Physics Monitor

Total Page:16

File Type:pdf, Size:1020Kb

Physics Monitor Physics monitor decay (positron emission) in massive gamma rays were first observed from stars having violent surface activity. the direction of the centre of our More galactic However because these objects are Galaxy in the early 1970s, in the antimatter relatively common in the Galaxy, the vicinity of a "Great Annihilator". radioactive materials, and so the ew maps of gamma rays from resulting positrons, would be NNASA's Compton Gamma Ray distributed throughout the Galaxy, Observatory show evidence of a including the Earth, which is not the previously unknown and unexpected case. A century and its half cloud of antimatter, in the form of Another way positrons might be positrons, extending 3,000 light years created is when matter falls into a hile 1997 is being widely above the centre of our Galaxy. black hole. As matter is sucked into Wcelebrated as the hundredth The classic aroma of positrons is the gravitational pit, its temperature anniversary of the discovery of the the 511 keV gamma radiation increases until it becomes hot electron by J.J. Thomson at produced when positrons and enough to create pairs of positrons Cambridge (see page 6), the 50th electrons annihilate. Such radiation and electrons. This flow may be anniversary of the 1947 discoveries was first observed from the direction intermittent, changing abruptly as the of the pion by Cecil Powell at Bristol of the centre of our Galaxy in the black hole sucks in large fragments and 'V-particles' by George early 1970s, and the new maps were from nearby stars, while the number Rochester and Clifford Butler of expected to show a large cloud of of positrons created by radioactive Patrick Blackett's group in antimatter near the galactic centre decay would be steady over long Manchester draw less attention. and along the plane of the Galaxy, periods of time. J.J. Thomson went on to win the caused by the explosions of young A third possibility is that within the 1906 Nobel Physics Prize. His massive stars. The maps show that last million years this region was the Cambridge contemporaries included gamma ray activity, but also show a site of a massive galactic fireball Owen Richardson (1928 Physics mysterious second cloud of caused by the merger of two neutron Nobel), F.W. Aston (1922 Chemistry antimatter well off the galactic plane. stars. Such events are widely Nobel), C.T.R. Wilson (1927 Physics On NASA's Compton Gamma Ray believed to be responsible for the Nobel), G.P. Thomson (his son, 1937 Observatory, launched in April 1991, enigmatic gamma-ray bursts which Physics Nobel) and Ernest one instrument, the Oriented have baffled astronomers for over Rutherford (1908 Chemistry Nobel). Scintillation Spectrometer twenty years and have recently been After this initial proliferation of talent, Experiment (OSSE), is sensitive to studied by the Compton Gamma Ray it was under Ernest Rutherford, who 511 keV gamma rays. Observatory. took over from Thomson at the The centre of our disc-like Galaxy, Because the Universe appears to Cavendish in 1919, that the about 25,000 light-years away in the contain more matter than antimatter, Laboratory went on to attain the direction of Sagittarius, is normally however, once the positrons are apogee of its fame. obscured by intervening interstellar created it is only a matter of time After Rutherford's death in 1937 the dust and gas. However, this material before they are annihilated. 511 keV Cavendish came under the direction is transparent to gamma rays. of W.L. Bragg, who firmly set the Positrons, and antimatter in laboratory on a new course. This general, are thought to be relatively veered away from nuclear physics rare in the Universe. Positrons could but eventually led to epic discoveries arise through natural radioactive in molecular biology. As products of the Cavendish Laboratory, it was Powell at Bristol An antimatter 'fountain' discovered by NASA's and Blackett at Manchester who Compton Gamma Ray Observatory spews out inherited the valuable Thomson- positrons from the centre of our Galaxy. The Rutherford legacy, and thus the 1947 contours show the fountain superimposed on discoveries of the pion at Bristol and the usual distribution of positrons around the Galactic centre. the V-particles at Manchester can CERN Courier, June 1997 1 Physics monitor Particle century - fifty years ago, in 1947, half a century after the discovery of the electron, Don Perkins, working at London's Imperial College, was the first to observe a clear example of what appeared to be the nuclear capture of a meson, producing a nuclear disintegration. On 17 April, Perkins gave a presentation at CERN on one hundred years of elementary particles. One half of this particle century is spanned by his own contributions. More than anything else, the 1947 discovered electron-positron pair discoveries made physicists realize production, a key prediction of that the subnuclear world was more Dirac's ideas. complex than had been suspected by Cloud chambers played a major looking at everyday nuclei. The role in cosmic ray studies in the discovery of the pion and its following years, leading to the discov­ subsequent decay highlighted