Morphological Bedload Transport in Gravel-Bed Braided Rivers

Total Page:16

File Type:pdf, Size:1020Kb

Morphological Bedload Transport in Gravel-Bed Braided Rivers Western University Scholarship@Western Electronic Thesis and Dissertation Repository 6-16-2017 12:00 AM Morphological Bedload Transport in Gravel-Bed Braided Rivers Sarah E. K. Peirce The University of Western Ontario Supervisor Dr. Peter Ashmore The University of Western Ontario Graduate Program in Geography A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Sarah E. K. Peirce 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Physical and Environmental Geography Commons Recommended Citation Peirce, Sarah E. K., "Morphological Bedload Transport in Gravel-Bed Braided Rivers" (2017). Electronic Thesis and Dissertation Repository. 4595. https://ir.lib.uwo.ca/etd/4595 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Gravel-bed braided rivers, defined by their multi-thread planform and dynamic morphology, are commonly found in proglacial mountainous areas. With little cohesive sediment and a lack of stabilizing vegetation, the dynamic morphology of these rivers is the result of bedload transport processes. Yet, our understanding of the fundamental relationships between channel form and bedload processes in these rivers remains incomplete. For example, the area of the bed actively transporting bedload, known as the active width, is strongly linked to bedload transport rates but these relationships have not been investigated systematically in braided rivers. This research builds on previous research to investigate the relationships between morphology, bedload transport rates, and bed-material mobility using physical models of braided rivers over a range of constant channel-forming discharges and event hydrographs. Morphology changes were estimated using the morphological method, which infers information from changes in channel topography over time, from an extensive dataset of digital elevation models (DEMs) generated using digital photogrammetry and ‘Structure-from-Motion’ principles. Results suggest that the active width is highly variable even at constant discharge but increases with stream power and is positively related to bedload transport rates, bulk change (i.e., total volume of erosion and deposition), and active braiding intensity. Morphologically- derived sediment budgets provided reasonable estimates of bedload transport rates that were similar to independent measurements of bedload transport rates from sediment baskets. In addition, grain size distributions and bed mobility evolved from a state of partial mobility towards equal mobility with increasing discharge. This is rare in most gravel-bed rivers, but in braided rivers the high levels of sediment supply and lack of armouring allow for greater mobility of the channel bed and subsurface. Finally, the lower detection threshold for the morphological active width, bedload transport, and transition to selective mobility all coincided with a dimensionless stream power of ~0.08. Overall, these results suggest that while braided rivers are dynamic, they may be restricted in ways like their single-threaded counterparts so that measures of morphology (i.e., the active width) can be used as general predictors of bedload transport rates and the morphological stability of the river. This knowledge contributes to our overall understanding of braided river i morphodynamics while also building on theory for use in applied geomorphology and engineering practices for the management, conservation, and restoration of complex braided rivers systems. Keywords braided, gravel-bed rivers, morphological method, active width, digital photogrammetry, bed mobility ii Acknowledgements I would first like to acknowledge and thank my thesis advisor, Dr. Peter Ashmore. I am grateful your guidance, patience, wisdom, and general love of braided rivers. Along with my advisor, I would like to thank all of those who had a direct hand in making this Ph.D. possible. Dr. Pauline Leduc, whose brilliant ideas on physical modelling and coding made it possible collect (and process) the rather ridiculous amount of data that was measured in the flume. Furthermore, your guidance and friendship was truly invaluable throughout my Ph.D. experience. I also want to thank Lara Middleton, who spent endless hours in the flume, in the dark, collecting data with me. Thank you for your help, friendship, and of course, for your enthusiasm for braided rivers. Thank you Danie Barr for everything, but especially for all of your support throughout the last two years. I also want to extend my gratitude to Dr. Matidle Welber for sharing her wisdom about statistics, flumes, and cooking with me. Thank you to all of those who came to the flume to help out including Erika Hill, Sarah McFadden, Cliff Davidson, Clayton Cook, Chris Vandelaar, and in particular Cody Ruthman, who often came at a moment’s notice to save the day! I also want to thank Dr. Darren Sjogren, Dr. Joe Wheaton, Wally Macfarlane, and Dr. Chris Hugenholtz for their help and experience in the field. I would like to thank Dr. Andy Binns, Dr. Marco Van De Wiel, Dr. Adam Yates, Dr. Katrina Moser, and Dr. Cheryl McKenna-Neuman for taking the time to challenge me as part of my thesis and examination committees. A special thank you to Dr. Desmond Moser, my second reader, for your time and feedback on my manuscript. Thank you to all of the wonderful staff at the university including Lori Johnson, Joe Smrekar, Karen Vankerkoerle, Kathy Tang, Angelica Lucaci, and Rita Mendis-Mogenson for all of your help. Last but not least, I want to thank my family and friends for their continued love and support throughout these last few years. Like so many other graduate students I can honestly say that my Ph.D. experience did not go exactly as planned, but I am so lucky to iii have people encourage me to just keeping going. Thank you to my mom and brother, Michael, I could not have done this without you. I also want to thank my Dad, whom I miss every day, for bestowing on me a love of learning and teaching that helped make this journey possible. Finally, I want to thank my husband, Aaron. I am not sure I can even find the words to express my gratitude to you but we both know I would not be submitting this thesis if it wasn’t for your unwavering love and support. Thank you for everything. iv Table of Contents Abstract ................................................................................................................................ i Keywords ............................................................................................................................ ii Acknowledgements ............................................................................................................ iii Table of Contents .................................................................................................................v List of Tables ..................................................................................................................... ix List of Figures ......................................................................................................................x List of Notations .............................................................................................................. xiv 1 Introduction .................................................................................................................1 1.1 Thesis Format and Research Objectives ............................................................. 