Spider and Scorpion Case

Total Page:16

File Type:pdf, Size:1020Kb

Spider and Scorpion Case Spider and Scorpion case Black widow spider (Lactrodectus hesperus) Black widows are notorious spiders identified by the colored, hourglass-shaped mark on their abdomens. Several species answer to the name, and they are found in temperate regions around the world. This spider's bite is much feared because its venom is reported to be 15 times stronger than a rattlesnake's. In humans, bites produce muscle aches, nausea, and a paralysis of the diaphragm that can make breathing difficult; however, contrary to popular belief, most people who are bitten suffer no serious damage—let alone death. But bites can be fatal—usually to small children, the elderly, or the infirm. Fortunately, fatalities are fairly rare; the spiders are nonaggressive and bite only in self-defense, such as when someone accidentally sits on them. These spiders spin large webs in which females suspend a cocoon with hundreds of eggs. Spiderlings disperse soon after they leave their eggs, but the web remains. Black widow spiders also use their webs to ensnare their prey, which consists of flies, mosquitoes, grasshoppers, beetles, and caterpillars. Black widows are comb- footed spiders, which means they have bristles on their hind legs that they use to cover their prey with silk once it has been trapped. To feed, black widows puncture their insect prey with their fangs and administer digestive enzymes to the corpses. By using these enzymes, and their gnashing fangs, the spiders liquefy their prey's bodies and suck up the resulting fluid. Giant desert hairy scorpion (Hadrurus arizonensis) Hadrurus arizonensis is distributed throughout the Sonora and Mojave deserts. In Mexico, the species' range flanks the Gulf of Californiain Sonora and Baja California Norte. In the United States, it is found in the western two thirds of Arizona, the Colorado Desert and Mojave Desert regions of southern California, southern Nevada, and extreme southwestern Utah. It is a burrowing scorpion, but is commonly found under rocks containing moisture. Its diet consists of large insects, spiders, and smallvertebrates.[2] This is an aggressive and active scorpion, which, as with all scorpions, is nocturnal. Like all scorpions, the giant desert hairy scorpion gives birth to live young, which remain on the mother's back for a week or more before leaving. Although this scorpion is big, its venom is not very potent, and its sting is commonly perceived to be about as painful as a honeybee's sting. The venom has an LD50 value of 168 mg/kg.[3] However, an allergic reactionto its venom can be fatal; symptoms can include difficulty breathing, excessive swelling, and prolonged pain. • Desert hair scorpions are one of only a few animals that phosphoresce (video) under ultraviolet light produced by a black light. This is due to fluorescent chemicals in the cuticle. One known fluorescent component is beta-carboline. • They can detect air movement up to a foot away through the use of their sensory hairs on their pedipalps. The tips of theirs legs have small organs that can detect ground vibrations. • When they are agitated they will raise their body higher off the ground and open their pincers as well as lift their tail. When they are calm they will lie flat and look relaxed. • When scorpions mate they perform a dance with their mate (video). The goal of this dance is for the male to place a spermatophore on the ground and drag the female over it so that she will take it into her body. When her babies hatch she will carry them around on her back. Giant redheaded centipede (Scolopendra heros) All centipedes are believed to be predators. Their diet is composed primarily of small arthropods, although some scolopendromorphs have been found feeding on toads, small snakes, and other vertebrates. Moths are a preferred diet for captive giant redheaded centipedes. The prey is captured and killed or stunned with the poison claws. Poison glands are located in the basal segments of the claws or fangs, sometimes called maxillipeds. Each gland drains its toxic contents through a small opening near the tip of the fang. In the mid 1920s, Dr. Baerg tested the effect of the venom by inducing a centipede to bite one of his little fingers, leaving the fangs inserted for about four seconds. The bite was followed by a sharp and strictly local pain, which began to subside noticeably after about 15 minutes. In about two hours the pain was only very slight, but there was a general swelling in the finger. Three hours after the bite, most symptoms had disappeared. Scolopendra heros is purported to make tiny incisions with its legs while walking across human skin. When the animal is irritated, a poison is supposedly produced near the base of each leg and dropped into the wounds causing inflammation and irritation. Bites are not fatal but may cause severe swelling and irritation for hours. If you are bitten, seek medical attention if the swelling worsens or other symptoms occur. This species might also make tiny cuts with its legs while walking across human skin, into which an irritating venom is secreted. Salt Lake County brown tarantula (Aphonopelma iodius) The teddy bear of the desert, these harmless fuzzy darlings live much