Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download Tropical Natural History 20(1): 16–27, April 2020 2020 by Chulalongkorn University Endemism, Similarity and Difference in Montane Evergreen Forest Biodiversity Hotspots: Comparing Communities of Empidoidea (Insecta: Diptera) in the Summit Zones of Doi Inthanon and Doi Phahompok, Thailand ADRIAN R. PLANT1*, DANIEL J. BICKEL2, PAUL CHATELAIN3, CHRISTOPHE DAUGERON3 AND WICHAI SRISUKA4 1Department of Biology, Faculty of Science, Mahasarakham University, Kantharawichai District, Mahasarakham 44150, THAILAND 2Australian Museum, Sydney, NSW 2010, AUSTRALIA 3Muséum national d’Histoire naturelle, 57 rue Cuvier, CP 50, F-75005 Paris, FRANCE 4Entomology Section, Queen Sirikit Botanic Garden, Mae Rim, Chiang Mai 50180, THAILAND * Corresponding author. Adrian R. Plant ([email protected]) Received: 7 August 2019; Accepted: 12 November 2019 ABSTRACT.– Composition and structure of communities of the Diptera superfamily Empidoidea (30,481 individuals of 511 species in 55 genera in the families Empididae, Dolichopodidae, Hybotidae and Brachystomatidae) were compared in Upper Montane Forests on Doi Inthanon and Doi Phahompok in northern Thailand. Based on taxon similarity (α-, β-diversity), structural diversity (the species abundance distribution and importance of dominant species), cluster analysis of community composition and the relative importance of inferred Oriental and Palaearctic influences, it was concluded that communities in Upper Montane Forest at 2,036 – 2,105 m near the summit of Doi Phahompok were most similar to those at 1,639 – 2,210 m on Doi Inthanon. Approximately 33% of species recorded at 2,036 – 2,105 m on Doi Phahompok were endemic to the mountain. Upper Montane Forest is a rare, dispersed and isolated habitat in southeastern Asia with scattered patches likely to experience comparable levels of β-diversity and endemism as found here. The conservation importance of Upper Montane Forest on Doi Phahompok and on other mountains in northern Thailand is stressed. The upper slopes of Doi Inthanon (>2,200 m) are reaffirmed as a unique haven of endemic species and distinctive Empidoidea communities in a habitat judged to be of utmost conservation interest. KEY WORDS: conservation, Brachystomatidae, Dolichopodidae, Empididae, Hybotidae INTRODUCTION diversity. A recent study of Empidoidea on the mountain Doi Inthanon in northern Diptera (true flies) are one of the Thailand (Plant et al., 2019) identified three megadiverse and abundant insect orders that major habitat and elevation delimited contribute greatly to the biodiversity of community-types (designated Moist Hill tropical forests and are major components of Evergreen, ‘MHE’ [>2,000 m]; Mid the exceptionally rich biodiversity of insects Elevation Evergreen ‘EM’ [1,000 – 2,000 in the montane evergreen forest of northern m] and Dry Lowland ‘DL’ [<1,000 m]; the Thailand (Plant et al., 2018). The Diptera names specifically refer to dipteran superfamily Empidoidea (represented in communities, even though they reference Thailand by the families Empididae, characteristics of the forests in which the Dolichopodidae, Hybotidae and Brachy- communities were found). The occurrence stomatidae) is a large and important taxon of MHE, EM and DL fly communities comprising approximately 10% of global fly corresponded well with the occurrence of PLANT ET AL. — COMPARING COMMUNITIES OF EMPIDOIDEA (INSECTA: DIPTERA) 17 formal forest types resolved by Santisuk Brachystomatidae in Thailand, is entirely (1988) and designated as Upper Montane confined to the upper slopes of the mountain Forest (at >1,800 m), Lower Montane Forest (Plant, 2009a; 2010a) and several genera of (at 1,000 – 1,800 m) and Lowland Deciduous Hybotidae are local endemics, restricted to Forest (at <1,000 m) respectively. Because the upper forests of the peak (Grootaert and the elevational succession of Upper Shamshev, 2009; Plant et al., 2019). Recent Montane Forest - Lower Montane Forest - taxonomic revisions (e.g. Plant, 