Aquatic & Shoreline Plant Selection

Total Page:16

File Type:pdf, Size:1020Kb

Aquatic & Shoreline Plant Selection HOME & GARDEN INFORMATION http://www.clemson.edu/extension/hgic HGIC 1709 1-888-656-9988 CENTER Aquatic & Shoreline Plant Selection Aquatic plant selection is extremely important in invasive when planted under ideal conditions. These the development of aquatic pools. You must have plants should be planted in pots, if they are used at some degree of balance between plants and animals all. Other plants are considered to be nuisance in your pool so that the water remains clear and aquatic species. major problems with maintenance and filters do not arise. Plants are very important in pools. They The following plants are listed with state and produce oxygen through photosynthesis, which federal agencies as illegal plants: allows maximum fish health. Plants also take up • African oxygenweed (Lagarosiphon major) excess nutrients, particularly nitrogen and • Alligatorweed (Alternanthera philoxeroides) phosphorus wastes from the fish. In certain • Ambulia (Limnophila sessiliflora) situations, ornamental pools can be stocked with • Arrowhead (Sagittaria sagittifolia) only plants, with excellent results. • Arrow-leaved monochoria (Monochoria hastata) While numerous aquatic plants are available for • Brazilian elodea (Egeria densa) water gardens, it is important to consider certain • Common reed (Phragmites communis) factors when selecting plants for a water garden. • Duck lettuce (Otellia alismoides) These factors include water depth, sunlight and how • Eurasian watermilfoil (Myriophyllum each species relates to its surroundings. You can spicatum) obtain most plants from local garden centers or • Exotic burreed (Sparganium erectum) catalogs, but in many instances you can harvest • Giant salvinia (Salvinia auriculata, S. wild plants for use in garden ponds with proper biloba, S. herzogii, S. molesta) permission. • Hydrilla (Hydrilla verticillata) • Mediterranean clone of caulerpa (Caulerpa Four general types of plants are available for taxifolia) aquatic use: • Melaleuca (Melaleuca quinquenervia) • Submerged plants, also called oxygenating • Miramar weed (Hygrophila polysperma) plants. • Mosquito fern (Azolla pinnata) • Shallow water or bog plants, which grow • along the water’s edge in natural Pickerel weed (Monochoria vaginalis) environments. • Rooted water hyacinth (Eichhornia azurea) • Floating plants, which are rooted in the • Slender naiad (Najas minor) bottom substrate and have floating leaves • Water chestnut (Trapa natans) and flowers. • Water lettuce (Pistia stratiotes) • True floating plants, which float on the • Water hyacinth (Eichhornia crassipes) surface of the water and whose roots are • Water primrose (Ludwigia uruguayensis) suspended in the water. • Water spinach (Ipomoea aquatica) • Wetland nightshade (Solanum tampicense) Two warnings should be heeded when selecting aquatic plants. Certain plants can become very The oxygenating plants are submerged plants, Floating Plants (deep-rooted aquatic plants with which many individuals often overlook. You can surface-floating leaves): plant them directly into the bottom, in pots, or • Hardy water lilies (Nymphaea species and simply weigh them down on the bottom. These cultivars) plants offer excellent fish habitat and are major • Tropical water lilies (Nymphaea species and sources of oxygen in pools. cultivars, such as N. capensis, N. colorata, N. gigantea, N. lotus, and N. Shallow water and bog plants work best in rubra) containers. These plants are rooted in the bottom, • Asian lotus (Nelumbo nucifera)** and grow above the water surface and generally have American lotus (Nelumbo lutea)** very showy flowers. They include cannas, irises, pickerel rush and other flowering aquatic plants. Shoreline, Shallow Water or Bog Plants: • Sweet flag (Acorus calamus) Most water gardens utilize floating plants, which • Japanese rush, Grassy-leaved sweet flag are rooted in the bottom. Examples of these plants (Acorus gramineus) are tropical water lilies, hardy water lilies, • Water plantain (Alisma plantago-aquatica) watershields and lotus. Tropical lilies are usually • Variegated striped rush (Baumea rubiginosa the best flowering plants. Some are day-blooming ‘Variegata’) while others are night-blooming. When designing • Native water canna (Canna flaccida) your pool, take into