longer than you might think -- up to 25 years for a female and about half that for a male! Tarantulas aren't the fastest runners. Their primary defense is the irritating hairs on their abdomens. When chased or frightened, they can use a back leg to brush these hairs into the eyes or mouth of a predator. In the late summer, you're likely to see tarantulas wandering in the foothills. They aren't migrating. They are mature males looking for females, with little interest in food or their own safety...just mating. In spite of their fearsome appearance, tarantulas are harmless to humans and large pets (e.g., dogs and cats). Their venom is of no medical significance, and, nobody has ever died from such a bite. Most people compare the bite to that of a bee sting and experience no lasting ill-effects other than mild to moderate pain and slight swelling at the site of the bite. Salt Lake County Brown Tarantula are the largest spiders in North America. They are typically two to three inches long and are covered in fine hair ranging in color from tan to dark brown. They have a dark triangle surrounding the eye turret on the carapace which is a diagnostic tool for recognizing this tarantula. They live in holes covered in web. The male follows the sent of a female tarantula to the receptive female's burrow, which she has typically excavated in dry, sandy soil and lined with silk webbing. To alert the female of his presence, the male taps one of his legs against the ground until the female emerges. The male must then participate in a dangerous mating dance, wherein he fends off the female, who wishes to devour him, by using hooks on his front legs. Aphonopelma are arguably the most speciose lineage of spiders, comprising of 121 genera and 939 described species. There has been an over-description of the Aphonopelma species resulting in a nomenclatural and taxonomic nightmare. Brown recluse spider (Loxosceles reclusa) The bite of the brown recluse spider is often not immediately painful, although a slight stinging sensation may be felt. This spider’s venom includes a neurotoxic component, but the principal concern is its necrotic or cytotoxic properties, which cause it to destroy the tissue where it is injected. About seven hours after a bite, a small blister-like sore appears that will grow in size. There may be a generalized or systemic body reaction in sensitive individuals. Symptoms include chills, fever, bloody urine, fatigue, jaundice, pain in the joints, nausea, rash, and in extremely rare cases, convulsions and death. The amount of damage depends on the amount of venom injected. The damaged area may be the size of a dime or as large as 20 centimeters in diameter. Affected tissue becomes gangrenous, turns black, and eventually sloughs off, leaving a depression in the skin. Healing is slow and scar tissue results from the wound. Healing may take six to eight weeks or require up to a year if the wound is large. Hobo spider (Eratigena agrestis) Hobo spider bites are not known to be fatal to healthy humans. The necrosis in purported cases is similar to, but milder than, that caused by the brown recluse spider, and in severe cases can take months to heal. Other reported symptoms include intense headaches, vision abnormalities, and/or general feelings of malaise. These symptoms are not confirmed for the hobo spider bite, specifically due to lack of positive identification of the spider by an expert, and the Oregon Poison Center (affiliated with the Oregon Health & Science University) is attempting to gather definitive evidence regarding the validity of these reports as of September 2007. .
Recommended publications
  • 1 It's All Geek to Me: Translating Names Of
    IT’S ALL GEEK TO ME: TRANSLATING NAMES OF INSECTARIUM ARTHROPODS Prof. J. Phineas Michaelson, O.M.P. U.S. Biological and Geological Survey of the Territories Central Post Office, Denver City, Colorado Territory [or Year 2016 c/o Kallima Consultants, Inc., PO Box 33084, Northglenn, CO 80233-0084] ABSTRACT Kids today! Why don’t they know the basics of Greek and Latin? Either they don’t pay attention in class, or in many cases schools just don’t teach these classic languages of science anymore. For those who are Latin and Greek-challenged, noted (fictional) Victorian entomologist and explorer, Prof. J. Phineas Michaelson, will present English translations of the scientific names that have been given to some of the popular common arthropods available for public exhibits. This paper will explore how species get their names, as well as a brief look at some of the naturalists that named them. INTRODUCTION Our education system just isn’t what it used to be. Classic languages such as Latin and Greek are no longer a part of standard curriculum. Unfortunately, this puts modern students of science at somewhat of a disadvantage compared to our predecessors when it comes to scientific names. In the insectarium world, Latin and Greek names are used for the arthropods that we display, but for most young entomologists, these words are just a challenge to pronounce and lack meaning. Working with arthropods, we all know that Entomology is the study of these animals. Sounding similar but totally different, Etymology is the study of the origin of words, and the history of word meaning.