1 1.1.1 Thesis Rationale .......................................................................................... 1 1.1.2 Purpose and Methodological Background .................................................. 1 1.1.3 Thesis Format and Research Objectives ..................................................... 2 2 Background ..................................................................................................................4 2.1 Conditions for Braiding in Gravel-Bed Rivers ................................................... 4 2.2 Morphological Characteristics of Braided Channels .......................................... 6 2.2.1 Bar Unit ....................................................................................................... 7 2.2.2 Confluences and Bifurcations ................................................................... 10 2.2.3 Braiding Intensity...................................................................................... 11 2.2.4 Channel Geometry .................................................................................... 13 2.3 Bedload Transport Processes ............................................................................ 15 2.3.1 Active Layers and Phase Flow .................................................................. 15 2.3.2 Bedload Pulses .......................................................................................... 15 2.3.3 Bed Mobility ............................................................................................. 18 2.4 The Morphological Active Width ..................................................................... 20 2.5 Morphological Methods for Estimating Bedload Transport Rates ................... 22 2.6 Measuring Morphological Change ..................................................................
Recommended publications
  • Measurement of Bedload Transport in Sand-Bed Rivers: a Look at Two Indirect Sampling Methods
    Published online in 2010 as part of U.S. Geological Survey Scientific Investigations Report 2010-5091. Measurement of Bedload Transport in Sand-Bed Rivers: A Look at Two Indirect Sampling Methods Robert R. Holmes, Jr. U.S. Geological Survey, Rolla, Missouri, United States. Abstract Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sand- bed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Secondary Flow Effects on Deposition of Cohesive Sediment in A
    water Article Secondary Flow Effects on Deposition of Cohesive Sediment in a Meandering Reach of Yangtze River Cuicui Qin 1,* , Xuejun Shao 1 and Yi Xiao 2 1 State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China 2 National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Chongqing 400074, China * Correspondence: [email protected]; Tel.: +86-188-1137-0675 Received: 27 May 2019; Accepted: 9 July 2019; Published: 12 July 2019 Abstract: Few researches focus on secondary flow effects on bed deformation caused by cohesive sediment deposition in meandering channels of field mega scale. A 2D depth-averaged model is improved by incorporating three submodels to consider different effects of secondary flow and a module for cohesive sediment transport. These models are applied to a meandering reach of Yangtze River to investigate secondary flow effects on cohesive sediment deposition, and a preferable submodel is selected based on the flow simulation results. Sediment simulation results indicate that the improved model predictions are in better agreement with the measurements in planar distribution of deposition, as the increased sediment deposits caused by secondary current on the convex bank have been well predicted. Secondary flow effects on the predicted amount of deposition become more obvious during the period when the sediment load is low and velocity redistribution induced by the bed topography is evident. Such effects vary with the settling velocity and critical shear stress for deposition of cohesive sediment. The bed topography effects can be reflected by the secondary flow submodels and play an important role in velocity and sediment deposition predictions.
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • Scour and Fill in Ephemeral Streams
    SCOUR AND FILL IN EPHEMERAL STREAMS by Michael G. Foley , , " W. M. Keck Laboratory of Hydraulics and Water Resources Division of Engineering and Applied Science CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 91125 Report No. KH-R-33 November 1975 SCOUR AND FILL IN EPHEMERAL STREAMS by Michael G. Foley Project Supervisors: Robert P. Sharp Professor of Geology and Vito A. Vanoni Professor of Hydraulics Technical Report to: U. S. Army Research Office, Research Triangle Park, N. C. (under Grant No. DAHC04-74-G-0189) and National Science Foundation (under Grant No. GK3l802) Contribution No. 2695 of the Division of Geological and Planetary Sciences, California Institute of Technology W. M. Keck Laboratory of Hydraulics and Water Resources Division of Engineering and Applied Science California Institute of Technology Pasadena, California 91125 Report No. KH-R-33 November 1975 ACKNOWLEDGMENTS The writer would like to express his deep appreciation to his advisor, Dr. Robert P. Sharp, for suggesting this project and providing patient guidance, encouragement, support, and kind criticism during its execution. Similar appreciation is due Dr. Vito A. Vanoni for his guidance and suggestions, and for generously sharing his great experience with sediment transport problems and laboratory experiments. Drs. Norman H. Brooks and C. Hewitt Dix read the first draft of this report, and their helpful comments are appreciated. Mr. Elton F. Daly was instrumental in the design of the laboratory apparatus and the success of the laboratory experiments. Valuable assistance in the field was given by Mrs. Katherine E. Foley and Mr. Charles D. Wasserburg. Laboratory experiments were conducted with the assistance of Ms.