account when you will be • Gray canna (Canna glauca) viewing the pool. Tropical lilies cannot withstand • cold temperatures and will either have to be grown Black leaf taro (Colocasia esculenta as annuals or brought indoors during winter in ‘Illustris’) South Carolina. Hardy water lilies are native to the • Southern swamp lily (Crinum americanum) area, and a number of varieties are available. The • Umbrella palm (Cyperus alternifolius) blooms are not as dramatic as the tropical water • Zimbabwe umbrella plant (Cyperus lilies, but they survive outdoors during the winter. involucratus) The lotus can be a beautiful plant, but since it is • Egyptian paper reed (Cyperus papyrus) known to spread rapidly and become invasive in • Water bamboo (Dulichium arundinaceum) natural ponds and lakes, it should be planted in pots. • Star sedge (Dichromena colorata) Watershield is also invasive and should be planted • Creeping burhead (Echinodorus cordifolius) in pots. • Horsetail (Equisetum hyemale) • Variegated water grass (Glyceria maxima True floating plants are generally not recommended var. variegata) in pools in South Carolina. They are the most • Hardy white butterfly ginger (Hedychium invasive weed group. coronarium) • Scarlet swamp hibiscus (Hibiscus coccineus) The following Aquatic plants are recommended for • Swamp rose mallow (Hibiscus moscheutos) South Carolina*: • Variegated spider lily (Hymenocallis caribaea ‘Variegata’) Submerged Aquatic Plants ("oxygenators" or • Spider lily (Hymenocallis caroliniana) oxygen-producing plants): • Blue iris (Iris versicolor) • Gray fanwort (Cabomba caroliniana)** • Japanese iris (I. ensata) • Coontail (Ceratophyllum demersum)** • Siberian iris (I. siberica) • Tape grass or Eel grass (Vallisneria • Yellow water iris (I. pseudoacorus) americana) • Corkscrew rush (Juncus effusus ‘Spiralis’) • Parrot’s feather (Myriophyllum • aquaticum)** Water mint (Mentha aquatica) • • Underwater banana plant (Nymphoides Bog bean (Menyanthes trifoliata) aquatica) • Lavender musk (Mimulus ringens) • Little floating heart (N. cordata) • Water forget-me-not (Myosotis scorpioides) • Flamingo plant (Oenanthe javanica regulate the importation of non-native aquatic ‘Flamingo’) species into the state and should be contacted if any • Golden club (Orontium aquaticum) plants not mentioned in this list are to be brought • Water arum (Peltandra virginica) into the state. Contact Chris Page at • Pickerel rush (Pontederia cordata) [email protected]. • Giant pickerel rush (Pontederia cordata var. lancifolia) **May be invasive. • Lesser spearwort (Ranunculus flammula) Prepared by Jack M. Whetstone, Extension Aquatic Specialist; D. • Common arrowhead or Duck potato Lamar Robinette, Extension Aquatic Specialist; and Bob Polomski, (Sagittaria latifolia) Extension Consumer Horticulturist, Clemson University. (Revised 02/00.) • Double arrowhead (Sagittaria sagittifolia ‘Flore Pleno’) This information is supplied with the understanding that no • Lizard’s tail (Saururus cernuus) discrimination is intended and no endorsement by the Clemson • Club rush (Schoenoplectus lacustris subsp. University Cooperative Extension Service is implied. All recommendations are for South Carolina conditions and may not tabernaemontani) apply to other areas. Use pesticides only according to the directions • Thalia (Thalia dealbata) on the label. All recommendations for pesticide use are for South Carolina only and were legal at the time of publication, but the status • Red-stemmed thalia (Thalia geniculata f. of registration and use patterns are subject to change by action of ruminoides) state and federal regulatory agencies. Follow all directions, precautions and restrictions that are listed. • Graceful cattail (Typha laxmannii) *The South Carolina Department of Natural Resources Aquatic Nuisance Species Program helps The Clemson University Cooperative Extension Service offers its programs to people of all ages, regardless of race, color, sex, religion, national origin, disability, political beliefs, sexual orientation, marital or family status and is an equal opportunity employer. Clemson University Cooperating with U.S. Department of Agriculture, South Carolina Counties, Extension Service, Clemson, South Carolina. Issued in Furtherance of Cooperative Extension Work in Agriculture and Home Economics, Acts of May 8 and June 30, 1914 Public Service Activities .
