas in braided rivers grained sediments (silts and clays) which may (Ashmore this volume) and these must be mani- constitute discontinuous permeability barriers fested within the sedimentary record. Bed shear within braided alluvium. Classification of emer- stress has been shown to increase in shallow gent areas based on their low stage appearance flows over bar tops (Cheetham 1979) where a may be deceptive and care needs to be taken in coarse bed armour may form. In coarse-grained determining which areas are bars, scaling with braided rivers the bar heads may be charac- channel width, and those which are partially terized by coarse-grained sediments that are dissected bars or stranded collections of bars imbricated or laminated (Bluck 1979). There is a (Church & Jones 1982; Bridge 1985). Little data clear need for both an understanding of the fluid exists for the comparison of bar and channel dynamics of the diffiuence zone and how this morphology at different flow stages (but see may influence braid bar initiation and internal Mosley 1982b) and this is an area in which structure. controlled and correctly scaled flume models combined with field studies may contribute The influence of flow stage greatly to our understanding. The planform appearance of braided rivers can Channel hierarchies change radically with flow stage (see fig. 2 in Thorne et al. this volume). Indeed some authors The presence of a hierarchy of channels within (Doeglas 1962; Miall 1977) have proposed that braided rivers was first suggested by Williams fluctuations in discharge are a pre-requisite for & Rust (1969), who described three orders of braiding although this may often be discounted channel in addition to a series of levels within the as has been demonstrated by the modelling of river which represented active and inactive parts gravel-bed braided planforms in constant dis- of the channel system. These orders and levels of charge scaled flume experiments (e.g. Ashmore bar deposit may also be adjusted to the domi- 1982, 1991). Bluck (1979) suggests that bars may nant discharge of the alluvial system (see Thorne disappear at high flow stages, reforming as dis- et al. this volume). In the scheme proposed by charge falls, and similar observations have been Williams & Rust (1969) the entire river and reported by Smith (1974), Carson (1984) and active channels were termed the 'composite Gupta & Dutt (1989). This may imply that some stream channel' and the 'stream channel' respec- braided rivers act as single channels at bankfull tively adding two additional levels to the hier- stage and only adopt a characteristic braided archy. This system was modified by Bristow pattern on the falling stage. However, these (1987a) to a three fold hierarchy and Bridge (this observations appear to be fairly unusual and volume) suggests additional modifications to most braided rivers retain their bars at both high this view. If one accepts that the river can and low flow stage (Krigstrom 1962; Coleman operate as a single entity with channels within 1969; Smith 1970; Cant & Walker 1978; Collin- it and that there may be different scales of son 1970; Church & Jones 1982; Bridge et al. channels which depend upon total discharge and 1986; Bristow 1987a). Where bars exist for discharge fluctuations, then a threefold hier- periods of time in excess of a single flood event archy of channels is required. The first order they will experience a complex history of comprises the whole river (see fig. 2 of Thorne Downloaded from http://sp.lyellcollection.org/ by guest on September 25, 2021 PERSPECTIVES AND PROBLEMS 3 et al. this volume, for an image of the changes in discharge and discharge duration Brahmaputra River in full flood). Second order than a sand-bed river'. While a clear distinction channels are the dominant channels within the may be required when calculating sediment river whilst third order channels are primarily transport, there appears to be more morpho- low stage features which modify the bars logic similarity between sand and gravel bed deposited by the second order channels.
Recommended publications
  • (P 117-140) Flood Pulse.Qxp
    117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g.
    [Show full text]
  • Measurement of Bedload Transport in Sand-Bed Rivers: a Look at Two Indirect Sampling Methods
    Published online in 2010 as part of U.S. Geological Survey Scientific Investigations Report 2010-5091. Measurement of Bedload Transport in Sand-Bed Rivers: A Look at Two Indirect Sampling Methods Robert R. Holmes, Jr. U.S. Geological Survey, Rolla, Missouri, United States. Abstract Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sand- bed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method.
