Exploring the Evolution and Terrestrialization of Scorpions (Arachnida: Scorpiones) with Rocks and Clocks

Total Page:16

File Type:pdf, Size:1020Kb

Exploring the Evolution and Terrestrialization of Scorpions (Arachnida: Scorpiones) with Rocks and Clocks Howard, R., Edgecombe, G. D., Legg, D., Pisani, D., & Lozano- Fernandez, J. (2019). Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks. Organisms Diversity and Evolution, 19(1), 71-86. https://doi.org/10.1007/s13127- 019-00390-7 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1007/s13127-019-00390-7 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Springer at https://doi.org/10.1007/s13127-019-00390-7 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ Organisms Diversity & Evolution (2019) 19:71–86 https://doi.org/10.1007/s13127-019-00390-7 REVIEW Exploring the evolution and terrestrialization of scorpions (Arachnida: Scorpiones) with rocks and clocks Richard J. Howard1,2,3 & Gregory D. Edgecombe2 & David A. Legg4 & Davide Pisani3 & Jesus Lozano-Fernandez5,3 Received: 3 August 2018 /Accepted: 2 January 2019 /Published online: 6 February 2019 # The Author(s) 2019 Abstract Scorpions (Arachnida: Scorpiones Koch, 1837) are an ancient chelicerate arthropod lineage characterised by distinctive subdi- vision of the opisthosoma and venomous toxicity. The crown group is represented by over 2400 extant species, and unambiguous fossil representatives are known at least from the Cretaceous Period. However, a number of extinct scorpion lineages existed in the Palaeozoic Era, many of which are of a contentious marine (or at least semi-aquatic) lifestyle, and have long caused confusion regarding the nature of arachnid terrestrialization and arachnid phylogeny more broadly. To clarify the process of terrestrialization, there is a need to marry fossil and extant scorpions in a common evolutionary framework utilising modern advances in phylogenetics. Here, we review phylogenetic hypotheses of arachnid and scorpion interrelationships, relevant advances in phylogenetic divergence time estimation and the scorpion fossil record—especially with reference to terrestrialization. In addition, we provide a list of scorpion fossil calibrations for use in molecular dating and demonstrate their utility in deriving a novel scorpion time tree using Bayesian relaxed-clock methods. Our results reveal a window of divergence from 335 to 266 Mya for the scorpion crown group, consistent with a Pangean origin of crown scorpions inferred from the biogeographical distribution of the extant fauna. Keywords Scorpions . Arachnids . Molecular clocks . Terrestrialization . Phylogenetics . Palaeobiology Introduction Electronic supplementary material The online version of this article (https://doi.org/10.1007/s13127-019-00390-7) contains supplementary Scorpions (Arachnida: Scorpiones Koch, 1837) are a rela- material, which is available to authorized users. tively speciose (~ 2400 extant species, https://www.ntnu. no/ub/scorpion-files/) and medically significant (e.g. * Richard J. Howard Isbister and Saluba Bawaskar 2014) group of chelicerates. [email protected] The group has an almost cosmopolitan biogeographical dis- tribution, being absent only in boreal environments, 1 Department of Biosciences, University of Exeter, Stella Turk Antarctica and on some more isolated island land Building, Penryn Campus, Cornwall TR10 9TA, UK masses—though they have been translocated as anthropo- 2 Department of Earth Sciences, The Natural History Museum, genic introductions (e.g. Wanless 1977). Like most arach- Cromwell Road, London SW7 5BD, UK nids, with the exception of the more ecologically diverse 3 School of Earth Sciences and School of Biological Sciences, mites, scorpions are predators, generally feeding on other University of Bristol, Life Sciences Building, 24 Tyndall Avenue, arthropods and occasionally small vertebrates. Bristol BS8 1TQ, UK Extant scorpions are instantly recognisable in possessing a 4 School of Earth and Environmental Sciences, University of pair of chelate pincer-like pedipalps, a post-anal telson Manchester, Williamson Building, 176 Oxford Road, Manchester M13 9QQ, UK equipped with a stinger, and a pair of unique ventral comb- like sensory organs called pectines. The scorpion body plan is 5 Department of Evolutionary Biology, Ecology and Environmental Sciences and Biodiversity Research