the ery of the 'mesotron' in 1937, origi­ role of the muon (discovered by nally identified as the nuclear force Anderson and Neddermeyer in carrier postulated by Hideki Yukawa 1936), while the Vs were the first in 1935. However, several difficulties examples of 'strange' particles soon arose with this hypothesis, even containing a third type of quark. though pictures of its decay to an The following article by Owen Lock, electron, as postulated by Yukawa to formerly of Bristol, Manchester, explain beta-decay, were observed in Birmingham and CERN, recalls the cloud chamber pictures in 1940. In pion discovery. Another article later particular, the mesotron appeared to this year will cover the discovery of have a very weak nuclear interaction V-particles. with matter, conclusively demonstrated by the counter experiments of Marcello Conversi, Ettore Pancini and Oreste Piccioni in Rome from 1943-1947. A possible explanation of these Half a century ago - difficulties had been put forward in trace their parentage back to 1897. Japan in 1942 and 1943 by Yasutaka Blackett was awarded the Nobel the pion pioneers Tanikawa and by Shoichi Sakata and Physics Prize in 1948 and Powell in Takeshi Inoue, who suggested a two- 1950. These discoveries were to be hile the classic discoveries of meson hypothesis with a Yukawa- the last major particle physics WThomson and Rutherford type meson decaying to a weakly revelations of a war-torn Europe. The opened successive doors to interacting mesotron. Because of the next European milestone - the subatomic and nuclear physics, war their ideas were not published in discovery of the neutral current in particle physics may be said to have English until 1946 and 1947, the 1973 - had to await the establishment started with the discovery of the journals in question not reaching the of CERN. positron in cosmic rays by Carl USA until the end of 1947. Sighting the pion and unravelling its Anderson at Pasadena in 1932, Unaware of the Japanese work, decay liberated physics from more verifying Paul Dirac's almost Robert Marshak had put forward a than a decade of dilemma, and the simultaneous prediction of its similar hypothesis in June 1947, at a pion looked full of promise. Perhaps existence. conference of American theoreticians this new particle held the key to the Anderson used a cloud chamber, on Shelter Island (off Long Island), mysterious forces which held the expanded at random, in a high and which he published later that nucleus together. However this hope, magnetic field. At the same time, year with Hans Bethe. None of the cherished since the time of Yukawa, Patrick Blackett at Cambridge was scientists at the conference knew was not to be fulfilled, and the joined by an inventive young Italian, that such two-meson decay events significance of the pion as a particle Giuseppe Occhialini, sent by a had already been observed some has diminished as our understanding master of counter coincidence weeks earlier by Cecil Powell and his of nuclear forces in terms of a deeper techniques, Bruno Rossi, then in collaborators in Bristol, using the layer, quarks, has advanced. If the Florence, to learn about cloud then little known photographic pion does play a special role, it is chambers. Very soon Blackett and emulsion technique, but which in because it is the lightest strongly Occhialini had built a counter- Powell's hands became a powerful interacting particle. controlled chamber with which they research tool. 2 CERN Courier, June 1997 .
Recommended publications
  • Rutherford's Nuclear World: the Story of the Discovery of the Nuc
    Rutherford's Nuclear World: The Story of the Discovery of the Nuc... http://www.aip.org/history/exhibits/rutherford/sections/atop-physic... HOME SECTIONS CREDITS EXHIBIT HALL ABOUT US rutherford's explore the atom learn more more history of learn about aip's nuclear world with rutherford about this site physics exhibits history programs Atop the Physics Wave ShareShareShareShareShareMore 9 RUTHERFORD BACK IN CAMBRIDGE, 1919–1937 Sections ← Prev 1 2 3 4 5 Next → In 1962, John Cockcroft (1897–1967) reflected back on the “Miraculous Year” ( Annus mirabilis ) of 1932 in the Cavendish Laboratory: “One month it was the neutron, another month the transmutation of the light elements; in another the creation of radiation of matter in the form of pairs of positive and negative electrons was made visible to us by Professor Blackett's cloud chamber, with its tracks curled some to the left and some to the right by powerful magnetic fields.” Rutherford reigned over the Cavendish Lab from 1919 until his death in 1937. The Cavendish Lab in the 1920s and 30s is often cited as the beginning of modern “big science.” Dozens of researchers worked in teams on interrelated problems. Yet much of the work there used simple, inexpensive devices — the sort of thing Rutherford is famous for. And the lab had many competitors: in Paris, Berlin, and even in the U.S. Rutherford became Cavendish Professor and director of the Cavendish Laboratory in 1919, following the It is tempting to simplify a complicated story. Rutherford directed the Cavendish Lab footsteps of J.J. Thomson. Rutherford died in 1937, having led a first wave of discovery of the atom.