    [Show full text]
  • Volume 4 Issue 1B
    Captive & Field Herpetology Volume 4 Issue 1 2020 Volume 4 Issue 1 2020 ISSN - 2515-5725 Published by Captive & Field Herpetology Captive & Field Herpetology Volume 4 Issue1 2020 The Captive and Field Herpetological journal is an open access peer-reviewed online journal which aims to better understand herpetology by publishing observational notes both in and ex-situ. Natural history notes, breeding observations, husbandry notes and literature reviews are all examples of the articles featured within C&F Herpetological journals. Each issue will feature literature or book reviews in an effort to resurface past literature and ignite new research ideas. For upcoming issues we are particularly interested in [but also accept other] articles demonstrating: • Conflict and interactions between herpetofauna and humans, specifically venomous snakes • Herpetofauna behaviour in human-disturbed habitats • Unusual behaviour of captive animals • Predator - prey interactions • Species range expansions • Species documented in new locations • Field reports • Literature reviews of books and scientific literature For submission guidelines visit: www.captiveandfieldherpetology.com Or contact us via: [email protected] Front cover image: Timon lepidus, Portugal 2019, John Benjamin Owens Captive & Field Herpetology Volume 4 Issue1 2020 Editorial Team Editor John Benjamin Owens Bangor University [email protected] [email protected] Reviewers Dr James Hicks Berkshire College of Agriculture [email protected] JP Dunbar
    [Show full text]
  • Introduction to Arthropod Groups What Is Entomology?
    Entomology 340 Introduction to Arthropod Groups What is Entomology? The study of insects (and their near relatives). Species Diversity PLANTS INSECTS OTHER ANIMALS OTHER ARTHROPODS How many kinds of insects are there in the world? • 1,000,0001,000,000 speciesspecies knownknown Possibly 3,000,000 unidentified species Insects & Relatives 100,000 species in N America 1,000 in a typical backyard Mostly beneficial or harmless Pollination Food for birds and fish Produce honey, wax, shellac, silk Less than 3% are pests Destroy food crops, ornamentals Attack humans and pets Transmit disease Classification of Japanese Beetle Kingdom Animalia Phylum Arthropoda Class Insecta Order Coleoptera Family Scarabaeidae Genus Popillia Species japonica Arthropoda (jointed foot) Arachnida -Spiders, Ticks, Mites, Scorpions Xiphosura -Horseshoe crabs Crustacea -Sowbugs, Pillbugs, Crabs, Shrimp Diplopoda - Millipedes Chilopoda - Centipedes Symphyla - Symphylans Insecta - Insects Shared Characteristics of Phylum Arthropoda - Segmented bodies are arranged into regions, called tagmata (in insects = head, thorax, abdomen). - Paired appendages (e.g., legs, antennae) are jointed. - Posess chitinous exoskeletion that must be shed during growth. - Have bilateral symmetry. - Nervous system is ventral (belly) and the circulatory system is open and dorsal (back). Arthropod Groups Mouthpart characteristics are divided arthropods into two large groups •Chelicerates (Scissors-like) •Mandibulates (Pliers-like) Arthropod Groups Chelicerate Arachnida -Spiders,
    [Show full text]
  • INSECTA MUNDIA Journal of World Insect Systematics
    INSECTA MUNDI A Journal of World Insect Systematics 0573 A fourth account of centipede (Chilopoda) predation on bats T. Todd Lindley 3300 Teton Lane Norman, OK 73072 USA Jesús Molinari Departamento de Biología Universidad de Los Andes Mérida 5101 Venezuela Rowland M. Shelley Department of Entomology and Plant Pathology University of Tennessee Knoxville, TN 37996 USA Barry N. Steger 107 Saint James Street Borger, TX 79007 USA Date of Issue: August 25, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL T. Todd Lindley, Jesús Molinari, Rowland M. Shelley, and Barry N. Steger A fourth account of centipede (Chilopoda) predation on bats Insecta Mundi 0573: 1–4 ZooBank Registered: urn:lsid:zoobank.org:pub:53C2B8CA-DB7E-4921-94C5-0CA7A8F7A400 Published in 2017 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Ab- stracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality.