2009b; Lowland Deciduous Forests with which 2010b; 2013; 2015) have identified MHE, ME and DL Diptera communities are numerous species of Empididae and associated is widespread in northern Hybotidae restricted to high elevation Thailand, it is likely that the description of habitats on Doi Inthanon which is clearly a diversity characteristics of fly communities ‘hot-spot’ of empidoid diversity and found on Doi Inthanon is scalable over a endemism (Plant, 2009c). Apart from much wider geographic area (Plant et al., remarkable endemism, another striking 2019), albeit with community turnover and feature of high elevation MHE communities local endemism influences superimposed. on Doi Inthanon is that many species are Montane evergreen forests occur widely extraordinarily abundant (Chatelain et al., in northern Thailand where they are 2018; Plant et al., 2011, 2019; Sinclair and important but threatened centres of Plant, 2017). The species abundance biodiversity (Pattanavibool and Dearden, distribution curves of EM and DL 2002) and this is especially true of Upper communities are similar but that of MHE is Montane Forest which is a rare habitat, of very different form and MHE mostly restricted to a few mountains in the communities are characteristically uneven Thanon Thongchai, Den Lao, Khun Tan and with high dominance and have fewer Luang Prabang ranges that rise above 1,800 numerically rare species compared to lower m. The most extensive tracts of Upper EM and DL communities (Plant et al., 2019). Montane Forest (only ~5 km2) are found on MHE communities are phylogenetically Doi Inthanon, Thailand’s highest mountain richer and also have a higher proportion of (2,565 m) in the Thanon Thongchai range, taxa considered to be of Palaearctic rather and a smaller patch near the summit of the than Oriental origin. Interestingly, the second highest mountain, Doi Phahompok temporal turnover of community (2,288m) in the Den Lao range. The summit composition is slower (seasonality is zone of Doi Inthanon is well known for its relaxed) compared with lower elevation rare and endemic biota, and there are, for communities. Biodiversity, or at least that of example, many insect species known, more Empidoidea, is structured very differently in or less, only from there, or which are at the MHE compared with EM and DL southern extremity of their ranges, communities. including, for example, Coleoptera (de While there can be no doubt that the Rougemont, 2003), Collembola (Bedos and Upper Montane Forests of Doi Inthanon Deharveng, 1994), Plecoptera (Sivec and with their associated MHE Empidoidea Stark, 2010) and Diptera (Hippa, 2011; communities are of exceptional interest and Takaoka et al., 2013). The Empidoidea conservation importance, the question fauna of Doi Inthanon is exceptionally rich remains, are other Upper Montane Forests in and important; for example, the family northern Thailand equally striking? Do they 18 TROPICAL NATURAL HISTORY 20(1), April 2020 warrant the particular attention deserved by a better understanding of local patterns of those on Doi Inthanon? Can we apply the endemism and richness providing rational description of diversity characteristics of support for delineating areas of conservation MHE Diptera communities across other priority in Thailand. Upper Montane Forests? To what extent does species composition turnover (β- MATERIALS AND METHODS diversity) across different representatives of this forest type? Given that Upper Montane Study site Forests occur as widely dispersed patches The study site on the mountain, Doi on mountain peaks that are separated from Phahompok (2,288m) is located in Chiang each other by extensive lowlands, should we Mai Province, northern Thailand. Three expect high levels of β-diversity with rich Malaise traps were positioned in Upper endemism amongst the communities of each Montane Forest, within 530 m horizontal isolated Upper Montane Forest patch? distance of each other, slightly offset from The Empidoidea inhabiting Upper the summit ridge at 2,036 m (Trap 