Innovation in Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issues Paper on Exploring Space Technologies for Sustainable Development and the Benefits of International Research Collaboration in This Context
United Nations Commission on Science and Technology for Development Inter-sessional Panel 2019-2020 7-8 November 2019 Geneva, Switzerland Issues Paper on Exploring space technologies for sustainable development and the benefits of international research collaboration in this context Draft Not to be cited Prepared by UNCTAD Secretariat1 18 October 2019 1 Contributions from the Governments of Austria, Belgium, Botswana, Brazil, Canada, Japan, Mexico, South Africa, Turkey, the United Kingdom, United States of America, as well as from the Economic and Social Commission for Asia and the Pacific, the Food and Agriculture Organization, the International Telecommunication Union, the United Nations Office for Disaster Risk Reduction and the World Food Programme are gratefully acknowledged. Contents Table of figures ....................................................................................................................................... 3 Table of boxes ......................................................................................................................................... 3 I. Introduction .................................................................................................................................... 4 II. Space technologies for the Sustainable Development Goals ......................................................... 5 1. Food security and agriculture ..................................................................................................... 5 2. Health applications .................................................................................................................... -
Industry at the Edge of Space Other Springer-Praxis Books of Related Interest by Erik Seedhouse
IndustryIndustry atat thethe EdgeEdge ofof SpaceSpace ERIK SEEDHOUSE S u b o r b i t a l Industry at the Edge of Space Other Springer-Praxis books of related interest by Erik Seedhouse Tourists in Space: A Practical Guide 2008 ISBN: 978-0-387-74643-2 Lunar Outpost: The Challenges of Establishing a Human Settlement on the Moon 2008 ISBN: 978-0-387-09746-6 Martian Outpost: The Challenges of Establishing a Human Settlement on Mars 2009 ISBN: 978-0-387-98190-1 The New Space Race: China vs. the United States 2009 ISBN: 978-1-4419-0879-7 Prepare for Launch: The Astronaut Training Process 2010 ISBN: 978-1-4419-1349-4 Ocean Outpost: The Future of Humans Living Underwater 2010 ISBN: 978-1-4419-6356-7 Trailblazing Medicine: Sustaining Explorers During Interplanetary Missions 2011 ISBN: 978-1-4419-7828-8 Interplanetary Outpost: The Human and Technological Challenges of Exploring the Outer Planets 2012 ISBN: 978-1-4419-9747-0 Astronauts for Hire: The Emergence of a Commercial Astronaut Corps 2012 ISBN: 978-1-4614-0519-1 Pulling G: Human Responses to High and Low Gravity 2013 ISBN: 978-1-4614-3029-2 SpaceX: Making Commercial Spacefl ight a Reality 2013 ISBN: 978-1-4614-5513-4 E r i k S e e d h o u s e Suborbital Industry at the Edge of Space Dr Erik Seedhouse, M.Med.Sc., Ph.D., FBIS Milton Ontario Canada SPRINGER-PRAXIS BOOKS IN SPACE EXPLORATION ISBN 978-3-319-03484-3 ISBN 978-3-319-03485-0 (eBook) DOI 10.1007/978-3-319-03485-0 Springer Cham Heidelberg New York Dordrecht London Library of Congress Control Number: 2013956603 © Springer International Publishing Switzerland 2014 This work is subject to copyright. -
History of Space Commercialization
Commercial Market Outreach Plan for the International Space Station Report presented to: NASA Headquarters Report presented by: Equals Three Communications® and Booz Allen Hamilton February, 2002 THIS PAGE BLANK 2 Table of Contents Preface............................................................................................................ 7 Organization of the Report ....................................................................... 8 Executive Summary ..................................................................................... 11 Overview ................................................................................................ 11 Communication Strategy ........................................................................ 12 Target Industries ..................................................................................... 14 Target Audiences ................................................................................... 15 The Communication Program ................................................................ 15 Preparatory Steps .................................................................................. 20 Chapter 1: Background ................................................................................ 25 Commercial Development of Space ....................................................... 25 Space Commercialization and the ISS ................................................... 27 Policies and Procedures ....................................................................... -
A Space Industry Perspective: Tech Trends 2019