Recommended publications
  • Phytochemical Screening of Tubers and Leaf Extracts of Sagittaria Sagittifolial.:Newsa (Arrowhead)
    International Journal of Scientific and Research Publications, Volume 7, Issue 9, September 2017 431 ISSN 2250-3153 Phytochemical Screening of Tubers and Leaf extracts of Sagittaria sagittifoliaL.:Newsa (Arrowhead) Anita Rao and V. N. Pandey Experimental Botany and Nutraceutical Laboratory, Department of Botany,DDU Gorakhpur University, Gorakhpur - 273009, (U.P.) India [email protected]* Abstract:The present investigation deals with the preliminary phytochemical estimation of bio-functional partsi.e.Leaves and Tubers. Aquatic starchy tuberous plant Sagittariasagittifolia L. belonging to family Alismataceae, commonly known as Arrowhead. The biofunctional parts were extracted with five different organic solvents viz. Ethanol, Methanol, Acetone, Petroleum Ether, Chloroform and Distilled Water for their primary and secondary phytochemicals and their active constituents like Tannin, Saponins, Flavonoids, Phenols, Steroids, Glycosides, Protein, Amino-acids, Starch, Reducing sugars and Alkaloids. The results show the 31.1±0.08 extract of leaf and 35.7±0.15extract of tuber shows higher extractive value. The presence ofmaximum phytochemicals viz. glycosides, steroids, tannins, saponins, terpenoids, flavonoids, carbohydrates, alkaloids, and phenols in ethanol while minimum presence in acetone followed by aqueous.Thesephytochemicalsare useful in medicinal and therapeutic system as well as in traditional and modern medicinal system. Key Words: Sagittariasagittifolia. Phytochemicals, Extractive value, Therapeutics. Introduction Edible aquatic plants constitute an additional source of food and vegetable. They have high medicinal properties. Sagittaria sagittifolia L., a beautiful fresh water ethno-nutraceutical plant growing on the side bank of watershed, river, ponds, nullas and muddy substrata. The plant belongs to family Alismataceae native of Asia and Europe, commonly known as Arrowhead and Newsa an indigenous plant of North Eastern Terai Region of U.P.
    [Show full text]
  • CORRELATION BETWEEN METABOLITE PROFILE and PHYTOCHEMICAL CHARACTERISTICS of Ipomoea Aquatica Forssk
    UNIVERSITI PUTRA MALAYSIA CORRELATION BETWEEN METABOLITE PROFILE AND PHYTOCHEMICAL CHARACTERISTICS OF Ipomoea aquatica Forssk. WITH ITS ANTIOXIDANT AND α-GLUCOSIDASE INHIBITORY ACTIVITIES USING NMR-BASED METABOLOMICS UMAR LAWAL FSTM 2016 4 CORRELATION BETWEEN METABOLITE PROFILE AND PHYTOCHEMICAL CHARACTERISTICS OF Ipomoea aquatica Forssk. WITH ITS ANTIOXIDANT AND α-GLUCOSIDASE INHIBITORY ACTIVITIES USING NMR-BASED METABOLOMICS UPM By UMAR LAWAL COPYRIGHT Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy © March 2016 All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia. Copyright © Universiti Putra Malaysia. UPM COPYRIGHT © DEDICATION This thesis is dedicated to my parents and family UPM COPYRIGHT © Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Doctor of Philosophy CORRELATION BETWEEN METABOLITE PROFILE AND PHYTOCHEMICAL CHARACTERISTICS OF Ipomoea aquatica Forssk. WITH ITS ANTIOXIDANT AND α-GLUCOSIDASE INHIBITORY ACTIVITIES USING NMR-BASED METABOLOMICS By UMAR LAWAL March 2016 UPM Chairman : Associate Professor Faridah Abas, PhD Faculty : Food Science and Technology Ipomoea aquatica Forssk. (morning glory) is a green leafy vegetable that is rich in minerals, proteins, vitamins, amino acids and secondary metabolites. The aims of the study were to discriminate Ipomoea extracts by 1H NMR spectroscopy in combination with chemometrics method and to determine their antioxidant and α-glucosidase inhibitory activities.
