Target-Specificity in Scorpions; Comparing Lethality of Scorpion Venoms Across Arthropods and Vertebrates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 It's All Geek to Me: Translating Names Of
IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning. -
Small Molecules in the Venom of the Scorpion Hormurus Waigiensis
biomedicines Article Small Molecules in the Venom of the Scorpion Hormurus waigiensis Edward R. J. Evans 1, Lachlan McIntyre 2, Tobin D. Northfield 3, Norelle L. Daly 1 and David T. Wilson 1,* 1 Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, QLD 4878, Australia; [email protected] (E.R.J.E.); [email protected] (N.L.D.) 2 Independent Researcher, P.O. Box 78, Bamaga, QLD 4876, Australia; [email protected] 3 Department of Entomology, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-7-4232-1707 Received: 30 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. -
The Predation of an Adult Colubrid Snake, Sibynophis Triangularis, by the Scorpion Heterometrus Laoticus in the Sakaerat Biosphere Reserve
Captive & Field Herpetology Volume 4 Issue 1 2020 Inverting the Food Web: The Predation of an Adult Colubrid Snake, Sibynophis triangularis, by the Scorpion Heterometrus laoticus in the Sakaerat Biosphere Reserve Jack Christie1, Everett Madsen1, Surachit Waengsothorn1, Max Dolton Jones1, 2,* 1Sakaerat Environmental Research Station, Nakhon Ratchasima, Thailand. 2Suranree University of Technology, Nakhon Ratchasima, Thailand. *Corresponding author, e-mail: [email protected] Abstract: system they occupy, is a well-researched and understood topic (Belovsky & Slade 1993; The predation of vertebrates by large tropical Murkin & Batt 1987; Nordberg et al. 2018). invertebrates is a rare phenomenon in nature, This particularly pertains to the predation of though not unprecedented. Scorpions in invertebrates by larger vertebrate predators. particular are evolutionarily equipped to take However, there are far fewer instances of on such a task. Despite the hunting strategy invertebrates consuming vertebrate prey items and primarily insectivorous diet of scorpions, within the available literature. Scorpions are they are known to opportunistically prey upon primarily fossorial ambush predators, emerging small vertebrate prey such as lizards, frogs and from their burrows and lying in wait at the birds. Herein, we describe the observation of entrance for unsuspecting prey to wander too an adult Asian forest scorpion (Heterometrus close (Williams 1987). Scorpions typically laoticus; Scorpiones; Scorpionidae) predating exhibit an insectivorous diet, with the upon an adult triangle many-toothed snake exception of a few species (Williams 1987), (Sibynophis triangularis; Squamata: and have been known to prey on frogs, birds, Colubridae). Although the opportunistic lizards and even snakes (McCormick & Polis, predation on snakes by scorpions has been 1982). -
Sexual Dimorphism in the Asian Giant Forest Scorpion, Heterometrus Laoticus Couzijn, 1981
NU Science Journal 2007; 4(1): 42 - 52 Sexual Dimorphism in the Asian Giant Forest Scorpion, Heterometrus laoticus Couzijn, 1981 Ubolwan Booncham1*, Duangkhae Sitthicharoenchai2, Art-ong Pradatsundarasar2, Surisak Prasarnpun1 and Kumthorn Thirakhupt2 1Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand 2Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10400 Thailand *Corresponding author. E-mail address: [email protected] ABSTRACT Morphological characters of adult male and adult female giant forest scorpions, Heterometrus laoticus, in a mixed deciduous forest at Phitsanulok Wildlife Conservation Development and Extension Station showed sexual dimorphism. Among the observed characters, carapace width, chela length, chela width, telson length and shape of movable finger of adult male and female scorpions were obviously different. The pectines of males were also significantly longer, and the number of sensilla-bearing teeth in male scorpions was more than in females. Moreover, males had higher density of sensilla on the pectinal teeth than females. During the breeding season, mature males were mobile while mature females were mainly at their burrows. Keywords: Heterometrus laoticus, sexual dimorphism INTRODUCTION Sexual dimorphism is the difference in form between males and females of the same species. Sexual dimorphism, particularly sexual size dimorphism (SSD) has been observed in a large number of animal taxa (Blanckenhorn, 2005; Brown, 1996; David et al., 2003; Esperk and Tammaru, 2006; Herrel et al. 1999; Ozkan et al., 2006; Ranta et al. 1994; Shine, 1989; Walker and Rypstra, 2001 and Wangkulangkul, et al., 2005). Under the influence of natural and sexual selections, males and females often differ in costs and benefits of achieving some particular body sizes (Crowley, 2000; Gaffin and Broenell, 2001; Kladt, 2003; Mattoni, 2005). -