    [Show full text]
  • Review of the Subspecies of Scolopendra Subspinipes Leach, 1815 with the New Description of the South Chinese Member of the Genu
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2012 Band/Volume: 035 Autor(en)/Author(s): Kronmüller Christian Artikel/Article: Review of the subspecies of Scolopendra subspinipes Leach, 1815 with the new description of the South Chinese member of the genus Scolopendra Linnaeus, 1758 named Scolopendra hainanum spec. nov. (Myriapoda, Chilopoda, Scolopendridae). 19-27 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 35 1 19-27 München, August 2012 ISSN 0341-8391 Review of the subspecies of Scolopendra subspinipes Leach, 1815 with the new description of the South Chinese member of the genus Scolopendra Linnaeus, 1758 named Scolopendra hainanum spec. nov. (Myriapoda, Chilopoda, Scolopendridae) Christian Kronmüller Kronmüller, C. 2012. Review of the subspecies of Scolopendra subspinipes Leach, 1815 with the new description of the South Chinese member of the genus Scolo- pendra Linnaeus, 1758 named Scolopendra hainanum spec. nov. (Myriapoda, Chilo- poda, Scolopendridae). Spixiana 35 (1): 19-27. To clarify their discrimination, the taxa of the Scolopendra subspinipes group, formerly treated as subspecies of this species, are reviewed. Scolopendra dehaani stat. revalid. and Scolopendra japonica stat. revalid. are reconfirmed at species level. Scolopendra subspinipes cingulatoides is raised to species level. This species is re- named to Scolopendra dawydoffi nom. nov. to avoid homonymy with Scolopendra cingulatoides Newport, 1844 which was placed in synonymy under Scolopendra cingulata Latreille, 1829 by Kohlrausch (1881). Scolopendra subspinipes piceoflava syn. nov. and Scolopendra subspinipes fulgurans syn. nov. are proposed as new synonyms of Scolopendra subspinipes, which is now without subspecies.
    [Show full text]
  • A New Species of North American Tarantula , Aphonopelma Paloma (Araneae, Mygalomorphae, Theraphosidae )
    1992. The Journal of Arachnology 20 :189—199 A NEW SPECIES OF NORTH AMERICAN TARANTULA , APHONOPELMA PALOMA (ARANEAE, MYGALOMORPHAE, THERAPHOSIDAE ) Thomas R. Prentice: Department of Entomology, University of California, Riverside , California 92521, US A ABSTRACT. Aphonopelma paloma new species, is distinguished from all other North American tarantula s by its unusually small size and presence of setae partially or completely dividing the scopula of tarsus IV i n both sexes. Both sexes also are characterized by a general reduction of the scopula on metatarsus IV . Males are characterized by a swollen third femur . In 1939 and 1940 R. V. Chamberlin and W. with anterior and posterior edges in the same Ivie described almost all of the currently recog- plane. All ink drawings except femora were aide d nized North American theraphosid spiders . De- by a camera lucida. Palpal bulb and seminal re- spite the acknowledged significance of their work , ceptacles were cleared in 10% NaOH (for 12 hr. it is difficult to apply Chamberlin's keys wit h at 50 °C.) prior to illustration . Scanning electron much success even in dealing with specimen s micrographs were taken with a JEOL JSM C35 . from type localities, primarily because their small Abbreviations for eyes are standard for Araneae. sample sizes did not allow variational assess- For leg spination, abbreviations are as follows : ment. Eleven of these species descriptions were a = apical, b = basal, d = dorsal, e = preapical, based on single males, five on single females, an d L = left, m = medial, p = prolateral direction, r three on two males each (Chamberlin & Ivie 1939; = retrolateral direction, R = right, usu .
