Variable Hydrologic and Geomorphic Responses to Intentional Levee Breaches Along the Lower Cosumnes River, California
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taphonomy of the Sun River Bonebed, Late Cretaceous
TAPHONOMY OF THE SUN RIVER BONEBED, LATE CRETACEOUS (CAMPANIAN) TWO MEDICINE FORMATION OF MONTANA by Benjamin Andrew Scherzer A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences MONTANA STATE UNIVERSITY-BOZEMAN Bozeman, Montana April 2008 © COPYRIGHT by Benjamin Andrew Scherzer 2008 All Rights Reserved ii APPROVAL of a thesis submitted by Benjamin Andrew Scherzer This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. David J. Varricchio Approved for the Department of Earth Sciences Dr. Stephan G. Custer Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment for the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowed only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Request for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Benjamin Andrew Scherzer April 2008 iv ACKNOWLEDGEMENTS This thesis would not have come to completion without the help of each member of my committee: Dave Varricchio, Jack Horner, and Jim Schmitt. -
(P 117-140) Flood Pulse.Qxp
117 THE FLOOD PULSE CONCEPT: NEW ASPECTS, APPROACHES AND APPLICATIONS - AN UPDATE Junk W.J. Wantzen K.M. Max-Planck-Institute for Limnology, Working Group Tropical Ecology, P.O. Box 165, 24302 Plön, Germany E-mail: [email protected] ABSTRACT The flood pulse concept (FPC), published in 1989, was based on the scientific experience of the authors and published data worldwide. Since then, knowledge on floodplains has increased considerably, creating a large database for testing the predictions of the concept. The FPC has proved to be an integrative approach for studying highly diverse and complex ecological processes in river-floodplain systems; however, the concept has been modified, extended and restricted by several authors. Major advances have been achieved through detailed studies on the effects of hydrology and hydrochemistry, climate, paleoclimate, biogeography, biodi- versity and landscape ecology and also through wetland restoration and sustainable management of flood- plains in different latitudes and continents. Discussions on floodplain ecology and management are greatly influenced by data obtained on flow pulses and connectivity, the Riverine Productivity Model and the Multiple Use Concept. This paper summarizes the predictions of the FPC, evaluates their value in the light of recent data and new concepts and discusses further developments in floodplain theory. 118 The flood pulse concept: New aspects, INTRODUCTION plain, where production and degradation of organic matter also takes place. Rivers and floodplain wetlands are among the most threatened ecosystems. For example, 77 percent These characteristics are reflected for lakes in of the water discharge of the 139 largest river systems the “Seentypenlehre” (Lake typology), elaborated by in North America and Europe is affected by fragmen- Thienemann and Naumann between 1915 and 1935 tation of the river channels by dams and river regula- (e.g. -
Geomorphic Classification of Rivers
9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations. -
Seasonal Flooding Affects Habitat and Landscape Dynamics of a Gravel
Seasonal flooding affects habitat and landscape dynamics of a gravel-bed river floodplain Katelyn P. Driscoll1,2,5 and F. Richard Hauer1,3,4,6 1Systems Ecology Graduate Program, University of Montana, Missoula, Montana 59812 USA 2Rocky Mountain Research Station, Albuquerque, New Mexico 87102 USA 3Flathead Lake Biological Station, University of Montana, Polson, Montana 59806 USA 4Montana Institute on Ecosystems, University of Montana, Missoula, Montana 59812 USA Abstract: Floodplains are comprised of aquatic and terrestrial habitats that are reshaped frequently by hydrologic processes that operate at multiple spatial and temporal scales. It is well established that hydrologic and geomorphic dynamics are the primary drivers of habitat change in river floodplains over extended time periods. However, the effect of fluctuating discharge on floodplain habitat structure during seasonal flooding is less well understood. We collected ultra-high resolution digital multispectral imagery of a gravel-bed river floodplain in western Montana on 6 dates during a typical seasonal flood pulse and used it to quantify changes in habitat abundance and diversity as- sociated with annual flooding. We observed significant changes in areal abundance of many habitat types, such as riffles, runs, shallow shorelines, and overbank flow. However, the relative abundance of some habitats, such as back- waters, springbrooks, pools, and ponds, changed very little. We also examined habitat transition patterns through- out the flood pulse. Few habitat transitions occurred in the main channel, which was dominated by riffle and run habitat. In contrast, in the near-channel, scoured habitats of the floodplain were dominated by cobble bars at low flows but transitioned to isolated flood channels at moderate discharge. -