1, Montane Forest of Doi Phahompok have 20.050417°N, 99.144056°E), 2,059 m (Trap been poorly surveyed compared with those 2, 20.052222°N, 99.142389°E) and 2,105 m on Doi Inthanon and although species of (Trap 3, 20.054917°N, 99.142389°E). Traps Hybotidae apparently endemic to the were run throughout 2014 and serviced mountain have been reported (Plant, 2013) monthly (note all samples were lost in and the previously mentioned taxonomic August, and two samples in September, revisions indicate a potentially species-rich probably due to interference by domestic empidoid fauna. Analysis of the distribution cattle). The study site and sampling of endemicity of the hybotid genus Hybos methodology at Doi Inthanon have been (Plant, 2013, 2014) suggested that both the described previously (Plant et al., 2018; Thanon Thongchai and Den Lao ranges are 2019). Briefly, it comprised 12 Malaise traps centres of endemism, so we might expect at run along a 21.7 km long elevational transect least some empidoid taxa to have ranges with three traps in Lowland Deciduous restricted to either Doi Inthanon or Doi Forest (one trap each at 412, 662 and 710 m), Phahompok. Nothing is known of how four in Lower Montane Forest (two each at diversity is structured in Upper Montane 1,376 and 1,639 m) and four in Upper Forest on Doi Phahompok. During 2014, we Montane Forest (two at 2,210 m two at 2,534 sampled Empidoidea in this habit on the m) and one at the summit bog (2,545 m). summit ridge of Doi Phahompok, Taxon sorting and taxonomy concomitant with
Recommended publications
  • Diptera, Empidoidea) of Switzerland
    The Atelestidae and Microphoridae (Diptera, Empidoidea) of Switzerland Autor(en): Merz, Bernhard Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 71 (1998) Heft 1-2 PDF erstellt am: 28.09.2021 Persistenter Link: http://doi.org/10.5169/seals-402695 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 71,27-31, 1998 The Atelestidae and Microphoridae (Diptera, Empidoidea) of Switzerland Bernhard Merz Entomological Collection, ETH Zentrum, CH-8092 Zürich, Switzerland The inconspicuous flies of the families Atelestidae and Microphoridae are only rarely collected.
    [Show full text]
  • Diptera, Empidoidea) 263 Doi: 10.3897/Zookeys.365.6070 Research Article Launched to Accelerate Biodiversity Research
    A peer-reviewed open-access journal ZooKeys 365: 263–278 (2013) DNA barcoding of Hybotidae (Diptera, Empidoidea) 263 doi: 10.3897/zookeys.365.6070 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea) Zoltán T. Nagy1, Gontran Sonet1, Jonas Mortelmans2, Camille Vandewynkel3, Patrick Grootaert2 1 Royal Belgian Institute of Natural Sciences, OD Taxonomy and Phylogeny (JEMU), Rue Vautierstraat 29, 1000 Brussels, Belgium 2 Royal Belgian Institute of Natural Sciences, OD Taxonomy and Phylogeny (Ento- mology), Rue Vautierstraat 29, 1000 Brussels, Belgium 3 Laboratoire des Sciences de l’eau et environnement, Faculté des Sciences et Techniques, Avenue Albert Thomas, 23, 87060 Limoges, France Corresponding author: Zoltán T. Nagy ([email protected]) Academic editor: K. Jordaens | Received 7 August 2013 | Accepted 27 November 2013 | Published 30 December 2013 Citation: Nagy ZT, Sonet G, Mortelmans J, Vandewynkel C, Grootaert P (2013) Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea). In: Nagy ZT, Backeljau T, De Meyer M, Jordaens K (Eds) DNA barcoding: a practical tool for fundamental and applied biodiversity research. ZooKeys 365: 263–278. doi: 10.3897/zookeys.365.6070 Abstract Empidoidea is one of the largest extant lineages of flies, but phylogenetic relationships among species of this group are poorly investigated and global diversity remains scarcely assessed. In this context, one of the most enigmatic empidoid families is Hybotidae. Within the framework of a pilot study, we barcoded 339 specimens of Old World hybotids belonging to 164 species and 22 genera (plus two Empis as outgroups) and attempted to evaluate whether patterns of intra- and interspecific divergences match the current tax- onomy.