    [Show full text]
  • Living Environment Glossary
    High School Level Living Environment Glossary y English | Punjabi Translation of Living Environment terms based on the Coursework for Living Environment Grades 9 to 12. Glossar This glossary is to PROVIDE PERMITTED TESTING ACCOMMODATIONS of ELL/MLL students. It should also be used for INSTRUCTION during the school year. The glossary may be downloaded, printed and disseminated to educators, parents and ELLs/MLLs. Please click here for the New York State Office of Bilingual Education and World Languages Webpage on "Assessment and Testing Accommodations" THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234 Updated: October 2018 GLOSSARY ENGLISH LANGUAGE ARTS ENGLISH ‐ SPANISH THE STATE EDUCATION DEPARTMENT / THE UNIVERSITY OF THE STATE OF NEW YORK / ALBANY, NY 12234 P‐16 Office of Elementary, Middle, Secondary and Continuing Education and Office of Higher Education Office of Bilingual Education and Foreign Language Studies http://www.emsc.nysed.gov/biling/ THE UNIVERSITY OF THE STATE OF NEW YORK Regents of the University BETTY A. ROSA, Chancellor, B.A., M.S. in Ed., M.S. in Ed., M.Ed., Ed.D. ............ Bronx T. ANDREW BROWN, Vice Chancellor, B.A., J.D. ………………......................................... Syracuse NAN EILEEN MEAD, B.A. ………….................................................................................. Manhattan JOSEPHINE VICTORIA FINN, B.A., J.D. ……………………................................................... Albany BEVERLY L. OUDERKIRK, B.S., M.S. ............................................................................
    [Show full text]
  • Homeowner Guide to Scorpions and Their Relatives
    HOMEOWNER Guide to by Edward John Bechinski, Dennis J. Schotzko, and Craig R. Baird CIS 1168 Scorpions and their relatives “Arachnid” is the scientific classification category for all eight-legged relatives of insects. Spiders are the biggest group of arachnids, with nearly 3800 species known from the U.S and Canada. But the arachnid category includes other types of eight-legged creatures that sometime cause concern. Some of Idaho’s non-spider arachnids – such as scorpions -- pose potential threats to human health. Two related non-spider arachnids – sun scorpions and pseudoscorpions – look fearsome but are entirely harmless. This publication will help you identify these three groups and understand the threats they pose. All three of these groups almost always are seen as lone individuals that do not require any control. Scorpions IDENTIFICATION AND BIOLOGY FLUORESCENT SCORPIONS Scorpions are easily identified by their claw-like pincers at the The bodies of some scorpions – normally pale tan to darker red-brown – front of the head and their thin, many-segmented abdomen that glow yellow-green when exposed to ultraviolet light. Even fossils millions ends in an enlarged bulb with a curved sting at the tip (figure 1). of years old fluoresce under ultraviolet light. Sun spiders similarly glow yel- Five species ranging in size from 2 to 7 inches long occur in low-green under UV light. Idaho. Scorpions primarily occur in the sagebrush desert of the southern half of Idaho, but one species – the northern scorpion (Paruroctonus boreus)– occurs as far north as Lewiston, along the Snake River canyon of north-central Idaho.