    [Show full text]
  • MSRP Appendix E
    Appendix E. Exotic Plant Species Reported from the South Florida Ecosystem. Community types are indicated where known Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Abelmoschus esculentus Abrus precatorius X X X X X X X X X X X X Abutilon hirtum Abutilon theophrasti Acacia auriculiformis X X X X X X X X X Acacia retinoides Acacia sphaerocephala Acalypha alopecuroidea Acalypha amentacea ssp. wilkesiana Acanthospermum australe Acanthospermum hispidum Achyranthes aspera var. X aspera Achyranthes aspera var. pubescens Acmella pilosa Page E-1 Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Acrocomia aculeata X Adenanthera pavonina X X Adiantum anceps X Adiantum caudatum Adiantum trapeziforme X Agave americana Agave angustifolia cv. X marginata Agave desmettiana Agave sisalana X X X X X X Agdestis clematidea X Ageratum conyzoides Ageratum houstonianum Aglaonema commutatum var. maculatum Ailanthus altissima Albizia julibrissin Albizia lebbeck X X X X X X X Albizia lebbeckoides Albizia procera Page
    [Show full text]
  • Appendix 9.2 Plant Species Recorded Within the Assessment Area
    Appendix 9.2: Plant Species Recorded within the Assessment Area Agricultural Area Storm Water Fishponds Mudflat / Native/ Developed Distribution in Protection Village / Drain / Natural Modified and Coastal Scientific Name Growth Form Exotic to Area / Plantation Grassland Shrubland Woodland Marsh Mangrove Hong Kong (1) Status Orchard Recreational Watercourse Watercourse Mitigation Water Hong Kong Wasteland Dry Wet Pond Ponds Body Abrus precatorius climber: vine native common - + subshrubby Abutilon indicum native restricted - ++ herb Acacia auriculiformis tree exotic - - ++++ +++ + ++++ ++ +++ Acacia confusa tree exotic - - ++++ + +++ ++ ++ ++++ ++ ++++ Acanthus ilicifolius shrub native common - + ++++ Acronychia pedunculata tree native very common - ++ Adenosma glutinosum herb native very common - + + Adiantum capillus-veneris herb native common - + ++ ++ Adiantum flabellulatum herb native very common - + +++ +++ shrub or small Aegiceras corniculatum native common - +++ tree Aeschynomene indica shrubby herb native very common - + Ageratum conyzoides herb exotic common - ++ ++ ++ ++ ++ + Ageratum houstonianum herb exotic common - ++ + Aglaia odorata shrub exotic common - +++ + +++ + Aglaonema spp. herb - - - + + rare (listed under Forests and Ailanthus fordii (3) small tree native + Countryside Ordinance Cap. 96) Alangium chinense tree or shrub native common - ++ + ++ + +++ + Albizia lebbeck tree exotic - - +++ Alchornea trewioides shrub native common - + Aleurites moluccana tree exotic common - +++ ++ ++ ++ Allamanda cathartica climbing
    [Show full text]
  • Effects of Water Spinach Ipomoea Aquatica Cultivation on Water Quality and Performance of Chinese Soft-Shelled Turtle Pelodiscus Sinensis Pond Culture
    Vol. 8: 567–574, 2016 AQUACULTURE ENVIRONMENT INTERACTIONS Published September 30 doi: 10.3354/aei00198 Aquacult Environ Interact OPENPEN ACCESSCCESS Effects of water spinach Ipomoea aquatica cultivation on water quality and performance of Chinese soft-shelled turtle Pelodiscus sinensis pond culture Wei Li1,2, Huaiyu Ding3, Fengyin Zhang4, Tanglin Zhang1, Jiashou Liu1, Zhongjie Li1,* 1State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 2School of Aquatic and Fishery Sciences, University of Washington, Box 355020, Seattle, Washington 98195-5020, USA 3Jiangsu Engineering Laboratory for Breeding of Special Aquatic Organisms, Huaiyin Normal University, Huaian 223300, China 4College of Life Sciences, Jianghan University, Wuhan 430056, China ABSTRACT: The Chinese soft-shelled turtle Pelodiscus sinensis is a highly valued freshwater spe- cies cultured in China. A 122 d experiment was conducted to assess the effects of water spinach Ipomoea aquatica cultivation in floating beds on water quality, and growth performance and eco- nomic return of P. sinensis cultured in ponds. Two treatments, each in triplicate, with and without I. aquatica cultivation were designed. Results showed that the levels of total ammonia nitrogen (TAN), total nitrogen (TN), total phosphorus (TP), chlorophyll a (chl a) and turbidity in treatments with I. aquatica cultivation (IAC) were significantly (p < 0.05) lower than those in treatments with- out I. aquatica (control). Mean TN and TP concentrations in the IAC treatment were 27.9 and 42.5%, respectively, lower than in the control treatment at the end of the experiment. The pres- ence of I. aquatica also has a positive effect on the performance of P.