Tech Trends 2019 l Deloitte Insights Tech Trends 2019 Space industry perspective Space technologies have a long history with disruption. The last decade has seen widespread change— for example, governments and other public entities historically played a driving role in space research and services, yet tomorrow’s disruptive space technologies increasingly will be driven by commercial forces. And the future will bring additional disruption in the areas of human spaceflight, in-space manufacturing, and next-generation communications. The combination of emerging technologies, new operating models, Organizations should look beyond the digital frontier—toward and other innovative concepts can accelerate the diffusion of space a future state in which transformation occurs across all mission technologies across multiple economies and sectors: intelligent portfolios and operating organizations. interfaces that integrate launch-range data into the National Airspace System; blockchain applications that validate remote As industry and government leaders work to reshape their sensing data; AI and machine learning applied to space science organizations, acquisition processes, and missions to take advantage missions. These and other advances can help produce substantial of new digital capabilities, they will require fresh, focused, sector- value that extends beyond any one organization. relevant insights. Begin here, with this report that provides a timely perspective on Deloitte’s Technology Trends 2019: Beyond the digital In the face of the changes ahead, it is not enough to simply plan frontier, focused specifically on the trends affecting the operators for digital transformation and assume that success will follow. and users of space systems. Macro technology forces at work Nine technology forces (cloud, analytics, Getting started Trends in action experience, blockchain, cognitive, digital • Learn from history. -
Space for Agriculture Development and Food Security Use of Space Technology Within the United Nations System
UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS Space for Agriculture Development and Food Security Use of Space Technology within the United Nations System UNITED NATIONS Contents Foreword 1 Background 2 United Nations Office for Outer Space Affairs (UNOOSA) 3 THEMATIC AREAS Agricultural research and development 5 Biodiversity 7 Desertification 8 Drought 11 Floods 14 Fisheries and aquaculture 17 Irrigation and water 18 Land-use mapping 21 Managing, mitigating and preparing for disasters 24 Monitoring agricultural production 26 Vegetation fires 28 Weather monitoring and forecasting 30 Acronyms and abbreviations 31 Contributors 32 COPYRIGHT • DISCLAIMER page i www.unoosa.org UNITED NATIONS CONVENTIONS, ENTITIES AND PROGRAMMES RELATED TO APPLICATIONS OF SPACE TECHNOLOGY FOR AGRICULTURE Convention on Biological Diversity (CBD) 6 Convention to Combat Desertification (UNCCD) 6 Economic Commission for Africa (ECA) 9 Economic Commission for Latin America and the Caribbean (ECLAC) 10 Economic and Social Commission for Asia and the Pacific (ESCAP) 12 Economic and Social Commission for Western Asia (ESCWA) 13 Food and Agriculture Organization of the United Nations (FAO) 15 International Atomic Energy Agency (IAEA) 16 United Nations Educational, Scientific and Cultural Organization (UNESCO) 19 United Nations Environment Programme (UNEP) 20 United Nations Office for Disaster Reduction (UNISDR) 22 United Nations Institute for Training and Research/Operational Satellite Applications Programme (UNITAR/UNOSAT) 23 United Nations Platform for Space-based Information for Disaster Management and Emergency Response (UN-SPIDER) 25 United Nations Programme on Space Applications 27 World Food Programme (WFP) 29 World Meteorological Organization (WMO) 29 page ii Foreword Food security and proper nutrition have become pressing global challenges, and the interrelated targets of ending hunger, achieving food security and improved nutrition, and promoting sustainable agriculture have been recognized collectively as a core sustainable development goal. -
The Soviet Space Research Program
72 THE SOVIET SPACE.RESEARCHPROGRAM . MONOGRAPH III f ORGANEATION; PLANNING, AND CONTROL CIA/SI 3759 27 August 1959 CENTPAL INTELLIGENCE AGENCY ,' OFFICE OF SCIENTIFIC INTELLIGENCE I I CO LO57 7.5 1 J .. .. WARNING T'WJ material contoins information affecting the National Defense o! the Unlted State8 within the meaning of the espionaoe laws, Title 18, USC, Becs. 799 and 794, the trans- mindon or revelatim of which in any manner to an nnauthorlmd person la prahlbrted by law. I . .. I ,.. *,_. ... .. I CO 1,O 5 7 7,5 1 8 Scientific Intelligence Report THE SOVIET SPACE RESEARCH PROGRAM MONOGRAPH 111 ORGANIZATION, PLANNING, AND CONTROL NOTICE._ The conclusions, judgments, and optnionS contained in this finished intelligence report are based on extensive scientipc intelligence research and n?pressnt the final and consid- et& views of the Ome of Scientijk Intelli- pence. * CIA/SI 37-59 27 August 1959 CENTRAL INTELLIGENCE AGENCY OFFICE OF SCIENTIFIC INTELLIGENCE CO 20 57 7.5 1 PREFACE The intelligence information presented in this monograph covers the period from October 1057 to 15 May 1050 and is based on open literature and classified repor@. This study, which is made to determine the organization, planning, and control of the Soviet apace research program and to assess the impact of these factors on future Soviet space research,is one of 12 studies on the Soviet space research program. Monographs XI through XII are designed to support the conclusions found in Monograph I, an overall evaluation of the program, which will be published last. Monographs on the Soviet Space Resesrch Program: IEstimate 1050-74 VII Telemetry, Communica- tiom, and Reconnais- I1 Objectives sance Instrumentation IV Space,Vehicles X Space Biology and As- trobiology V Propulsion Systems XI Astronomical Aspects XII Current Status of Prog- VI Guidance and Control ress CO LO5 7 7.5 1 CONTENTS Page PREFACE. -