    [Show full text]
  • Deposition Patterns and Rates of Mining-Contaminated Sediment Within a Sedimentation Basin System, S.E
    BearWorks Institutional Repository MSU Graduate Theses Spring 2017 Deposition Patterns and Rates of Mining- Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri Joshua Carl Voss Missouri State University - Springfield, [email protected] Follow this and additional works at: http://bearworks.missouristate.edu/theses Part of the Environmental Indicators and Impact Assessment Commons, Environmental Monitoring Commons, and the Hydrology Commons Recommended Citation Voss, Joshua Carl, "Deposition Patterns and Rates of Mining-Contaminated Sediment within a Sedimentation Basin System, S.E. Missouri" (2017). MSU Graduate Theses. 3074. http://bearworks.missouristate.edu/theses/3074 This article or document was made available through BearWorks, the institutional repository of Missouri State University. The orkw contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact [email protected]. DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI A Masters Thesis Presented to The Graduate College of Missouri State University ATE In Partial Fulfillment Of the Requirements for the Degree Master of Science, Geospatial Sciences in Geography, Geology, and Planning By Josh C. Voss May 2017 Copyright 2017 by Joshua Carl Voss ii DEPOSITION PATTERNS AND RATES OF MINING-CONTAMINATED SEDIMENT WITHIN A SEDIMENTATION BASIN SYSTEM, BIG RIVER, S.E. MISSOURI Geography, Geology, and Planning Missouri State University, May 2017 Master of Science Josh C. Voss ABSTRACT Flooding events exert a dominant control over the deposition and formation of floodplains. The rate at which floodplains form depends on flood magnitude, frequency, and duration, and associated sediment transport capacity and supply.
    [Show full text]
  • PRELUDE to SEVEN SLOTS: FILLING and SUBSEQUENT MODIFICATION of SEVEN BROAD CANYONS in the NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B
    PRELUDE TO SEVEN SLOTS: FILLING AND SUBSEQUENT MODIFICATION OF SEVEN BROAD CANYONS IN THE NAVAJO SANDSTONE, SOUTH-CENTRAL UTAH by David B. Loope1, Ronald J. Goble1, and Joel P. L. Johnson2 ABSTRACT Within a four square kilometer portion of Grand Staircase-Escalante National Monument, seven distinct slot canyons cut the Jurassic Navajo Sandstone. Four of the slots developed along separate reaches of a trunk stream (Dry Fork of Coyote Gulch), and three (including canyons locally known as “Peekaboo” and “Spooky”) are at the distal ends of south-flowing tributary drainages. All these slot canyons are examples of epigenetic gorges—bedrock channel reaches shifted laterally from previous reach locations. The previous channels became filled with alluvium, allowing active channels to shift laterally in places and to subsequently re-incise through bedrock elsewhere. New evidence, based on optically stimulated luminescence (OSL) ages, indicates that this thick alluvium started to fill broad, pre-existing, bedrock canyons before 55,000 years ago, and that filling continued until at least 48,000 years ago. Streams start to fill their channels when sediment supply increases relative to stream power. The following conditions favored alluviation in the study area: (1) a cooler, wetter climate increased the rate of mass wasting along the Straight Cliffs (the headwaters of Dry Fork) and the rate of weathering of the broad outcrops of Navajo and Entrada Sandstone; (2) windier conditions increased the amount of eolian sand transport, perhaps destabilizing dunes and moving their stored sediment into stream channels; and (3) southward migration of the jet stream dimin- ished the frequency and severity of convective storms.