Institute (IRBio), University of also unique among arachnids with respect to its tagmosis. Barcelona, Avd. Diagonal 643, 08028 Barcelona, Spain Scorpions exhibit a clearly demarcated tripartite organisation 72 Howard R.J. et al. consisting of an anterior appendage-bearing prosoma (as in all 2014), their interrelationships are generally poorly resolved chelicerates generally), a medial mesosoma that houses the (Fig. 1), though some reasonable higher level clades are emer- reproductive and respiratory systems, and a posterior tail- gent. Tetrapulmonata—comprising Araneae, Amblypygi, like metasoma that terminates with the anus and precedes Thelyphonida, Schizomida, Uraraneida and Haptopoda; plus the telson—comprising a vesicle and aculeus via which ven- Trigonotarbida as Pantetrapulmonata (Shultz 2007)—is the om is delivered. most stable of these, with strong morphological support in Scorpions have an ancient evolutionary history, represent- the form of, among other characters, a common respiratory ed by a reasonably continuous fossil record stretching back as configuration with book lungs on the same two opisthosomal far as the Telychian Stage (Silurian, Llandovery) (Jeram 1998; segments (Shultz 1990, 2007). Multiple molecular phyloge- Dunlop 2010; Dunlop and Selden 2013; Waddington et al. netic studies have also given weight to Tetrapulmonata 2015). Scorpions therefore potentially constituted a compo- (Wheeler and Hayashi 1998; Shultz and Regier 2000; nent of the earliest faunas of complex terrestrial ecosystems, Pepato et al. 2010;Regieretal.2010; Rehm et al. 2012; along with myriapods and, at least by the Early Devonian, Sharma et al. 2014), and the most recent and data-rich of these hexapods (see Lozano-Fernandez et al. 2016). Little has been studies have allied this group to scorpions. Using different done however to constrain the radiation of the extant and fossil multilocus and phylogenomic-scale datasets Regier et al. scorpion lineages together in a common evolutionary frame- (2010) and Sharma et al. (2014) each recovered a sister group work. This is unfortunate as the evolutionary radiation(s) of relationship between Tetrapulmonata and Scorpiones. Sharma scorpions is of interest in the study of arthropod macroevolu- et al. (2014) renamed this clade Arachnopulmonata, replacing tion and biogeography, terrestrialization (both from a physio- the earlier Pulmonata (Firstman 1973) to avoid confusion with logical perspective and in the context of the evolution of the the clade of terrestrial molluscs of the same name. Scorpions, Earth system), and in resolving the problematic phylogenetic like tetrapulmonates, possess book lungs, whereas all other relationships between the arachnid orders. arachnids have non-pulmonate respiratory systems (typically As such, we aim to provide an interdisciplinary synthesis tracheae); and comparative study of scorpion and on scorpion evolution by reviewing modern and historical tetrapulmonate book lungs has revealed detailed structural phylogenetic hypotheses of scorpion interrelationships, and similarities that are consistent with them being homologous scorpion palaeontology—framed within the context of arach- (Scholtz and Kamenz 2006). Likewise, comparative work on nid terrestriality. We highlight the complementary nature of the tetrapulmonate and scorpion vascular systems has implied scorpions to critically evaluate molecular dating studies, and homology (Klußmann-Fricke and Wirkner 2016). provide additional fossil calibrations for dating the scorpion Furthermore, it has been identified that scorpions and spiders Tree of Life. In addition, we apply these fossil calibrations in a share a common ancestral whole genome duplication that is Bayesian relaxed-clock analysis in order to constrain the age present in all arachnopulmonates, therefore being an addition- of the scorpion crown group. al line of evidence suggesting the monophyly of the group (Leite et al. 2018). Previous phylogenetic hypotheses based on morphology Scorpions on the arachnid Tree of Life have posited scorpions in a range of positions on the chelicerate tree including (I) sister group to the remaining Within the Chelicerata, scorpions belong to the familiar group Arachnida (Weygoldt and Paulus 1979); (II) not arachnids Arachnida, the systematic origin of which can be traced back at all, but closer to eurypterids (sea scorpions) (Dunlop and to the nineteenth century French naturalist Jean-Baptiste Braddy 2001); and (III) distant from the tetrapulmonates but Lamarck (Lamarck 1801). In its modern iteration, Arachnida within Arachnida, allied with Opiliones (Shultz 1990, 2007; usually comprises 16 orders. These include the living Wheeler and Hayashi 1998; Giribet et al. 2002). Hypothesis Scorpiones (true scorpions), Pseudoscorpiones (pseudoscor- 1(Fig.2a) and hypothesis 3 (Fig. 2c) imply that the seem- pions or false