    [Show full text]
  • Phylogenomic Resolution of Sea Spider Diversification Through Integration Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Phylogenomic resolution of sea spider diversification through integration of multiple data classes 1Jesús A. Ballesteros†, 1Emily V.W. Setton†, 1Carlos E. Santibáñez López†, 2Claudia P. Arango, 3Georg Brenneis, 4Saskia Brix, 5Esperanza Cano-Sánchez, 6Merai Dandouch, 6Geoffrey F. Dilly, 7Marc P. Eleaume, 1Guilherme Gainett, 8Cyril Gallut, 6Sean McAtee, 6Lauren McIntyre, 9Amy L. Moran, 6Randy Moran, 5Pablo J. López-González, 10Gerhard Scholtz, 6Clay Williamson, 11H. Arthur Woods, 12Ward C. Wheeler, 1Prashant P. Sharma* 1 Department of Integrative Biology, University of Wisconsin–Madison, Madison, WI, USA 2 Queensland Museum, Biodiversity Program, Brisbane, Australia 3 Zoologisches Institut und Museum, Cytologie und Evolutionsbiologie, Universität Greifswald, Greifswald, Germany 4 Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), c/o Biocenter Grindel (CeNak), Martin-Luther-King-Platz 3, Hamburg, Germany 5 Biodiversidad y Ecología Acuática, Departamento de Zoología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain 6 Department of Biology, California State University-Channel Islands, Camarillo, CA, USA 7 Départment Milieux et Peuplements Aquatiques, Muséum national d’Histoire naturelle, Paris, France 8 Institut de Systématique, Emvolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Concarneau, France 9 Department of Biology, University of Hawai’i at Mānoa, Honolulu, HI, USA Page 1 of 31 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.31.929612; this version posted February 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Louisiana's Animal Species of Greatest Conservation Need (SGCN)
    Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus
    [Show full text]
  • Chilopoda; Scolopendridae
    Bijdragen tot dl Dierkunde, 55 (1): 125-130 — 1985 Possible species isolation mechanisms in some scolopendrid centipedes (Chilopoda; Scolopendridae) by J.G.E. Lewis Taunton School, Taunton, Somerset TA2 6AD, England the femur of Abstract are seen on Eupolybothrus spp. Various other lithobiid secondary sexual sexual characters in dis- Secondary centipedes are briefly characters have been reviewed by Lewis (1981). cussed and it is that the the suggested spines on prefemora of the described Differences type above are of the last pair of legs in some scolopendrids are used in presumably associated with mating behaviour specific discrimination prior to mating. The hypothesis is in which male and female head discussed with reference of the come together to Scolopendra spp. eastern Mediterranean,north-east Africa and Arabia. to tail, and the antennae and the last pair of legs Where species of Scolopendra with identical The virtually are tapped. morphological adaptations in spinulation on the last legs are sympatric, a large size dif- the males would serve for the femalesto identify ference exists between them. different and sex. It is that in where the species suggested some genera prefemoral have been inhibited. In spines are absent, speciation may the where be absent genus Otostigmus spines may or spine similar in number of other patterns are very a species DIMORPHISM IN SCOLOPENDRIDAE secondary sexual characters have developed. Sexual is also in dimorphism seen the scolopen- INTRODUCTION dromorph family Scolopendridae. In Scolopendra morsitans Linnaeus the dorsal side of the Centipedes not infrequently exhibit secondary prefemur, femur and sometimes the tibiaof the last of is sexual characters.
    [Show full text]
  • Morphology, Histology and Histochemistry of the Venom Apparatus of the Centipede, Scolopendra Valida (Chilopoda, Scolopendridae)
    Int. J. Morphol., 28(1):19-25, 2010. Morphology, Histology and Histochemistry of the Venom Apparatus of the Centipede, Scolopendra valida (Chilopoda, Scolopendridae) Morfología, Histología e Histoquímica del Aparato Venenoso del Ciempiés, Scolopendra valida (Chilopoda, Scolopendridae) Bashir M. Jarrar JARRAR, B. M. Morphology, histology and histochemistry of the venom apparatus of the centipede, Scolopendra valida ( Chilopoda, Scolopendridae). Int. J. Morphol., 28(1):19-25, 2010. SUMMARY: Morphological, histological and histochemical characterizations of the venom apparatus of the centapede, S. valida have been investigated. The venom apparatus of Scolopendra valida consists of a pair of maxillipedes and venom glands situated anteriorly in the prosoma on either side of the first segment of the body. Each venom gland is continuous with a hollow tubular claw possessing a sharp tip and subterminal pore located on the outer curvature. The glandular epithelium is folded and consists of a mass of secretory epithelium, covered by a sheath of striated muscles. The secretory epithelium consists of high columnar venom-producing cells having dense cytoplasmic venom granules. The glandular canal lacks musculature and is lined with chitinous internal layer and simple cuboidal epithelium. The histochemical results indicate that the venom-producing cells of both glands elaborate glycosaminoglycan, acid mucosubstances, certain amino acids and proteins, but are devoid of glycogen. The structure and secretions of centipede venom glands are discussed within the context of the present results. KEY WORDS: Scolopendra valida; Venom apparatus; Microanatomy; Centapede; Saudi Arabia. INTRODUCTION Centipedes are distributed widely, especially in warm, centipedes have been reported to cause constitutional and temperate and tropical region (Norris, 1999; Lewis, 1981, systemic symptoms including: severe pain, local pruritus, 1996).
    [Show full text]