    [Show full text]
  • Lesson 4: Sediment Deposition and River Structures
    LESSON 4: SEDIMENT DEPOSITION AND RIVER STRUCTURES ESSENTIAL QUESTION: What combination of factors both natural and manmade is necessary for healthy river restoration and how does this enhance the sustainability of natural and human communities? GUIDING QUESTION: As rivers age and slow they deposit sediment and form sediment structures, how are sediments and sediment structures important to the river ecosystem? OVERVIEW: The focus of this lesson is the deposition and erosional effects of slow-moving water in low gradient areas. These “mature rivers” with decreasing gradient result in the settling and deposition of sediments and the formation sediment structures. The river’s fast-flowing zone, the thalweg, causes erosion of the river banks forming cliffs called cut-banks. On slower inside turns, sediment is deposited as point-bars. Where the gradient is particularly level, the river will branch into many separate channels that weave in and out, leaving gravel bar islands. Where two meanders meet, the river will straighten, leaving oxbow lakes in the former meander bends. TIME: One class period MATERIALS: . Lesson 4- Sediment Deposition and River Structures.pptx . Lesson 4a- Sediment Deposition and River Structures.pdf . StreamTable.pptx . StreamTable.pdf . Mass Wasting and Flash Floods.pptx . Mass Wasting and Flash Floods.pdf . Stream Table . Sand . Reflection Journal Pages (printable handout) . Vocabulary Notes (printable handout) PROCEDURE: 1. Review Essential Question and introduce Guiding Question. 2. Hand out first Reflection Journal page and have students take a minute to consider and respond to the questions then discuss responses and questions generated. 3. Handout and go over the Vocabulary Notes. Students will define the vocabulary words as they watch the PowerPoint Lesson.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
    Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge.
    [Show full text]
  • Sandbridge Beach FONSI
    FINDING OF NO SIGNIFICANT IMPACT Issuance of a Negotiated Agreement for Use of Outer Continental Shelf Sand from Sandbridge Shoal in the Sandbridge Beach Erosion Control and Hurricane Protection Project Virginia Beach, Virginia Pursuant to the National Environmental Policy Act (NEPA), Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and Department of the Interior (DOI) regulations implementing NEPA (43 CFR 46), the Bureau of Ocean Energy Management (BOEM) prepared an environmental assessment (EA) to determine whether the issuance of a negotiated agreement for the use of Outer Continental Shelf (OCS) sand from Sandbridge Shoal Borrow Areas A and B for the Sandbridge Beach Erosion Control and Hurricane Protection Project near Virginia Beach, VA would have a significant effect on the human environment and whether an environmental impact statement (EIS) should be prepared. Several NEPA documents evaluating impacts of the project have been previously prepared by both the US Army Corps of Engineers (USACE) and BOEM. The USACE described the affected environment, evaluated potential environmental impacts (initial construction and nourishment events), and considered alternatives to the proposed action in a 2009 EA. This EA was subsequently updated and adopted by BOEM in 2012 in association with the most recent 2013 Sandbridge nourishment effort (BOEM 2012). Prior to this, BOEM (previously Minerals Management Service [MMS]) was a cooperating agency on several EAs for previous projects (MMS 1997; MMS 2001; MMS 2006). This current EA, prepared by BOEM, supplements and summarizes the aforementioned 2012 analysis. BOEM has reviewed all prior analyses, supplemented additional information as needed, and determined that the potential impacts of the current proposed action have been adequately addressed.
    [Show full text]
  • Topographic Forcing of Tidal Sandbar Patterns for Irregular Estuary Planforms
    EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 43, 172–186 (2018) Copyright © 2017 John Wiley & Sons, Ltd. Published online 14 July 2017 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/esp.4166 Topographic forcing of tidal sandbar patterns for irregular estuary planforms J. R. F. W. Leuven,* T. de Haas, L. Braat and M. G. Kleinhans Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands Received 17 October 2016; Revised 17 April 2017; Accepted 19 April 2017 *Correspondence to: J. R. F. W. Leuven, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands. E-mail: [email protected] This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. ABSTRACT: Estuaries typically show converging planforms from the sea into the land. Nevertheless, their planform is rarely perfectly exponential and often shows curvature and the presence of embayments. Here we test the degree to which the shapes and dimensions of tidal sandbars depend on estuary planform. We assembled a dataset with 35 estuary planforms and properties of 190 tidal bars to induce broad-brush but significant empirical relations between channel planform, hydraulic geometry and bar pattern, and tested a linear stability theory for bar pattern. We found that the location where bars form is largely controlled by the excess width of a channel, which is calculated as the observed channel width minus the width of an ideal exponentially widening estuary. In general, the summed width of bars approximates the excess width as measured in the along-channel variation of three estuaries for which bathymetry was available as well as for the local measurements in the 35 investigated estuaries.