Recommended publications
  • Arachnozoogeographical Analysis of the Boundary Between Eastern Palearctic and Indomalayan Region
    Historia naturalis bulgarica, 23: 5-36, 2016 Arachnozoogeographical analysis of the boundary between Eastern Palearctic and Indomalayan Region Petar Beron Abstract: This study aims to test how the distribution of various orders of Arachnida follows the classical subdivision of Asia and where the transitional zone between the Eastern Palearctic (Holarctic Kingdom) and the Indomalayan Region (Paleotropic) is situated. This boundary includes Thar Desert, Karakorum, Himalaya, a band in Central China, the line north of Taiwan and the Ryukyu Islands. The conclusion is that most families of Arachnida (90), excluding most of the representatives of Acari, are common for the Palearctic and Indomalayan Regions. There are no endemic orders or suborders in any of them. Regarding Arach- nida, their distribution does not justify the sharp difference between the two Kingdoms (Paleotropical and Holarctic) in Eastern Eurasia. The transitional zone (Sino-Japanese Realm) of Holt et al. (2013) also does not satisfy the criteria for outlining an area on the same footing as the Palearctic and Indomalayan Realms. Key words: Palearctic, Indomalayan, Arachnozoogeography, Arachnida According to the classical subdivision the region’s high mountains and plateaus. In southern Indomalayan Region is formed from the regions in Asia the boundary of the Palearctic is largely alti- Asia that are south of the Himalaya, and a zone in tudinal. The foothills of the Himalaya with average China. North of this “line” is the Palearctic (consist- altitude between about 2000 – 2500 m a.s.l. form the ing og different subregions). This “line” (transitional boundary between the Palearctic and Indomalaya zone) is separating two kingdoms, therefore the dif- Ecoregions.
    [Show full text]
  • A Redescription and Family Placement of Uintascorpio Perry, 1995 from the Parachute Creek Member Of
    ARTÍCULO: A REDESCRIPTION AND FAMILY PLACEMENT OF UINTASCORPIO PERRY, 1995 FROM THE PARACHUTE CREEK MEMBER OF THE GREEN RIVER FORMATION (MIDDLE EOCENE) OF COLORADO, USA (SCORPIONES: BUTHIDAE) Jorge A. Santiago-Blay, Michael E. Soleglad & Victor Fet Abstract: The monotypic genus Uintascorpio Perry, 1995 from the Parachute Creek Member of ARTÍCULO: the Uinta Basin in the Green River Formation, Colorado, USA (Middle Eocene; ap- A redescription and family proximate age 48 Ma) is redescribed and placed in the family Buthidae (parvorder placement of Uintascorpio Perry, Buthida). The placement of this fossil in the Buthidae is supported by the diagnostic 1995 from the Parachute Creek carination of the pedipalp, metasoma, and other morphological details. This fossil is the Member of the Green River most ancient known record of the Buthidae in the New World and the oldest North Formation (Middle Eocene) of American scorpion fossil since Carboniferous. The existence of Uintascorpio halandra- Colorado, USA sorum reflects a long Cenozoic history of buthid evolution in North America. (Scorpiones: Buthidae) Key words: Scorpiones, Buthidae, Uintascorpio, Uintascorpio halandrasorum, Middle Eocene, morphology, Uinta Basin, Green River Formation, Colorado, USA. Jorge A. Santiago-Blay Department of Paleobiology, MRC-121 Redescripción y asignación familiar de Uintascorpio Perry, 1995 del and Department of Entomology, Eoceno Medio de Colorado, EEUU (Scorpiones: Buthidae) National Museum of Natural History, Resumen: Smithsonian Institution, El género monotípico Uintascorpio Perry, 1995 de Parachute Creek, en la Cuenca de P.O. Box 37012, Uinta, localizada en la Formación Green River, Colorado, Estados Unidos (Eoceno Washington, DC 20013-7012, USA Medio; edad aproximada 48 Ma) se redescribe y se asigna a la familia Buthidae (par- [email protected] vorder Buthida).