Biogeochemical and Metabolic Responses to the Flood Pulse in a Semi-Arid Floodplain
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@USU 1 Running Head: Semi-arid floodplain response to flood pulse 2 3 4 5 6 Biogeochemical and Metabolic Responses 7 to the Flood Pulse in a Semi-Arid Floodplain 8 9 10 11 with 7 Figures and 3 Tables 12 13 14 15 H. M. Valett1, M.A. Baker2, J.A. Morrice3, C.S. Crawford, 16 M.C. Molles, Jr., C.N. Dahm, D.L. Moyer4, J.R. Thibault, and Lisa M. Ellis 17 18 19 20 21 22 Department of Biology 23 University of New Mexico 24 Albuquerque, New Mexico 87131 USA 25 26 27 28 29 30 31 present addresses: 32 33 1Department of Biology 2Department of Biology 3U.S. EPA 34 Virginia Tech Utah State University Mid-Continent Ecology Division 35 Blacksburg, Virginia 24061 USA Logan, Utah 84322 USA Duluth, Minnesota 55804 USA 36 540-231-2065, 540-231-9307 fax 37 [email protected] 38 4Water Resources Division 39 United States Geological Survey 40 Richmond, Virginia 23228 USA 41 1 1 Abstract: Flood pulse inundation of riparian forests alters rates of nutrient retention and 2 organic matter processing in the aquatic ecosystems formed in the forest interior. Along the 3 Middle Rio Grande (New Mexico, USA), impoundment and levee construction have created 4 riparian forests that differ in their inter-flood intervals (IFIs) because some floodplains are 5 still regularly inundated by the flood pulse (i.e., connected), while other floodplains remain 6 isolated from flooding (i.e., disconnected). -
Impacts of a Flood Pulsing Hydrology on Plants and Invertebrates in Riparian Wetlands
IMPACTS OF A FLOOD PULSING HYDROLOGY ON PLANTS AND INVERTEBRATES IN RIPARIAN WETLANDS A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Maureen K. Drinkard August 2012 Dissertation written by Maureen K. Drinkard B.S., Kent State University, 2003 Ph.D., Kent State University, 2012 Approved by ___Ferenc de Szalay_, Chair, Doctoral Dissertation Committee ___Mark Kershner_______, Members, Doctoral Dissertation Committee _____Oscar Rocha________, ____Mandy Munro-Stasiuk_, Accepted by _____James Blank______, Chair, Department of Biological Sciences ______Raymond Craig___, Dean, College of Arts and Sciences ii TABLE OF CONTENTS LIST OF FIGURES ............................................................................................................... vi LIST OF TABLES ................................................................................................................. vii ACKNOWLEDGEMENTS .................................................................................................... x CHAPTER I. INTRODUCTION ................................................................................................ 1 Dissertation Goals ............................................................................................. 1 Definition of the Flood Pulse Concept .............................................................. 2 Ecological and economic importance ............................................................... 3 Impacts of environmental -
Hydrologic Alteration of the Lower Rio Grande Terminus: a Quantitative Assessment
RIVER RESEARCH AND APPLICATIONS River. Res. Applic. 25: 241–252 (2009) Published online 29 April 2008 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/rra.1151 HYDROLOGIC ALTERATION OF THE LOWER RIO GRANDE TERMINUS: A QUANTITATIVE ASSESSMENT MICHAEL F. SMALL,* TIMOTHY H. BONNER and JOHN T. BACCUS Department of Biology, Texas State University—San Marcos, San Marcos, TX 78666, USA ABSTRACT The lower Rio Grande is one of several imperilled river reaches in North America. Drought and water withdrawals for agriculture and municipal use are acknowledged as primary sources of riverine degradation. We agree that these are critical components adversely affecting the river but also suggest disruption in the normal flood-pulse cycle of the lower Rio Grande, resulting from impoundment of Falcon Lake and poor management of releases from Falcon Lake Dam, have contributed substantially to decline in ecosystem integrity. We provide statistical evidence and real observations in support of the hypothesis that loss of the natural flood-pulse cycle of the lower Rio Grande has detrimentally affected the riparian ecosystem. Although the presence of adverse effects from disruption of the flood-pulse cycle is intuitive, this is the first report quantifying the degree of alteration in the lower Rio Grande. Copyright # 2008 John Wiley & Sons, Ltd. key words: Rio Grande; Texas; riparian; alteration; flood-pulse cycle Received 9 March 2007; Accepted 28 February 2008 INTRODUCTION Excerpt from CBS Radio Network: ‘Title: One of the world’s most celebrated rivers is almost gone. There’s an old saying in Texas—whiskey is for drinking and water is for fighting. -