    [Show full text]
  • Technical Working Party for Vegetables Fifty-Third Session Seoul, Republic of Korea, May 20 to 24, 2019 REVISED REPORT Adopted B
    E International Union for the Protection of New Varieties of Plants Technical Working Party for Vegetables TWV/53/14 Rev. Fifty-Third Session Original: English Seoul, Republic of Korea, May 20 to 24, 2019 Date: August 30, 2019 REVISED REPORT Adopted by the Technical Working Party for Vegetables (TWV) Disclaimer: this document does not represent UPOV policies or guidance Opening of the session 1. The Technical Working Party for Vegetables (TWV) held its fifty-third session in Seoul, Republic of Korea, from May 20 to 24, 2019. The list of participants is reproduced in Annex I to this report. 2. The session was opened by Ms. Romana Bravi (Italy), Chairperson of the TWV, who welcomed the participants and thanked the Republic of Korea for hosting the TWV session. 3. The TWV was welcomed by Mr. Choi Byungkook, General Director, International Development and Cooperation Division, Ministry of Agriculture, Food and Rural Affairs (MAFRA). 4. The TWV received a presentation on plant variety protection in the Republic of Korea by Mr. Pang Munjin, Director, Plant Variety Protection Division, Korea Seed and Variety Service (KSVS). A copy of the presentation is provided in Annex II to this report. Adoption of the agenda 5. The TWV adopted the agenda as presented in document TWV/53/1 Rev. Short Reports on Developments in Plant Variety Protection (a) Reports on developments in plant variety protection from members and observers 6. The TWV noted the information on developments in plant variety protection from members and observers, provided in document TWV/53/3 Prov. The TWV noted that reports submitted to the Office of the Union after May 14, 2019, would be included in the final version of document TWV/53/3.
    [Show full text]
  • Nutritional Value of Cambodian Crops
    Nutritional Value of Common Fruits & Vegetables Grown in Cambodia Note: Recent research in Cambodia and other developing countries shows that the most common micro-nutrient deficiencies (especially among women and children) are: anemia (lack of iron), night blindness (lack of enough Vitamin A), and goiter/iodine deficiency (although in Cambodia they are promoting iodized salt, and a lot of people now use it). Additionally, protein deficiency is always a leading factor in severe malnutrition. See page 8 for recommended daily intakes. Nutritional value of foods is based on the USDA database. Note that this is the value per 100 grams of raw, uncooked foods (unless otherwise noted); keep in mind that most vegetables lose nutrients the longer you cook them. English Khmer Common Scientific Name Nutritional value per 100 grams (raw/uncooked) Image Common Name Name Energy Protein Vit. A Vit. C Iron Other significant (kcal) (g) (IU) (mg) (mg) nutrients Allium cepa bulb onion ខ្ឹមបរំង 38 1.2 0 11 .8 k'teum barang 215mg Calcium Amaranthus tricolor leafy amaranth ផ្ី 23 46 2,917 43.3 2.32 p'tee 611 mg Potassium peanut Arachis សែណ្កដី 570 25 3 1 3.8 groundnut son-dyk die Page 1 Scientific Name English Khmer Energy Protein Vit. A Vit. C Iron Other nutrients Artocarpus jackfruit ខ្ុរ 95 1.72 110 13.7 .23 heterophyllus k'no wax gourd Benincasa hispida wintermelon ្តឡច 13 .4 10 13 .4 traa-lak fuzzy bourd Brassica juncea mustard greens ៃស្ៅខ្ 22 2.2 9,900 130 spy k'mao 135 mg Calcium Brassica oleracea, var.