    [Show full text]
  • Variability of Bed Mobility in Natural Gravel-Bed Channels
    WATER RESOURCES RESEARCH, VOL. 36, NO. 12, PAGES 3743–3755, DECEMBER 2000 Variability of bed mobility in natural, gravel-bed channels and adjustments to sediment load at local and reach scales Thomas E. Lisle,1 Jonathan M. Nelson,2 John Pitlick,3 Mary Ann Madej,4 and Brent L. Barkett3 Abstract. Local variations in boundary shear stress acting on bed-surface particles control patterns of bed load transport and channel evolution during varying stream discharges. At the reach scale a channel adjusts to imposed water and sediment supply through mutual interactions among channel form, local grain size, and local flow dynamics that govern bed mobility. In order to explore these adjustments, we used a numerical flow ␶ model to examine relations between model-predicted local boundary shear stress ( j) and measured surface particle size (D50) at bank-full discharge in six gravel-bed, alternate-bar ␶ channels with widely differing annual sediment yields. Values of j and D50 were poorly correlated such that small areas conveyed large proportions of the total bed load, especially in sediment-poor channels with low mobility. Sediment-rich channels had greater areas of full mobility; sediment-poor channels had greater areas of partial mobility; and both types had significant areas that were essentially immobile. Two reach- mean mobility parameters (Shields stress and Q*) correlated reasonably well with sediment supply. Values which can be practicably obtained from carefully measured mean hydraulic variables and particle size would provide first-order assessments of bed mobility that would broadly distinguish the channels in this study according to their sediment yield and bed mobility.
    [Show full text]
  • Sediment Bed-Load Transport: a Standardized Notation
    geosciences Article Sediment Bed-Load Transport: A Standardized Notation Ulrich Zanke 1,2,* and Aron Roland 3 1 TU, Darmstadt, Inst. für Wasserbau und Hydraulik, 64287 Darmstadt, Germany 2 Z & P—Prof. Zanke & Partner, Ackerstr. 21, D-30826 Garbsen-Hannover, Germany 3 CEO BGS-ITE, Pfungstaedter Straße 20, D-64297 Darmstadt, Germany; [email protected] * Correspondence: [email protected] Received: 7 August 2020; Accepted: 1 September 2020; Published: 16 September 2020 Abstract: Morphodynamic processes on Earth are a result of sediment displacements by the flow of water or the action of wind. An essential part of sediment transport takes place with permanent or intermittent contact with the bed. In the past, numerous approaches for bed-load transport rates have been developed, based on various fundamental ideas. For the user, the question arises which transport function to choose and why just that one. Different transport approaches can be compared based on measured transport rates. However, this method has the disadvantage that any measured data contains inaccuracies that correlate in different ways with the transport functions under comparison. Unequal conditions also exist if the factors of transport functions under test are fitted to parts of the test data set during the development of the function, but others are not. Therefore, a structural formula comparison is made by transferring altogether 13 transport functions into a standardized notation. Although these formulas were developed from different perspectives and with different approaches, it is shown that these approaches lead to essentially the same basic formula for the main variables. These are shear stress and critical shear stress.