The Thick-Splay Depositional Style of the Crevasse Canyon Formation, Cretaceous of West-Central New Mexico Steven J
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/34 The thick-splay depositional style of the Crevasse Canyon Formation, Cretaceous of west-central New Mexico Steven J. Johansen, 1983, pp. 173-178 in: Socorro Region II, Chapin, C. E.; Callender, J. F.; [eds.], New Mexico Geological Society 34th Annual Fall Field Conference Guidebook, 344 p. This is one of many related papers that were included in the 1983 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
Finley Creek Alluvial Fan Geomorphic and Hydraulic Analyses and Implications for Restoration
FINLEY CREEK ALLUVIAL FAN GEOMORPHIC AND HYDRAULIC ANALYSES AND IMPLICATIONS FOR RESTORATION Jeanne E. Godaire, Geomorphologist, Bureau of Reclamation, Denver, Colorado, [email protected]; Sean Kimbrel, Hydraulic Engineer, Bureau of Reclamation, Denver, Colorado, [email protected] INTRODUCTION Finley Creek, located on the Olympic Peninsula in western Washington, is a tributary of the Quinault River upstream of Lake Quinault. Previous observers have noted recent progressive lateral movement of the channel toward the eastern side of the Finley Creek alluvial fan, and aggradation and perching of the channel in the vicinity of the North Shore Road Bridge. The relationship between Finley Creek and the Quinault River is one of a long-term dynamic interaction between a large alluvial fan and mainstem river. The current sediment production from Finley Creek is of critical concern due to ongoing dredging at North Shore Road Bridge and the potential environmental effects of the dredging both upstream and downstream of the bridge (NPS, 2005) and sediment deposition and lateral Quinault River channel migration (GeoEngineers, 2011). Previous studies on Finley Creek have documented historical channel change using rectified aerial photography (Bountry et al. 2005) and the problems associated with aggradation and erosion on sections of Finley Creek (Kennard, 2009; Smillie, 2001; Jackson and Smillie, 1994). The objectives of this study are to (1) provide a geomorphic analysis of conditions on Finley Creek in order to place current conditions into a long term context and to identify areas of potential avulsion and lateral erosion; and (2) conduct hydraulic modeling of various scenarios to guide the evaluation of alternatives for addressing aggradation near the North Shore Road Bridge and improvement of aquatic habitat on Finley Creek. -
Flooding Dynamics in a Large Low-Gradient Alluvial Fan, the Okavango Delta, Botswana, from Analysis and Interpretation of a 30-Year Hydrometric Record
Hydrology and Earth System Sciences, 10, 127–137, 2006 www.copernicus.org/EGU/hess/hess/10/127/ Hydrology and SRef-ID: 1607-7938/hess/2006-10-127 Earth System European Geosciences Union Sciences Flooding dynamics in a large low-gradient alluvial fan, the Okavango Delta, Botswana, from analysis and interpretation of a 30-year hydrometric record P. Wolski and M. Murray-Hudson Harry Oppenheimer Okavango Research Centre, Maun, Botswana Received: 11 August 2005 – Published in Hydrology and Earth System Sciences Discussions: 6 September 2005 Revised: 29 November 2005 – Accepted: 3 January 2006 – Published: 21 February 2006 Abstract. The Okavango Delta is a flood-pulsed wetland, tem, and the flood frequency distribution itself can change, which supports a large tourism industry and the subsistence compared to that at upstream locations (Wolff and Burges, of the local population through the provision of ecosystem 1994). The ecological role of the channel-floodplain interac- services. In order to obtain insight into the influence of var- tion is expressed by the flood pulse concept (Junk et al., 1989; ious environmental factors on flood propagation and distri- Middleton, 1999). According to this concept, floodplain wet- bution in this system, an analysis was undertaken of a 30- lands