    [Show full text]
  • Family Hybotidae Key to Genus Adapted from Collin (1960)
    Family Hybotidae key to genus adapted from Collin (1960) 1 All veins running straight to wing margin without apparent forking (except radio-cubital fork) and anal cell absent, or if present much shorter than the second basal cell. ...................................................2 Vein m always obviously forked (occasionally only soon after its base); vein r4+5 often forked. In rare cases when apparently neither of these veins is forked, the anal cell is present and longer than the second basal cell. .................................10 2 Humeri not differentiated and anal cell always absent. Head closely attached to front of thorax without a distinct 'neck'. .............................................................................3 Humeri distinctly differentiated or (in doubtful cases) anal cell present. Head attached to thorax by a distinct 'neck'. ........7 3 First basal cell decidedly shorter than second. ......................................................4 First and second basal cells equal, or almost equal, in length................................................................... .......... Genus Chersodromia 4 Veins r1 and r2+3 moderately long, the latter ending in the costa well beyond middle of the wing. ............................................................................................................5 Veins r1 and r2+3 very short, the latter ending in the costa at about middle of the wing. ....................... .......... Genus Stilpon 5 Jowls distinct below the eyes; a single pair of ocellar bristles
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Diptera: Empidoidea), with a Redefinition of the Tribe Ocydromiini
    © Copyright Australian Museum, 2000 Records of the Australian Museum (2000) Vol. 52: 161–186. ISSN 0067–1975 Revision of the Genus Apterodromia (Diptera: Empidoidea), With a Redefinition of the Tribe Ocydromiini BRADLEY J. SINCLAIR1 AND JEFFREY M. CUMMING 2 1 Zoologisches Forschungsinstitut und Museum Alexander Koenig, Adenauerallee 160, D-53113 Bonn, Germany [email protected] 2 Systematic Entomology Section, ECORC, Agriculture and Agri-Food Canada, K.W. Neatby Building, C.E.F., Ottawa, ON, Canada K1A 0C6 [email protected] ABSTRACT. The Australian endemic genus Apterodromia Oldroyd (Diptera: Empidoidea) is revised and includes four apterous species (A. evansi Oldroyd, A. minuta n.sp, A. setosa n.sp., and A. tasmanica n.sp.) and eight fully winged species (A. aurea n.sp., A. bickeli n.sp., A. irrorata n.sp., A. monticola n.sp., A. pala n.sp., A. spilota n.sp., A. tonnoiri n.sp., and A. vespertina n.sp.). The male of A. evansi is described and zoogeographic patterns of the genus are discussed. On the basis of wing venation and male terminalia Apterodromia is transferred from the Tachydromiinae to the tribe Ocydromiini (subfamily Ocydromiinae). The Ocydromiini is redefined, two new genera (Neotrichina n.gen. and Leptodromia n.gen.) are described, and all included genera are listed. Keys to major lineages of Australian Empidoidea and Southern Hemisphere genera of Ocydromiini are provided. The following new combinations are listed: Hoplopeza tachydromiaeformis (Bezzi), Leptodromia bimaculata (Bezzi), Neotrichina abdominalis (Collin), N. digna (Collin), N. digressa (Collin), N. distincta (Collin), N. elegans (Bigot), N. fida (Collin), N. indiga (Collin), N.
    [Show full text]
  • Stable Structural Color Patterns Displayed on Transparent Insect Wings
    Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling.