    [Show full text]
  • The Development of Military Nuclear Strategy And
    The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew.
    [Show full text]
  • Patrick Blackett: Sailor, Scientist, Socialist, Chris Eldridge
    Naval War College Review Volume 57 Article 31 Number 1 Winter 2004 Patrick Blackett: Sailor, Scientist, Socialist, Chris Eldridge Follow this and additional works at: https://digital-commons.usnwc.edu/nwc-review Recommended Citation Eldridge, Chris (2004) "Patrick Blackett: Sailor, Scientist, Socialist,," Naval War College Review: Vol. 57 : No. 1 , Article 31. Available at: https://digital-commons.usnwc.edu/nwc-review/vol57/iss1/31 This Book Review is brought to you for free and open access by the Journals at U.S. Naval War College Digital Commons. It has been accepted for inclusion in Naval War College Review by an authorized editor of U.S. Naval War College Digital Commons. For more information, please contact [email protected]. 156 NAVAL WAR COLLEGE REVIEW Eldridge: Patrick Blackett: Sailor, Scientist, Socialist, understanding with the Soviet Union (a he was the heart and soul of the Cold position favored by some influential War military-academic-industrial com- opinions in the United States) nor to cre- plex. In this book, sixteen authors at- ate trouble for the French government, tempt to shed light on Blackett’s role in seemingly both dependent on and threat- that story. The collection includes pa- ened by the French Communist Party. pers presented at a 1998 conference The Soviet-menace card was played on commemorating Blackett at Cambridge several occasions in the unfolding de- University, as well as other recent writ- bate, but in general it was subordinated ings about him. to more abstract arguments of enlight- Not surprisingly, the compendium of- ened self-interest. Moreover, it was fers a range of perspectives on events clear to many in the administration that and issues with which Blackett was as- too great an emphasis on the immi- sociated, rather than a comprehensive nence of war with Russia would scuttle examination of his life and work.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • Arxiv:1211.4061V3 [Physics.Hist-Ph] 8 Feb 2013
    From cosmic ray physics to cosmic ray astronomy: Bruno Rossi and the opening of new windows on the universe Luisa Bonolis Via Cavalese 13 – 00135 Rome, Italy [email protected] Abstract Bruno Rossi is considered one of the fathers of modern physics, being also a pioneer in virtually every aspect of what is today called high-energy astrophysics. At the beginning of 1930s he was the pioneer of cosmic ray research in Italy, and, as one of the leading actors in the study of the nature and behavior of the cosmic radiation, he witnessed the birth of particle physics and was one of the main investigators in this fields for many years. While cosmic ray physics moved more and more towards astrophysics, Rossi continued to be one of the inspirers of this line of research. When outer space became a reality, he did not hesitate to leap into this new scientific dimension. Rossi’s intuition on the importance of exploiting new technological windows to look at the universe with new eyes, is a fundamental key to understand the profound unity which guided his scientific research path up to its culminating moments at the beginning of 1960s, when his group at MIT performed the first in situ measurements of the density, speed and direction of the solar wind at the boundary of Earth’s magnetosphere, and when he promoted the search for extra-solar sources of X rays. A visionary idea which eventually led to the breakthrough experiment which discovered Scorpius X-1 in 1962, and inaugurated X-ray astronomy.
    [Show full text]
  • Patrick Blackett | Atomic Heritage Foundation
    7/19/2018 Patrick Blackett | Atomic Heritage Foundation MENU STORE DONATE Patrick Blackett Physicist, United Kingdom Born Nov 18 1897 Scientist, Nobel Prize Winner Patrick Blackett (1897-1974) was an accomplished British scientist who won the Nobel Prize in Physics in 1948. EARLY YEARS Patrick Maynard Stuart Blackett was born in Kensington, London on November 18th, 1897. He entered the Osborne Royal Naval College in 1910, and transferred to the Dartmouth Royal Naval College two years later. Before he earned his degree, though, World War I broke out, and Blackett was sent off to fight. He saw combat at the Battle of Falkland Islands in 1914 and the Battle of Jutland in 1916, emerging from the war as a lieutenant. When the war concluded, the British Admiralty sent Blackett to Cambridge to complete his studies. Enjoying his studies at Cambridge immensely, Blackett decided to resign from the Royal Navy and focus solely upon studying mathematics and sub-atomic physics at Cambridge. Two years later, he completed his undergraduate degree and stayed on at the university as a Bye-Fellow studying under Ernest Rutherford at the Cavendish Laboratory. After completing this fellowship, Blackett became a fellow at King’s College, where he would remain until 1933. While conducting research at Cambridge, it is believed that a young, distraught graduate student named J. Robert Oppenheimer attempted to poison Blackett with an apple laced with toxic chemicals. Blackett was Oppenheimber’s head tutor at the time, and Oppenheimer found Blackett to be brilliant but also extremely demanding. Blackett insisted that Oppenheimer spend more time doing lab work while Oppenheimer believed his time and talents should be devoted to theoretical physics.