and riparian ecosystems adjust to, and are maintained, year record of hydrometric data (discharges and water lev- by the pulsing of water, sediment and nutrients that occurs els) from one of the Delta distributaries. The analysis re- during over-bank flow conditions. Odum (1994) addition- vealed that water levels and discharges at any given channel ally identifies flood pulsing at various spatial and temporal site in this distributary are influenced by a complex interplay scales as an energy subsidy to wetland ecosystems, explain- of flood wave and local rainfall inputs, modified by channel- ing in part the high ecological productivity associated with floodplain interactions, in-channel sedimentation and techni- such systems. -
A Geomorphic Monitoring and Adaptive Assessment Framework to Assess the Effect of Lowland Floodplain River Restoration on Channel–Floodplain Sediment Continuity
RIVER RESEARCH AND APPLICATIONS River Res. Applic. (in press) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/rra.911 A GEOMORPHIC MONITORING AND ADAPTIVE ASSESSMENT FRAMEWORK TO ASSESS THE EFFECT OF LOWLAND FLOODPLAIN RIVER RESTORATION ON CHANNEL–FLOODPLAIN SEDIMENT CONTINUITY J. L. FLORSHEIM,a* J. F. MOUNTa and C. R. CONSTANTINEb a Geology Department and Center for Integrated Watershed Science and Management, University of California, One Shields Avenue, Davis, CA 95616, USA b Now at Department of Geological Sciences, University of California, Santa Barbara, CA 93106, USA ABSTRACT The state of the science of lowland river floodplain restoration reflects the relatively new and experimental nature of large river floodplain rehabilitation efforts. Based on results of a case study of floodplain restoration at the lowland Cosumnes River, California, we present a geomorphic monitoring and adaptive assessment framework that addresses the need to inform and utilize scientific knowledge in lowland floodplain river restoration activities. Highlighting hydrogeomorphic processes that lead to habitat creation, we identify a discharge threshold for connectivity and sediment transfer from the channel to the floodplain and integrate discharge magnitude and duration to quantify a threshold to aid determination of when geomorphic monitoring is warranted. Using floodplain sand deposition volume in splay complexes as one indicator of dynamic floodplain habitat, we develop a model to aid prediction of the sand deposition volume as an assessment tool to use to analyze future monitoring data. Because geomorphic processes that form the physical structure of a habitat are dynamic, and because the most successful restoration projects accommodate this fundamental characteristic of ecosystems, monitoring designs must both identify trends and be adapted iteratively so that relevant features continue to be measured. -
FRIPP INLET, SOUTH CAROLINA Timothy W. Kana P
SCALES & SIGNATURES OF EPISODIC SAND BYPASSING AT A TIDE-DOMINATED INLET — FRIPP INLET, SOUTH CAROLINA Timothy W. Kana PhD, PG1, Steven B Traynum MS1, and Haiqing Liu Kaczkowski PhD, PE1 This paper provides a case example of meso-scale sand circulation and volumes in a tide-dominated inlet (Fripp Inlet, South Carolina, USA) and the adjacent barrier island. Episodic bypassing is the dominant process controlling shoreline change in this area (Gaudiano & Kana 2001). The scale of bypassing in this case has proven to be more than adequate to restore a highly eroding armored beach along Fripp Island. Upward of 2.7 million cubic meters (m³) shifted from the ebb-tidal delta of Fripp Inlet to a central oceanfront area of Fripp Island between 1989 and 2012. This volume, representing roughly 10 percent of the ebb-tidal delta volume, provided natural nourishment equivalent to nearly 600 cubic meters per meter of shoreline (m³/m) along the nearly 5-kilometer (km) long barrier island. The volume density varied greatly with some beach segments widening by more than 500 m. Prior to the bypassing events, there was no beach at high tide along most of the island. The paper discusses the possible trigger for recent bypassing events and documents changes in Fripp Inlet. Channel rotation into a seawall, southerly deflection of the ebb-delta centroid, and large inputs of sand from the adjacent barrier island appear to have produced conditions promoting large releases of sand to Fripp Island. While the influx of sand has restored much of the oceanfront, full restoration of a sandy beach along the inlet margin will require a channel avulsion or realignment such that the principal erosion-causing process—ebb jet in the main channel—no longer encroaches on the seawall.