    [Show full text]
  • Vulnerability of At-Risk Species to Climate Change in New York (PDF
    Vulnerability of At-risk Species to Climate Change in New York Matthew D. Schlesinger, Jeffrey D. Corser, Kelly A. Perkins, and Erin L. White New York Natural Heritage Program A Partnership between The Nature Conservancy and the NYS Department of Environmental Conservation New York Natural Heritage Program i 625 Broadway, 5th Floor Albany, NY 12233-4757 (518) 402-8935 Fax (518) 402-8925 www.nynhp.org Vulnerability of At-risk Species to Climate Change in New York Matthew D. Schlesinger Jeffrey D. Corser Kelly A. Perkins Erin L. White New York Natural Heritage Program 625 Broadway, 5th Floor, Albany, NY 12233-4757 March 2011 Please cite this document as follows: Schlesinger, M.D., J.D. Corser, K.A. Perkins, and E.L. White. 2011. Vulnerability of at-risk species to climate change in New York. New York Natural Heritage Program, Albany, NY. Cover photos: Brook floater (Alismodonta varicosa) by E. Gordon, Spadefoot toad (Scaphiopus holbrookii) by Jesse Jaycox, and Black Skimmers (Rynchops niger) by Steve Young. Climate predictions are from www.climatewizard.org. New York Natural Heritage Program ii Executive summary Vulnerability assessments are rapidly becoming an essential tool in climate change adaptation planning. As states revise their Wildlife Action Plans, the need to integrate climate change considerations drives the adoption of vulnerability assessments as critical components. To help meet this need for New York, we calculated the relative vulnerability of 119 of New York’s Species of Greatest Conservation Need (SGCN) using NatureServe’s Climate Change Vulnerability Index (CCVI). Funding was provided to the New York Natural Heritage Program by New York State Wildlife Grants in cooperation with the U.S.
    [Show full text]
  • Diptera) Diversity in a Patch of Costa Rican Cloud Forest: Why Inventory Is a Vital Science
    Zootaxa 4402 (1): 053–090 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4402.1.3 http://zoobank.org/urn:lsid:zoobank.org:pub:C2FAF702-664B-4E21-B4AE-404F85210A12 Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: Why inventory is a vital science ART BORKENT1, BRIAN V. BROWN2, PETER H. ADLER3, DALTON DE SOUZA AMORIM4, KEVIN BARBER5, DANIEL BICKEL6, STEPHANIE BOUCHER7, SCOTT E. BROOKS8, JOHN BURGER9, Z.L. BURINGTON10, RENATO S. CAPELLARI11, DANIEL N.R. COSTA12, JEFFREY M. CUMMING8, GREG CURLER13, CARL W. DICK14, J.H. EPLER15, ERIC FISHER16, STEPHEN D. GAIMARI17, JON GELHAUS18, DAVID A. GRIMALDI19, JOHN HASH20, MARTIN HAUSER17, HEIKKI HIPPA21, SERGIO IBÁÑEZ- BERNAL22, MATHIAS JASCHHOF23, ELENA P. KAMENEVA24, PETER H. KERR17, VALERY KORNEYEV24, CHESLAVO A. KORYTKOWSKI†, GIAR-ANN KUNG2, GUNNAR MIKALSEN KVIFTE25, OWEN LONSDALE26, STEPHEN A. MARSHALL27, WAYNE N. MATHIS28, VERNER MICHELSEN29, STEFAN NAGLIS30, ALLEN L. NORRBOM31, STEVEN PAIERO27, THOMAS PAPE32, ALESSANDRE PEREIRA- COLAVITE33, MARC POLLET34, SABRINA ROCHEFORT7, ALESSANDRA RUNG17, JUSTIN B. RUNYON35, JADE SAVAGE36, VERA C. SILVA37, BRADLEY J. SINCLAIR38, JEFFREY H. SKEVINGTON8, JOHN O. STIREMAN III10, JOHN SWANN39, PEKKA VILKAMAA40, TERRY WHEELER††, TERRY WHITWORTH41, MARIA WONG2, D. MONTY WOOD8, NORMAN WOODLEY42, TIFFANY YAU27, THOMAS J. ZAVORTINK43 & MANUEL A. ZUMBADO44 †—deceased. Formerly with the Universidad de Panama ††—deceased. Formerly at McGill University, Canada 1. Research Associate, Royal British Columbia Museum and the American Museum of Natural History, 691-8th Ave. SE, Salmon Arm, BC, V1E 2C2, Canada. Email: [email protected] 2.