    [Show full text]
  • Salmon-Driven Bed Load Transport and Bed Morphology in Mountain Streams
    GEOPHYSICAL RESEARCH LETTERS, VOL. 35, LXXXXX, doi:10.1029/2007GL032997, 2008 Click Here for Full Article 2 Salmon-driven bed load transport and bed morphology in mountain 3 streams 1 2 3 4 4 Marwan A. Hassan, Allen S. Gottesfeld, David R. Montgomery, Jon F. Tunnicliffe, 5 1 1 1 6 5 Garry K. C. Clarke, Graeme Wynn, Hale Jones-Cox, Ronald Poirier, Erland MacIsaac, 6 7 6 Herb Herunter, and Steve J. Macdonald Received 13 December 2007; revised 10 January 2008; accepted 18 January 2008; published XX Month 2008. 7 9 [1] Analyses of bed load transport data from four streams of nests (redds) have been widely recognized [Kondolf and 41 10 in British Columbia show that the activity of mass spawning Wolman, 1993; Kondolf et al., 1993; Montgomery et al., 42 11 salmon moved an average of almost half of the annual bed 1996], the role of fish on sediment transport remains little 43 12 load yield. Spawning-generated changes in bed surface explored due to the difficulty in both collecting bed load 44 13 topography persisted from August through May due to lack transport data and in discriminating between hydrologic and 45 14 of floods during the winter season, defining the bed surface biologic transport. 46 15 morphology for most of the year. Hence, salmon-driven bed [3] The localized geomorphic role of spawning salmon 47 16 load transport can substantially influence total sediment involves both direct transport during redd excavation that 48 17 transport rates, and alters typical alluvial reach morphology. modifies streambeds and indirect effects through changes 49 18 The finding that mass-spawning fish can dominate sediment in bed-surface grain size and packing [Butler, 1995; 50 19 transport in mountain drainage basins has fundamental Montgomery et al., 1996].
    [Show full text]
  • American Fisheries Society Bethesda, Maryland Suggested Citation Formats
    Aquatic Habitat Assessment Edited by Mark B. Bain and Nathalie J. Stevenson Support for this publication was provided by Sport Fish Restoration Act Funds administered by the U.S. Fish and Wildlife Service Division of Federal Aid Aquatic Habitat Assessment Common Methods Edited by Mark B. Bain and Nathalie J. Stevenson American Fisheries Society Bethesda, Maryland Suggested Citation Formats Entire Book Bain, M. B., and N. J. Stevenson, editors. 1999. Aquatic habitat assessment: common methods. American Fisheries Society, Bethesda, Maryland. Chapter within the Book Meixler, M. S. 1999. Regional setting. Pages 11–24 in M. B. Bain and N. J. Stevenson, editors. Aquatic habitat assessment: common methods. American Fisheries Society, Bethesda, Maryland. Cover illustration, original drawings, and modifications to figures by Teresa Sawester. © 1999 by the American Fisheries Society All rights reserved. Photocopying for internal or personal use, or for the internal or personal use of specific clients, is permitted by AFS provided that the appropriate fee is paid directly to Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, Massachusetts 01923, USA; phone 508-750-8400. Request authorization to make multiple copies for classroom use from CCC. These permissions do not extend to electronic distribution or long- term storage of articles or to copying for resale, promotion, advertising, general distribution, or creation of new collective works. For such uses, permission or license must be obtained from AFS. Library of Congress Catalog Number: 99-068788 ISBN: 1-888569-18-2 Printed in the United States of America American Fisheries Society 5410 Grosvenor Lane, Suite 110 Bethesda, Maryland 20814-2199, USA Contents Contributors vii Symbols and Abbreviations viii 05.
    [Show full text]
  • 5.1 Coarse Bed Load Sampling
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1997 The initiation of coarse bed load transport in gravel bed streams Andrew C. Whitaker The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Whitaker, Andrew C., "The initiation of coarse bed load transport in gravel bed streams" (1997). Graduate Student Theses, Dissertations, & Professional Papers. 10498. https://scholarworks.umt.edu/etd/10498 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • The Spatial Distribution of Bed Sediment on Fluvial System: a Mini Review of the Aceh Meandering River
    Aceh Int. J. Sci. Technol., 5(2): 82-87 August 2016 doi: 10.13170/aijst.5.2.4932 Aceh International Journal of Science and Technology ISSN: 2088-9860 Journal homepage: http://jurnal.unsyiah.ac.id/aijst The Spatial Distribution of Bed Sediment on Fluvial System: A Mini Review of the Aceh Meandering River Muhammad Irham Faculty of Marine and Fisheries Science, University of Syiah Kuala, Banda Aceh 23111, Indonesia. Corresponding author, email: [email protected] Received : 2 August 2016 Accepted : 28 August 2016 Online : 31 August2016 Abstract - Dynamic interactions of hydrological and geomorphological processes in the fluvial system result in accumulated deposit on the bed because the capacity to carry sediment has been exceeded. The bed load of the Aceh fluvial system is primarily generated by mechanical weathering resulting in boulders, pebbles, and sand, which roll or bounce along the river bed forming temporary deposits as bars on the insides of meander bends, as a result of a loss of transport energy in the system. This dynamic controls the style and range of deposits in the Aceh River. This study focuses on the spatial distribution of bed-load transport of the Aceh River. Understanding the spatial distribution of deposits facilitates the reconstruction of the changes in controlling factors during accumulation of deposits. One of the methods can be done by sieve analysis of sediment, where the method illuminates the distribution of sediment changes associate with channel morphology under different flow regimes. Hence, the purpose of this mini review is to investigate how the sediment along the river meander spatially dispersed.
    [Show full text]