    [Show full text]
  • Convolvulaceae) in Southern Nigeria
    Annals of West University of Timişoara, ser. Biology, 2018, vol. 21 (1), pp.29-46 COMPARATIVE MORPHOLOGY OF LEAF EPIDERMIS IN THE GENUS IPOMOEA (CONVOLVULACEAE) IN SOUTHERN NIGERIA Kehinde Abiola BOLARINWA 1, Oyetola Olusegut OYEBANJI 2, James Dele OLOWOKUDEJO 2 1Biology Unit, Distance Learning Institute, University of Lagos, Akoka, Lagos, Nigeria 2Department of Botany, University of Lagos, Nigeria *Corresponding author e-mail: [email protected] Received 15 March 2018; accepted 8 May 2018 ABSTRACT Leaf epidermal morphology of eight species of Ipomoea found in Southern Nigeria has been studied using light microscope. Epidermal characters such as stomata type, epidermal cell type, anticlinal wall patterns, trichomes, presence of glands, stomata number and size, epidermal cell number and size, cell wall thickness, gland number and gland length vary within and amongst the species. The cells of adaxial and abaxial epidermises are polygonal or irregular with straight, sinuous or curved anticlinal wall pattern. Stomata are present on both adaxial and abaxial surfaces. Stomata complex is paracytic except in I. asarifolia and I. purpurea where its staurocytic; stomata index is higher on the abaxial side while trichome is absent on the abaxial surface of I. cairica and I. purpurea, likewise on the adaxial surface of I. involucrata. Glands are observed in all the species. Interspecific variation was further revealed in the quantitative micromorphology characters of Ipomoea species studied which was statistically supported at p<0.001 significance level. The taxonomic significance of these features in identification and elucidation of species affinity is discussed. KEY WORDS: Ipomoea, epidermal cell, stomata type, taxonomy, quantitative and qualitative characters.
    [Show full text]
  • Evaluation of Total Phenolic, Flavonoid and Antioxidant Activity of Sagittaria Sagittifolia L
    Anita Rao et al. Int. Res. J. Pharm. 2019, 10 (5) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article EVALUATION OF TOTAL PHENOLIC, FLAVONOID AND ANTIOXIDANT ACTIVITY OF SAGITTARIA SAGITTIFOLIA L. Anita Rao *, Vageshwari and V. N. Pandey Experimental Botany and Nutraceutical LaBoratory, Department of Botany, DDU Gorakhpur University, Gorakhpur - 273009, (U.P.) India *Corresponding Author Email: [email protected] Article Received on: 11/02/19 Approved for puBlication: 25/03/19 DOI: 10.7897/2230-8407.1005168 ABSTRACT The present investigation is a study of the Leaves of Sagittaria sagittifolia L. with respect to potential as antioxidant in relation to their total content of Phenolic and Flavonoids compounds in five different organic solvents. The amounts of total phenols were analyzed with the Folin- Ciocalteu Reagent. Gallic acid was used as a standard compound and the total phenols were expressed as mg/g gallic acid equivalent. The antioxidant activity of extracts were expressed as percentage of DPPH radical inhibition and IC50 values in percentage ranged from 18.86± 0.23 % to 86.65 ± 0.43 % Maximum phenolic content was found in the methanolic extract (36.4± 0.30) where as maximum flavonoids are detected in ethanolic extract (16.60± 0.01). The high contents of phenolic and flavonoids compounds indicated that these compounds contriBute to the antioxidant activity. KEY WORDS: Phenolic, Flavonoid, Antioxidant, Sagittaria sagittifolia L. INTRODUCTION Our present investigation is a study of the Leaves of Sagittaria sagittifolia L. with respect to potential as antioxidant in relation Sagittaria sagittifolia L. (Faimily Alismataceae) commonly to their total content of Phenolic and Flavonoids compounds.