Vulnerability of At-Risk Species to Climate Change in New York (PDF
Vulnerability of At-risk Species to Climate Change in New York Matthew D. Schlesinger, Jeffrey D. Corser, Kelly A. Perkins, and Erin L. White New York Natural Heritage Program A Partnership between The Nature Conservancy and the NYS Department of Environmental Conservation New York Natural Heritage Program i 625 Broadway, 5th Floor Albany, NY 12233-4757 (518) 402-8935 Fax (518) 402-8925 www.nynhp.org Vulnerability of At-risk Species to Climate Change in New York Matthew D. Schlesinger Jeffrey D. Corser Kelly A. Perkins Erin L. White New York Natural Heritage Program 625 Broadway, 5th Floor, Albany, NY 12233-4757 March 2011 Please cite this document as follows: Schlesinger, M.D., J.D. Corser, K.A. Perkins, and E.L. White. 2011. Vulnerability of at-risk species to climate change in New York. New York Natural Heritage Program, Albany, NY. Cover photos: Brook floater (Alismodonta varicosa) by E. Gordon, Spadefoot toad (Scaphiopus holbrookii) by Jesse Jaycox, and Black Skimmers (Rynchops niger) by Steve Young. Climate predictions are from www.climatewizard.org. New York Natural Heritage Program ii Executive summary Vulnerability assessments are rapidly becoming an essential tool in climate change adaptation planning. As states revise their Wildlife Action Plans, the need to integrate climate change considerations drives the adoption of vulnerability assessments as critical components. To help meet this need for New York, we calculated the relative vulnerability of 119 of New York’s Species of Greatest Conservation Need (SGCN) using NatureServe’s Climate Change Vulnerability Index (CCVI). Funding was provided to the New York Natural Heritage Program by New York State Wildlife Grants in cooperation with the U.S. -
Zootaxa, Empidoidea (Diptera)
ZOOTAXA 1180 The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera) BRADLEY J. SINCLAIR & JEFFREY M. CUMMING Magnolia Press Auckland, New Zealand BRADLEY J. SINCLAIR & JEFFREY M. CUMMING The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera) (Zootaxa 1180) 172 pp.; 30 cm. 21 Apr. 2006 ISBN 1-877407-79-8 (paperback) ISBN 1-877407-80-1 (Online edition) FIRST PUBLISHED IN 2006 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2006 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1180: 1–172 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1180 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera) BRADLEY J. SINCLAIR1 & JEFFREY M. CUMMING2 1 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany. E-mail: [email protected] 2 Invertebrate Biodiversity, Agriculture and Agri-Food Canada, C.E.F., Ottawa, ON, Canada -
Target-Specificity in Scorpions
Toxins 2017, 9, 312, doi: 10.3390/toxins9100312 S1 of S3 Supplementary Materials: Target‐specificity in scorpions; Comparing lethality of scorpion venoms across arthropods and vertebrates Arie van der Meijden, Bjørn Koch, Tom van der Valk, Leidy J. Vargas‐Muñoz and Sebastian Estrada‐Gómez Table S1. Table with GenBank CO1 accession numbers. Voucher numbers refer to the specimens in the collection of CIBIO/InBio at the University of Porto. Species Voucher Accession number Androctonus australis Sc904 gi379647585 Leiurus quinquestriatus Sc1062 gi379647601 Buthus ibericus Sc112 gi290918312 Grosphus flavopiceus Sc1085 gi379647593 Centruroides gracilis gi71743793 Heterometrus laoticus Sc1084 gi555299473 Pandinus imperator Sc1050 gi379647587 Hadrurus arizonensis Sc1042 gi379647597 Iurus kraepelini Sc866 gi379647589 Table S2. Mean dry venom compound per individual. Several milkings were made per (sub)adult specimen in some cases. Species n Dry venom (mg) mg/milking Androctonus australis 21 23.5 1.12 Leiurus quinquestriatus 51 25.1 0.49 Buthus ibericus 47 41.6 0.89 Centruroides gracilis 42 22.5 0.54 Babycurus jacksoni 38 53.9 1.42 Grosphus grandidieri 19 103.9 5.47 Hadrurus arizonensis 9 75.3 8.37 Iurus sp.* 12 35.2 2.93 Heterometrus laoticus 21 119 5.67 Pandinus imperator 15 72.7 4.85 *2 I. dufoureius, 6 I. kraepelini, 4 I. sp. Toxins 2017, 9, 312, doi: 10.3390/toxins9100312 S2 of S3 Table S3. Toxicological analysis of the venom of Grosphus grandidieri. “Toxic” means that the mice showed symptoms such as: pain, piloerection, excitability, salivation, lacrimation, dyspnea, diarrhea, temporary paralysis, but recovered within 20 h. “Lethal” means that the mice showed some or all the symptoms of intoxication and died within 20 h after injection. -