    [Show full text]
  • Zootaxa, Empidoidea (Diptera)
    ZOOTAXA 1180 The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera) BRADLEY J. SINCLAIR & JEFFREY M. CUMMING Magnolia Press Auckland, New Zealand BRADLEY J. SINCLAIR & JEFFREY M. CUMMING The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera) (Zootaxa 1180) 172 pp.; 30 cm. 21 Apr. 2006 ISBN 1-877407-79-8 (paperback) ISBN 1-877407-80-1 (Online edition) FIRST PUBLISHED IN 2006 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2006 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1180: 1–172 (2006) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1180 Copyright © 2006 Magnolia Press ISSN 1175-5334 (online edition) The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera) BRADLEY J. SINCLAIR1 & JEFFREY M. CUMMING2 1 Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany. E-mail: [email protected] 2 Invertebrate Biodiversity, Agriculture and Agri-Food Canada, C.E.F., Ottawa, ON, Canada
    [Show full text]
  • Fred Carl Harmston (1911-1995)
    MYIA, vol. 7, no. 1, pp. 1-39, figs. 1-29. September 30, 2004 Fred Carl Harmston (1911-1995) Richard L. Hurley*, Justin B. Runyon**, and Paul H. Arnaud, Jr.*** *Department of Entomology, Montana State University, Bozeman, Montana 59717 USA (e-mail: [email protected]); **Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802 USA (e-mail: [email protected]); ***Department of Entomology, California Academy of Sciences, California Academy of Sciences, 875 Howard Street, San Francisco, California 94103 USA (e-mail: [email protected]) Fred Carl Harmston, actually registered Carl Frederick Leon Harmston at birth, was born October 31, 1911, in Roosevelt, Utah, to Marion Eugene Harmston and Isabella Thurston Harmston. He was their fourth child, having two older brothers and an older sister, and was their only child born in Utah. The Harmston branch of the family tree traces its roots back to Lincolnshire, England, where a town bears their name. His father was born in Missouri in 1861 and died in Roosevelt, in 1922. His mother was born in Maine in 1869 and also died in Roosevelt, in 1937. Fred’s parents met in Hyannis, Nebraska, and were married November 27, 1897, in Wessington Springs, South Dakota, the first couple to be wed in the new Congregational Church. Fred’s father was a pharmacist, and a graduate of the College of Optometry in Chicago, Illinois. He operated drug stores in Teluride Colorado, Weiser Idaho, White Lake and Wessington Springs in South Dakota, and finally in Roosevelt Utah. The family arrived in Roosevelt four years after it was settled.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • A New Genus of Empididae (Diptera) with Enlarged Postpedicels in Mid- Cretaceous Burmese Amber - in PRESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340003977 A new genus of Empididae (Diptera) with enlarged postpedicels in mid- Cretaceous Burmese amber - IN PRESS Article in Historical Biology · April 2020 DOI: 10.1080/08912963.2020.1743700 CITATIONS READS 0 52 2 authors: George Poinar Fernando E. Vega Oregon State University United States Department of Agriculture 764 PUBLICATIONS 13,423 CITATIONS 232 PUBLICATIONS 5,428 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Coffee berry borer View project Taxonomy of neotropical and fossil Strepsiptera (Insecta) View project All content following this page was uploaded by Fernando E. Vega on 21 March 2020. The user has requested enhancement of the downloaded file. Historical Biology An International Journal of Paleobiology ISSN: 0891-2963 (Print) 1029-2381 (Online) Journal homepage: https://www.tandfonline.com/loi/ghbi20 A new genus of Empididae (Diptera) with enlarged postpedicels in mid-Cretaceous Burmese amber George O. Poinar & Fernando E. Vega To cite this article: George O. Poinar & Fernando E. Vega (2020): A new genus of Empididae (Diptera) with enlarged postpedicels in mid-Cretaceous Burmese amber, Historical Biology, DOI: 10.1080/08912963.2020.1743700 To link to this article: https://doi.org/10.1080/08912963.2020.1743700 Published online: 21 Mar 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=ghbi20 HISTORICAL BIOLOGY https://doi.org/10.1080/08912963.2020.1743700 ARTICLE A new genus of Empididae (Diptera) with enlarged postpedicels in mid-Cretaceous Burmese amber George O.
    [Show full text]