    [Show full text]
  • LR Sagittaria Sagittifolia.Pdf
    Aquatic Plant Old World arrowhead; Giant arrowhead; Hawaii arrowhead I. Current Status and Distribution Sagittaria sagittifolia a. Range Global/Continental Wisconsin Native Range Temperate Europe and Asia1,2 Not recorded in the United States3 Not recorded in Wisconsin Abundance/Range Widespread: Undocumented Not applicable Locally Abundant: Hawaii, Mexico, Cuba, Argentina, New Not applicable Zealand, Australia4,5 Sparse: Undocumented Not applicable Range Expansion Date Introduced: Undocumented Not applicable Rate of Spread: Undocumented Not applicable Density Risk of Monoculture: Can produce up to 236 plants/m2 (7) Undocumented Facilitated By: Undocumented Undocumented b. Habitat Ponds, lakes, canals, swamps, marshes, bogs, reservoirs, rivers, bays, oxbows, rice paddies, coastal pools1,4,5 Tolerance Chart of tolerances: Increasingly dark color indicates increasingly optimal range1,6,7 Preferences Slow-flowing shallow waters4,5,6,7; muddy or loamy substrates4,7; eutrophic conditions7 c. Regulation Noxious/Regulated3: Federal Noxious Weed List; AL, CA, MA, NC, OR, SC, VT Minnesota Regulations: Not regulated Michigan Regulations: Not regulated Washington Regulations: Not regulated Page 1 of 5 Wisconsin Department of Natural Resources – Aquatic Invasive Species Literature Review II. Establishment Potential and Life History Traits a. Life History Perennial, herbaceous, stoloniferous emergent aquatic or wetland plant4,5 Fecundity Undocumented Reproduction Importance of Seeds: Can produce up to 25,000 seeds/m2 (7) Vegetative: Can reproduce vegetatively by tubers1,7 Hybridization Sagittaria x lunata (S. sagittifolia x S. natans)1,8 Overwintering Winter Tolerance: Frost tolerant4,6; can survive temperatures to at least -10°C(6) Phenology: Flowers in mid-summer with seeds ripening through the fall4,6 b. Establishment Climate Weather: Sub-arctic to tropical environments4,5 Wisconsin-Adapted: Likely Climate Change: Undocumented Taxonomic Similarity Wisconsin Natives: High (genus Sagittaria)3 Other US Exotics: High (S.
    [Show full text]
  • Flora of New Zealand Seed Plants
    FLORA OF NEW ZEALAND SEED PLANTS ALISMATACEAE K.A. FORD & P.D. CHAMPION Fascicle 7 – DECEMBER 2020 © Landcare Research New Zealand Limited 2020. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 4.0 International licence Attribution if redistributing to the public without adaptation: "Source: Manaaki Whenua – Landcare Research" Attribution if making an adaptation or derivative work: "Sourced from Manaaki Whenua – Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Ford, Kerry A. (Kerry Alison) Flora of New Zealand : seed plants. Fascicle 7, Alismataceae / K.A. Ford and P.D. Champion. -- Lincoln, N.Z. : Manaaki Whenua Press, 2020. 1 online resource ISBN 978-0- 947525-67-5 (pdf) ISBN 978-0-478-34762-3 (set) 1.Alismataceae -- New Zealand – Identification. I. Champion, P.D. II. Title. III. Manaaki Whenua – Landcare Research New Zealand Ltd. UDC 582.536 (931) DC 584.720993 DOI: 10.7931/jwc3-zg41 This work should be cited as: Ford K.A. & Champion P.D. 2020: Alismataceae. In: Wilton, A.D. (ed.) Flora of New Zealand — Seed Plants. Fascicle 7. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/jwc3-zg41 Date submitted: 12 Jun 2019; Date accepted: 4 Jun 2020; Date published: 2 January 2021 Cover image: Alisma lanceolatum. Flower showing acute petal apices. Contents Introduction..............................................................................................................................................1
    [Show full text]
  • Sublime Sagittaria Derek P.S
    My Green Wet Thumb: Sublime Sagittaria Derek P.S. Tustin Last summer was an interesting one for me. As I’ve both aquarium and bog plants, and equally obvious that they have been used in aquariums for about as long as written here, I expanded into the world of pond gardening. One of the most interesting things to me during my set-up there have been aquariums. But this ease of growth has of the tub and later the pond, was how many plants were also lead to them being a problem. Various species actually suitable for both an aquarium, and for a pond. have been labeled as noxious weeds in several US However, of all the plants that I tried, the one that states, are banned entirely in the Australian state of captured my interest the most, and the one I have found Tasmania, and have become a weed in irrigation systems and drains for crops such as rich in 50 myself thinking about and planning for next year, are the plants in the Sagittaria genus. countries. In the past I have had Sagittaria plants (“sags” as they are The genus name of these plants, Sagittaria, is derived commonly known) in my aquariums. The extent of my from the descriptive word for the shape of the leaves, knowledge was that they were similar in appearance to “sagittate”, which means “arrow-shaped”. They are part of the Alistamaceae family, the water plantain family that plants from the Vallisneria genus (“vals”), and that the way to tell them apart was that vals had a serrated edge that also includes the swordplants of the Echinodorus genus.
    [Show full text]