    [Show full text]
  • A Layman's Guide to M-Theory1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CTP-TAMU-23/98 hep-th/9805177 A Layman’s Guide to M-Theory1. M. J. Duff Center for Theoretical Physics Texas A&M University, College Station, Texas 77843 ABSTRACT The best candidate for a fundamental unified theory of all physical phenomena is no longer ten-dimensional superstring theory but rather eleven-dimensional M-theory. In the words of Fields medalist Edward Witten, “M stands for ‘Magical’, ‘Mystery’ or ‘Membrane’, according to taste”. New evidence in favor of this theory is appearing daily on the internet and represents the most exciting development in the subject since 1984 when the superstring revolution first burst on the scene. 1Talk delivered at the Abdus Salam Memorial Meeting, ICTP, Trieste, November 1997. 1 Abdus Salam The death of Abdus Salam was a great loss not only to his family and to the physics community; it was a loss to all mankind. For he was not only one of the finest physicists of the twentieth century, having unified two of the four fundamental forces in Nature, but he also dedicated his life to the betterment of science and education in the Third World and to the cause of world peace. Although he won the Nobel Prize for physics, a Nobel Peace Prize would have been entirely appropriate. At the behest of Patrick Blackett, Salam moved to Imperial College, London, in 1957 where he founded the Theoretical Physics Group. He remained at Imperial as Profesor of Physics for the rest of his carreer.
    [Show full text]
  • Science, Scientific Intellectuals and British Culture in the Early Atomic Age, 1945-1956: a Case Study of George Orwell, Jacob Bronowski, J.G
    Science, Scientific Intellectuals and British Culture in The Early Atomic Age, 1945-1956: A Case Study of George Orwell, Jacob Bronowski, J.G. Crowther and P.M.S. Blackett Ralph John Desmarais A Dissertation Submitted In Fulfilment Of The Requirements For The Degree Of Doctor Of Philosophy Imperial College London Centre For The History Of Science, Technology And Medicine 2 Abstract This dissertation proposes a revised understanding of the place of science in British literary and political culture during the early atomic era. It builds on recent scholarship that discards the cultural pessimism and alleged ‘two-cultures’ dichotomy which underlay earlier histories. Countering influential narratives centred on a beleaguered radical scientific Left in decline, this account instead recovers an early postwar Britain whose intellectual milieu was politically heterogeneous and culturally vibrant. It argues for different and unrecognised currents of science and society that informed the debates of the atomic age, most of which remain unknown to historians. Following a contextual overview of British scientific intellectuals active in mid-century, this dissertation then considers four individuals and episodes in greater detail. The first shows how science and scientific intellectuals were intimately bound up with George Orwell’s Nineteen Eighty Four (1949). Contrary to interpretations portraying Orwell as hostile to science, Orwell in fact came to side with the views of the scientific rig h t through his active wartime interest in scientists’ doctrinal disputes; this interest, in turn, contributed to his depiction of Ingsoc, the novel’s central fictional ideology. Jacob Bronowski’s remarkable transition from pre-war academic mathematician and Modernist poet to a leading postwar BBC media don is then traced.
    [Show full text]
  • New “Moment of Discovery” Web Exhibit Explores Superconductivity
    CENTER FOR HISTORY OF PHYSICS NEWSLETTER Vol. XXXIX, Number 2 Fall 2007 One Physics Ellipse, College Park, MD 20740-3843, Tel. 301-209-3165 The Project to Document the History of Physicists in Industry: Some Notes on Methodology By Katy Lawley he Project to Document the History of Physicists in T Industry ends this December, and so far this year we’ve completed the last of the site visits and interviews at industrial labs—at Raytheon in January and Ford in June—and focused on analyzing the 132 interviews that we’ve conducted along with other information that we’ve collected. When we planned the study, we decided that individual interviews with physicists, R&D managers, and information professionals (e.g., technical librarians, archivists, and records managers) who work at 15 of the 27 largest employers of physicists in industry would be the best way to capture the experience and perspectives of the participants with as much richness and context as possible. Business in general has frequently been described as one of the least documented sectors in American society, and sources on the work of corporate physicists are especially rare. So our purpose has been to learn as much as we can about the extent to which these records do exist; how companies Pope Pius XII greets Professor and Mrs. Harlow Shapley following treat correspondence (including e-mail), lab notebooks, the Pope’s address to the International Union (IAU) assembly at and other documentary materials of scientists today; the Castel Gandolfo. Shapley had previously won the Pope Pius XI prize, effect of the computer revolution on records keeping; but had not personally appeared to receive it.