Spider and Scorpion Case
Spider and Scorpion case Black widow spider (Lactrodectus hesperus) Black widows are notorious spiders identified by the colored, hourglass-shaped mark on their abdomens. Several species answer to the name, and they are found in temperate regions around the world. This spider's bite is much feared because its venom is reported to be 15 times stronger than a rattlesnake's. In humans, bites produce muscle aches, nausea, and a paralysis of the diaphragm that can make breathing difficult; however, contrary to popular belief, most people who are bitten suffer no serious damage—let alone death. But bites can be fatal—usually to small children, the elderly, or the infirm. Fortunately, fatalities are fairly rare; the spiders are nonaggressive and bite only in self-defense, such as when someone accidentally sits on them. These spiders spin large webs in which females suspend a cocoon with hundreds of eggs. Spiderlings disperse soon after they leave their eggs, but the web remains. Black widow spiders also use their webs to ensnare their prey, which consists of flies, mosquitoes, grasshoppers, beetles, and caterpillars. Black widows are comb- footed spiders, which means they have bristles on their hind legs that they use to cover their prey with silk once it has been trapped. To feed, black widows puncture their insect prey with their fangs and administer digestive enzymes to the corpses. By using these enzymes, and their gnashing fangs, the spiders liquefy their prey's bodies and suck up the resulting fluid. Giant desert hairy scorpion (Hadrurus arizonensis) Hadrurus arizonensis is distributed throughout the Sonora and Mojave deserts. -
A Global Accounting of Medically Significant Scorpions
Toxicon 151 (2018) 137–155 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon A global accounting of medically significant scorpions: Epidemiology, major toxins, and comparative resources in harmless counterparts T ∗ Micaiah J. Ward , Schyler A. Ellsworth1, Gunnar S. Nystrom1 Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA ARTICLE INFO ABSTRACT Keywords: Scorpions are an ancient and diverse venomous lineage, with over 2200 currently recognized species. Only a Scorpion small fraction of scorpion species are considered harmful to humans, but the often life-threatening symptoms Venom caused by a single sting are significant enough to recognize scorpionism as a global health problem. The con- Scorpionism tinued discovery and classification of new species has led to a steady increase in the number of both harmful and Scorpion envenomation harmless scorpion species. The purpose of this review is to update the global record of medically significant Scorpion distribution scorpion species, assigning each to a recognized sting class based on reported symptoms, and provide the major toxin classes identified in their venoms. We also aim to shed light on the harmless species that, although not a threat to human health, should still be considered medically relevant for their potential in therapeutic devel- opment. Included in our review is discussion of the many contributing factors that may cause error in epide- miological estimations and in the determination of medically significant scorpion species, and we provide suggestions for future scorpion research that will aid in overcoming these errors. 1. Introduction toxins (Possani et al., 1999; de la Vega and Possani, 2004; de la Vega et al., 2010; Quintero-Hernández et al., 2013). -
Exploring the Evolution and Terrestrialization of Scorpions (Arachnida: Scorpiones) with Rocks and Clocks