Human Adaptation and Safety in Space
SICSA SPACE ARCHITECTURE SEMINAR LECTURE SERIES PART II : HUMAN ADAPTATION AND SAFETY IN SPACE www.sicsa.uh.edu LARRY BELL, SASAKAWA INTERNATIONAL CENTER FOR SPACE ARCHITECTURE (SICSA) GERALD D.HINES COLLEGE OF ARCHITECTURE, UNIVERSITY OF HOUSTON, HOUSTON, TX The Sasakawa International Center for SICSA routinely presents its publications, Space Architecture (SICSA), an research and design results and other organization attached to the University of information materials on its website Houston’s Gerald D. Hines College of (www.sicsa.uh.edu). This is done as a free Architecture, offers advanced courses service to other interested institutions and that address a broad range of space individuals throughout the world who share our systems research and design topics. In interests. 2003 SICSA and the college initiated Earth’s first MS-Space Architecture This report is offered in a PowerPoint format with degree program, an interdisciplinary 30 the dedicated intent to be useful for academic, credit hour curriculum that is open to corporate and professional organizations who participants from many fields. Some wish to present it in group forums. The document students attend part-time while holding is the second in a series of seminar lectures that professional employment positions at SICSA has prepared as information material for NASA, affiliated aerospace corporations its own academic applications. We hope that and other companies, while others these materials will also be valuable for others complete their coursework more rapidly who share our -
Is It the First Use of the Word Astrobiology ? Author
Title : Is it the first use of the word Astrobiology ? Author : Danielle Briot Adress : Observatoire de Paris 61 avenue de l’Observatoire 75014 Paris France tel : 33(0)1 40 51 22 39 and 33(0)1 45 07 78 57 [email protected] running title : First use of the word Astrobiology ? 1 Abstract The research of life in Universe is a ancient quest that has taken different forms over the centuries. It has given rise to a new science, which is normally referred as Astrobiology. It is interesting to research when this word was used for the first time and when this science developed to represent the search for life in Universe as is done today. There are records of the usage of the word "Astrobiology" as early as 1935, in an article published in a French popular science magazine. Moreover this article is quite remarkable because its portrayal of the concept of the subject is very similar to that considered today. The author of this paper was Ary J. Sternfeld (1905 - 1980), who was ortherwise known as a poorly respected great pioneer of astronautics. We provide a brief description of his life, which was heavily influenced by the tragic events of the 20th century history, from Poland and France to Russia. He was a prolific scientific writer who wrote a number of very successful scientific books and papers. Keywords : History – Pioneers 2 1. Introduction The question of the life in the Universe, in relation with the question of the multiplicity of worlds, is very ancient and probably dates back to Greek philosophers. -
The Ethics of Animal Research – Teacher Notes
The Ethics of Animal Research – Teacher Notes The previous lesson showed the extensive use of animals in the early days of space research and even today to further our understanding of the space environment. This raises important questions about the ethics of using animals in research. The use of animals in scientific experimentation has always been, and will always be a controversial subject. It is however an unavoidable fact that without animal research we would know far less about biology, diseases and medical conditions that affect humans and other animals. While researchers agree that animals should only be used when there is no known alternative and they should be treated with humane respect to avoid suffering, the scientific community continue to agree that the historical use of animals in research has allowed the development of medical treatment, surgical techniques, vaccines and the advancement of science in other areas. As we know animals were used extensively to serve as surrogates for human beings in the early days of spaceflight to learn vital information about the environment. In recent times, although animals continue to be used in space research, valid arguments about animal suffering have led to great improvements in their treatment. It is estimated that between 50 and 100 million animals are used in research experiments every year. Animals used in testing come from a variety of sources. While many animals, particularly worms and rats, may be purpose bred for testing other animals are still caught in the wild. Opponents to animal testing argue that it is cruel and unnecessary, that the results never reliably predict the reaction of human physiology and that animals have the same right as humans not to be used for experimentation. -
Space Industry