    [Show full text]
  • Tityus Asthenes (Pocock, 1893)
    Tityus asthenes (Pocock, 1893) by Michiel Cozijn Fig. 1:T.asthenes adult couple from Peru, top: ♀, down: ♂ M.A.C.Cozijn © 2008 What’s in a name? Tityus asthenes has no generally accepted common name, but they are sometimes sold under names like “Peruvian black scorpion” or as other species like Tityus metuendus (Pocock, 1897). Etymology: The name ‘asthenes’ in apposition to the generic name (Tityus) literally means weak or sick in ancient Greek, but it refers to ‘a thin or slender habitus’ in this case. M.A.C.Cozijn © 2011 All text and images. E-mail :[email protected] 1 Fig.2: part of South and Central America (modified) © Google maps 2011 Distribution Colombia, Costa Rica, Ecuador, Panama, Peru (1). Natural habitat T.asthenes is a common element of the tropical forests of Eastern Amazonia. T.asthenes can be found on tree trunks, but also on the forest floor under fallen logs and other debris, aswell as in the rootsystems of large trees. They are more common in rural areas. In Costa Rica the species is considered rare (Viquez, 1999). Most of the specimens in the hobby circuit originate from Peru, leading me to believe it is rather common in that country. Venom The LD50 value of the venom is 6.1 mg/ kg, and this value seems rather high when compared to T.serrulatus Lutz & Mello 1922 (0.43 Zlotkin et al, 1978) or T.bahiensis Perty 1833 (1.38, Hassan 1984). A study in Colombia revealed that systemic effects occurred mostly in children. Eighty patients where studied, of which fourteen sought medical help in a hospital.
    [Show full text]
  • The Phylogeny of Fossil Whip Spiders Russell J
    Garwood et al. BMC Evolutionary Biology (2017) 17:105 DOI 10.1186/s12862-017-0931-1 RESEARCH ARTICLE Open Access The phylogeny of fossil whip spiders Russell J. Garwood1,2*, Jason A. Dunlop3, Brian J. Knecht4 and Thomas A. Hegna4 Abstract Background: Arachnids are a highly successful group of land-dwelling arthropods. They are major contributors to modern terrestrial ecosystems, and have a deep evolutionary history. Whip spiders (Arachnida, Amblypygi), are one of the smaller arachnid orders with ca. 190 living species. Here we restudy one of the oldest fossil representatives of the group, Graeophonus anglicus Pocock, 1911 from the Late Carboniferous (Duckmantian, ca. 315 Ma) British Middle Coal Measures of the West Midlands, UK. Using X-ray microtomography, our principal aim was to resolve details of the limbs and mouthparts which would allow us to test whether this fossil belongs in the extant, relict family Paracharontidae; represented today by a single, blind species Paracharon caecus Hansen, 1921. Results: Tomography reveals several novel and significant character states for G. anglicus; most notably in the chelicerae, pedipalps and walking legs. These allowed it to be scored into a phylogenetic analysis together with the recently described Paracharonopsis cambayensis Engel & Grimaldi, 2014 from the Eocene (ca. 52 Ma) Cambay amber, and Kronocharon prendinii Engel & Grimaldi, 2014 from Cretaceous (ca. 99 Ma) Burmese amber. We recovered relationships of the form ((Graeophonus (Paracharonopsis + Paracharon)) + (Charinus (Stygophrynus (Kronocharon (Charon (Musicodamon + Paraphrynus)))))). This tree largely reflects Peter Weygoldt’s 1996 classification with its basic split into Paleoamblypygi and Euamblypygi lineages; we were able to score several of his characters for the first time in fossils.