    [Show full text]
  • The Arkansas River Flood of June 3-5, 1921
    DEPARTMENT OF THE INTERIOR ALBERT B. FALL, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE 0ns SMITH, Director Water-Supply Paper 4$7 THE ARKANSAS RIVER FLOOD OF JUNE 3-5, 1921 BY ROBERT FOLLANS^EE AND EDWARD E. JON^S WASHINGTON GOVERNMENT PRINTING OFFICE 1922 i> CONTENTS. .Page. Introduction________________ ___ 5 Acknowledgments ___ __________ 6 Summary of flood losses-__________ _ 6 Progress of flood crest through Arkansas Valley _____________ 8 Topography of Arkansas basin_______________ _________ 9 Cause of flood______________1___________ ______ 11 Principal areas of intense rainfall____ ___ _ 15 Effect of reservoirs on the flood__________________________ 16 Flood flows_______________________________________ 19 Method of determination________________ ______ _ 19 The flood between Canon City and Pueblo_________________ 23 The flood at Pueblo________________________________ 23 General features_____________________________ 23 Arrival of tributary flood crests _______________ 25 Maximum discharge__________________________ 26 Total discharge_____________________________ 27 The flood below Pueblo_____________________________ 30 General features _________ _______________ 30 Tributary streams_____________________________ 31 Fountain Creek____________________________ 31 St. Charles River___________________________ 33 Chico Creek_______________________________ 34 Previous floods i____________________________________ 35 Flood of Indian legend_____________________________ 35 Floods of authentic record__________________________ 36 Maximum discharges
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Variable Hydrologic and Geomorphic Responses to Intentional Levee Breaches Along the Lower Cosumnes River, California
    Received: 21 April 2016 Revised: 29 March 2017 Accepted: 30 March 2017 DOI: 10.1002/rra.3159 RESEARCH ARTICLE Not all breaks are equal: Variable hydrologic and geomorphic responses to intentional levee breaches along the lower Cosumnes River, California A. L. Nichols1 | J. H. Viers1,2 1 Center for Watershed Sciences, University of California, Davis, California, USA Abstract 2 School of Engineering, University of The transport of water and sediment from rivers to adjacent floodplains helps generate complex California, Merced, California, USA floodplain, wetland, and riparian ecosystems. However, riverside levees restrict lateral connectiv- Correspondence ity of water and sediment during flood pulses, making the re‐introduction of floodplain hydrogeo- A. L. Nichols, Center for Watershed Sciences, morphic processes through intentional levee breaching and removal an emerging floodplain University of California, Davis, California, USA. restoration practice. Repeated topographic observations from levee breach sites along the lower Email: [email protected] Cosumnes River (USA) indicated that breach architecture influences floodplain and channel hydrogeomorphic processes. Where narrow breaches (<75 m) open onto graded floodplains, Funding information California Department of Fish and Wildlife archetypal crevasse splays developed along a single dominant flowpath, with floodplain erosion (CDFW) Ecosystem Restoration Program in near‐bank areas and lobate splay deposition in distal floodplain regions. Narrow breaches (ERP), Grant/Award Number: E1120001; The opening into excavated floodplain channels promoted both transverse advection and turbulent Nature Concervancy (TNC); Consumnes River Preserve diffusion of sediment into the floodplain channel, facilitating near‐bank deposition and potential breach closure. Wide breaches (>250 m) enabled multiple modes of water and sediment transport onto graded floodplains.
    [Show full text]