Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation Guido Benassai1, Pietro Aucelli2, Giorgio Budillon2, Massimo De Stefano2, Diana Di Luccio2, Gianluigi Di Paola2, Raffaele Montella2, Luigi Mucerino3, Mario Sica4, and Micla Pennetta5 1Department of Engineering, University of Naples Parthenope 2Department of Science and Technology, University of Naples Parthenope 3Department of Earth, Environment and Life Sciences, University of Genova 4Autorità di Bacino Campania Centrale 5Department of Earth, Environment and Resources Sciences, University of Naples Federico II Correspondence to: Guido Benassai (
[email protected]) Abstract. The prediction of the formation, spacing and location of rip currents is a scientific challenge that can be achieved by means of different complementary methods. In this paper the analysis of numerical and experimental data, including RPAS (Remotely Piloted Aircraft Systems) observations, allowed to detect the presence of rip currents and rip channels at the mouth of Sele river, in the Gulf of Salerno, southern Italy. The dataset used to analyze these phenomena consisted of two different 5 bathymetric surveys, a detailed sediment analysis and a set of high-resolution wave numerical simulations, completed with Google EarthTM images and RPAS observations. The grain size trend analysis and the numerical simulations allowed to identify the rip current occurrence, forced by topographically constrained channels incised on the seabed, which were compared with observations. Keywords: rip-currents, hydrodynamic simulations, transport vectors, UAV observation. 10 1 Introduction The monitoring and the forecasting of beach processes become particularly critical along the unstable coastal areas, possibly subjected to coastal vulnerability (Di Paola et al. (2014)), and coastal risk due to sea level rise (Benassai et al.