    [Show full text]
  • Patrick Blackett in India: Military Consultant and Scientific Intervenor, 1947-72
    Patrick Blackett in India: Military Consultant and Scientific Intervenor, 1947-72. Part One Author(s): Robert S. Anderson Source: Notes and Records of the Royal Society of London, Vol. 53, No. 2 (May, 1999), pp. 253- 273 Published by: The Royal Society Stable URL: http://www.jstor.org/stable/532210 . Accessed: 09/05/2011 11:52 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at . http://www.jstor.org/action/showPublisher?publisherCode=rsl. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Notes and Records of the Royal Society of London.
    [Show full text]
  • Speeches by Nobel Laureates in the Sciences, 1901-2018
    RESEARCH ARTICLE Give science and peace a chance: Speeches by Nobel laureates in the sciences, 1901-2018 ☯ ☯ ☯ Massimiano Bucchi , Enzo LonerID *, Eliana Fattorini Department of Sociology and Social Research, University of Trento, Trento, Italy ☯ These authors contributed equally to this work. * [email protected] Abstract The paper presents the results of a quantitative analysis of speeches by Nobel laureates in a1111111111 a1111111111 the sciences (Physics, Chemistry, Medicine) at the Prize gala dinner throughout the whole a1111111111 history of the Prize, 1901±2018. The results outline key themes and historical trends. A a1111111111 dominant theme, common to most speeches, is the exaltation of science as a profession by a1111111111 the laureate. Since the 1970s, especially in chemistry, this element becomes more domain- specific and less related to science in general. One could speculate whether this happens chiefly in chemistry because its area of activity has been perceived to be at risk of erosion from competing fields (e.g. physics, biology). Over time, speeches become more technical, OPEN ACCESS less ceremonial and more lecture-oriented. Emphasis on broad, beneficial impact of science Citation: Bucchi M, Loner E, Fattorini E (2019) Give for humanity and mankind (as emphasised in Nobel's will) is more present in laureates' science and peace a chance: Speeches by Nobel speeches during the first half of the XXth century, while its relevance clearly declines during laureates in the sciences, 1901-2018. PLoS ONE the last decades. Politics and its relationship with science is also a relevant topic in Nobel 14(10): e0223505. https://doi.org/10.1371/journal.
    [Show full text]
  • Exploring the Atom, 1919-1932
    10/30/2017 Manhattan Project: Exploring the Atom, 1919-1932 TIME PERIODS EXPLORING THE ATOM (1919-1932) 1890s-1939: Events > Atom ic Discoveries, 1890s-1939 Atomic Discoveries A Miniature Solar System, 1890s-1919 Exploring the Atom, 1919-1932 1939-1942: Atomic Bombardment, 1932-1938 Early The Discovery of Fission, 1938-1939 Gover nment Fission Comes to America, 1939 Support The road to the atomic bomb began in earnest in 1942: 1919, when New Zealander Ernest Rutherford Difficu lt reported on a series of experiments he had been Choices conducting, which involved the bombardment of light element nuclei with energetic α (alpha) particles. 1942-1944: Rutherford reported that nitrogen nuclei ejected what The Uranium he suspected was "a hydrogen atom" (a proton). He concluded the nitrogen atom was Path to "disintegrated" in the process, and he subsequently asked Patrick Blackett (a research fellow the Bomb working under Rutherford) to study what precisely was happening. For the next four years Blackett used a cloud chamber to observe some 400,000 alpha particle tracks, which 1942-1944: ultimately revealed that the nitrogen atom being bombarded had been transformed into an The Plutoniu m oxygen isotope in the process. Blackett published his discovery of the atomic transmutation of Path to nitrogen into oxygen in 1925. The final addition to the atomic "miniature solar system" first the Bom b proposed by Niels Bohr came in 1932 when James Chadwick, Rutherford's colleague at 1942-1945: Cambridge, identified the third and final basic particle of the atom: the neutron. Bringing It A ll By the early 1930s, the atom was thought to consist of a Together positively charged nucleus, containing both protons and 1945: neutrons, circled by negatively charged electrons equal in Dawn of the number to the protons in the nucleus.
    [Show full text]