Your future in…. Space industry Introduction Our daily lives are influenced by what happens in space, much more so than we realise. The research from the space industry cascades down, affecting a wide range of technologies. It is estimated that up to 100,000 skilled jobs in the space sector will be created in the next 15 years. With such a positive outlook the opportunities for graduates look set to rise. While the great majority of roles are in science and “The space sector is growing rapidly technology, there are also opportunities in areas and society is increasingly such as law, policy, insurance, education, dependent on it; the possibilities manufacturing and tourism. for STEM graduates are limitless The industry is essentially split in two: upstream and it's a fantastic feeling to work and downstream. Upstream work is focused on in an area on the edge of human sending objects into space and space exploration, exploration.” Dr Ashley Cooke, while downstream utilises the research and Galileo Programme Manager, UK technology from upstream in a range of different Space Agency applications. Downstream is where greatest growth in the sector comes from and where the greatest number of opportunities are. The industry needs people who can translate upstream research into downstream applications. Work experience and skills development The Young Graduate Trainees (YGT) programme at the European Space Agency (ESA) is a year-long placement for Masters graduates, advertised in November. About 80 posts are available, both technical and non-technical. Current Master’s students can also apply for ESA’s student placements, lasting 3-6 months. -
The Soviet Space Program
C05500088 TOP eEGRET iuf 3EEA~ NIE 11-1-71 THE SOVIET SPACE PROGRAM Declassified Under Authority of the lnteragency Security Classification Appeals Panel, E.O. 13526, sec. 5.3(b)(3) ISCAP Appeal No. 2011 -003, document 2 Declassification date: November 23, 2020 ifOP GEEAE:r C05500088 1'9P SloGRET CONTENTS Page THE PROBLEM ... 1 SUMMARY OF KEY JUDGMENTS l DISCUSSION 5 I. SOV.IET SPACE ACTIVITY DURING TfIE PAST TWO YEARS . 5 II. POLITICAL AND ECONOMIC FACTORS AFFECTING FUTURE PROSPECTS . 6 A. General ............................................. 6 B. Organization and Management . ............... 6 C. Economics .. .. .. .. .. .. .. .. .. .. .. ...... .. 8 III. SCIENTIFIC AND TECHNICAL FACTORS ... 9 A. General .. .. .. .. .. 9 B. Launch Vehicles . 9 C. High-Energy Propellants .. .. .. .. .. .. .. .. .. 11 D. Manned Spacecraft . 12 E. Life Support Systems . .. .. .. .. .. .. .. .. 15 F. Non-Nuclear Power Sources for Spacecraft . 16 G. Nuclear Power and Propulsion ..... 16 Te>P M:EW TCS 2032-71 IOP SECl<ET" C05500088 TOP SECRGJ:. IOP SECREI Page H. Communications Systems for Space Operations . 16 I. Command and Control for Space Operations . 17 IV. FUTURE PROSPECTS ....................................... 18 A. General ............... ... ···•· ................. ····· ... 18 B. Manned Space Station . 19 C. Planetary Exploration . ........ 19 D. Unmanned Lunar Exploration ..... 21 E. Manned Lunar Landfog ... 21 F. Applied Satellites ......... 22 G. Scientific Satellites ........................................ 24 V. INTERNATIONAL SPACE COOPERATION ............. 24 A. USSR-European Nations .................................... 24 B. USSR-United States 25 ANNEX A. SOVIET SPACE ACTIVITY ANNEX B. SOVIET SPACE LAUNCH VEHICLES ANNEX C. SOVIET CHRONOLOGICAL SPACE LOG FOR THE PERIOD 24 June 1969 Through 27 June 1971 TCS 2032-71 IOP SLClt~ 70P SECRE1- C05500088 TOP SEGR:R THE SOVIET SPACE PROGRAM THE PROBLEM To estimate Soviet capabilities and probable accomplishments in space over the next 5 to 10 years.' SUMMARY OF KEY JUDGMENTS A. -
Six Ways Space Technologies Benefit Life on Earth
Global Future Council on Space Technologies 2019-2020 Six ways space technologies benefit life on Earth BRIEFING PAPERS SEPTEMBER 2020 Cover: Unsplash/Daniel Ola Contents 3 Space technologies for the SDGs 5 Climate: Monitor, understand, prepare and act 7 Space technologies enable connectivity 9 A more secure world through space 11 Promoting responsible business through space 13 Space fuels the global economy 15 Council members – 2019-2020 term 16 References and resources The space sector’s value to life on Earth is difficult to overstate. Satellites that circle the globe provide the most accurate weather reports and warn us of impending storms; they monitor our climate every day, helping to track increasing rates of climate change and its effects, such as rising seas and changing moisture levels, wildfires and atmospheric changes; they connect millions of people and have the ability to connect billions more who currently lack access in rural areas; they help us see and stop illegal fishing and deforestation; and help to ensure transparency and security of states by monitoring and verifying actors’ behaviour. Scientific research that takes place in orbit is helping to push the frontiers of our understanding of health and material science, robotics and other technologies. The direct economic impact of the sector is important and growing, but it is the indirect impact that highlights how critical space is for our life on Earth. Although hostile, the space environment is also fragile, specifically in key orbits where ensuring sustainable behaviour and operations will be essential for this invaluable resource to be secured for future generations.