Howard, R., Edgecombe, G. D., Legg, D., Pisani, D., & Lozano- Fernandez, J. (2019). Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks. Organisms Diversity and Evolution, 19(1), 71-86. https://doi.org/10.1007/s13127- 019-00390-7 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s13127-019-00390-7 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Springer at https://doi.org/10.1007/s13127-019-00390-7 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Organisms Diversity & Evolution (2019) 19:71–86 https://doi.org/10.1007/s13127-019-00390-7 REVIEW Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks Richard J. Howard1,2,3 & Gregory D. Edgecombe2 & David A. Legg4 & Davide Pisani3 & Jesus Lozano-Fernandez5,3 Received: 3 August 2018 /Accepted: 2 January 2019 /Published online: 6 February 2019 # The Author(s) 2019 Abstract Scorpions (Arachnida: Scorpiones Koch, 1837) are an ancient chelicerate arthropod lineage characterised by distinctive subdi- vision of the opisthosoma and venomous toxicity. The crown group is represented by over 2400 extant species, and unambiguous fossil representatives are known at least from the Cretaceous Period. -
“Identidad Taxonómica Y Estudio Bionómico De Centruroides Ornatus Pocock 1902 (Scorpiones: Buthidae) En México” ANA F. QU
UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Biología División de Estudios de Posgrado Programa Institucional de Doctorado en Ciencias Biológicas Conservación y Manejo de Recursos Naturales “Identidad taxonómica y estudio bionómico de Centruroides ornatus Pocock 1902 (Scorpiones: Buthidae) en México” TESIS PARA OBTENER EL GRADO DE DOCTORA EN CIENCIAS BIOLÓGICAS ANA F. QUIJANO RAVELL DIRECTOR: DR. JAVIER PONCE SAAVEDRA (UMSNH) Morelia, Michoacán. Septiembre de 2015 “Identidad taxonómica y estudio bionómico de Centruroides ornatus Pocock 1902 (Scorpiones: Buthidae) en México” ANA F. QUIJANO RAVELL DEDICATORIA A mi padre Darío Quijano, quien a sabido guiarme y apoyarme en todos los momentos de la vida, quien a formado y ayudado a forjar mis sueños, quien ha sido un amigo y guía, quien ha sacrificado todo por sus hijos….por ser mi mas grande ejemplo…Te amo papa…!!! A mi madre Manuela Ravell, quien me ama sobre todas las cosas y siempre lo ha demostrado, quien ha sufrido ausencias y dolores pero siempre esta para apoyar y fortalecer a la familia, por ser lo mas valioso de mi vida, a quien le agradezco a demás de la vida todo lo que soy…su constante esfuerzo me ha quiado por un buen camino…Por ser la mejor mujer...Te amo mamá…!!! A Yank, persona importante en mi vida, que ha conocido mis buenos momentos, los malos…y los muy malos…quien me ha apoyando en todo momento…a quien Amo con lo mucho o poco y quien será parte especial de mi vida, quien nunca será “Solo una Anécdota”…y como dices…Por ser en mi vida “lo mejor de lo peor”… Gracias por existir…!!! Pedro Quijano†, Mami Luisa† y Mami Estela†, quienes están conmigo mas allá de mis recuerdos...cuyo ejemplo me guía y cuyo amor llevo conmigo a cada vuelta del camino. -
Of the World
OCCASIONAL PAPERS OF THE CALIFORNIA ACADEMY OF SCIENCES No. 147, 94 pages. December 2, 1991 GENUS-GROUP NAMES OF THE NEUROPTERA, MEGALOPTERA AND RAPHIDIOPTERA OF THE WORLD By John D. Oswald Department of Entomology, Cornell University, Ithaca, New York 14853-0999 and Norman D. Penny Department of Entomology, California Academy of Sciences, San Francisco, California 94118-4599 Abstract: Alphabetical listings of the genus-group names of extant Megaluptcra, Raphidioptera, and = Neuroptera (s. str. Planipennia) are presented. Taxonomic and nomenclatural data for each name are given. Summaries of new genus-group synonyms, unreplaced junior homonyms, names without valid type species fixations, and names based on misidentified type species are given. Complete bibliographic references are given for all names and nomenclatural acts. Contents Introduction Inlroduciion (1) The last worldwide species-level catalog of Scope (2) the order str. = Nomenclature (2) Neuroptera (s. Planipennia), and Format Arrangement of Entries (2) Hermann Hagen's 1866 Hemerobidarum Syn- General Arrangement (2) opsis Synonymica, has long been obsolete, as Subgenera (2) are the most recent revisions Synonymy (2) comprehensive Character Formals (3) of the orders Megaloptera (i.e.. Van dcr Publication Dates (3) Weele 1910) and Raphidioptera (i.e., Navas Type Species (3) [1919e] 1918). In the 120+ years since 1866, Unavailable Names (3) the number of available Homonymy (4) nomenclaturally Family-Group Taxa (4) genus-group names in the order Neuroptera Selected Taxonomic References