    [Show full text]
  • Current Views on Chelicerate Phylogeny —A Tribute to Peter Weygoldt
    Current views on chelicerate phylogeny —A tribute to Peter Weygoldt The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Giribet, Gonzalo. 2018. “Current Views on Chelicerate phylogeny— A Tribute to Peter Weygoldt.” Zoologischer Anzeiger 273 (March): 7– 13. doi:10.1016/j.jcz.2018.01.004. Published Version doi:10.1016/j.jcz.2018.01.004 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:37308630 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP 1 Current views on chelicerate phylogeny—a tribute to Peter Weygoldt 2 3 Gonzalo Giribet 4 5 Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard 6 University, 26 Oxford Street, CamBridge, MA 02138, USA 7 8 Keywords: Arachnida, Chelicerata, Arthropoda, evolution, systematics, phylogeny 9 10 11 ABSTRACT 12 13 Peter Weygoldt pioneered studies of arachnid phylogeny by providing the first synapomorphy 14 scheme to underpin inter-ordinal relationships. Since this seminal worK, arachnid relationships 15 have been evaluated using morphological characters of extant and fossil taxa as well as multiple 16 generations of molecular sequence data. While nearly all datasets agree on the monophyly of 17 Tetrapulmonata, and modern analyses of molecules and novel morphological and genomic data 18 support Arachnopulmonata (a sister group relationship of Scorpiones to Tetrapulmonata), the 19 relationships of the apulmonate arachnid orders remain largely unresolved.
    [Show full text]
  • Geological History and Phylogeny of Chelicerata
    Arthropod Structure & Development 39 (2010) 124–142 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Review Article Geological history and phylogeny of Chelicerata Jason A. Dunlop* Museum fu¨r Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstraße 43, D-10115 Berlin, Germany article info abstract Article history: Chelicerata probably appeared during the Cambrian period. Their precise origins remain unclear, but may Received 1 December 2009 lie among the so-called great appendage arthropods. By the late Cambrian there is evidence for both Accepted 13 January 2010 Pycnogonida and Euchelicerata. Relationships between the principal euchelicerate lineages are unre- solved, but Xiphosura, Eurypterida and Chasmataspidida (the last two extinct), are all known as body Keywords: fossils from the Ordovician. The fourth group, Arachnida, was found monophyletic in most recent studies. Arachnida Arachnids are known unequivocally from the Silurian (a putative Ordovician mite remains controversial), Fossil record and the balance of evidence favours a common, terrestrial ancestor. Recent work recognises four prin- Phylogeny Evolutionary tree cipal arachnid clades: Stethostomata, Haplocnemata, Acaromorpha and Pantetrapulmonata, of which the pantetrapulmonates (spiders and their relatives) are probably the most robust grouping. Stethostomata includes Scorpiones (Silurian–Recent) and Opiliones (Devonian–Recent), while
    [Show full text]
  • Part XXIV. Leiurus (Buthidae), with Description of Leiurus Gubanensis Sp
    Scorpions of the Horn of Africa (Arachnida: Scorpiones). Part XXIV. Leiurus (Buthidae), with description of Leiurus gubanensis sp. n. František Kovařík & Graeme Lowe May 2020 — No. 309 Euscorpius Occasional Publications in Scorpiology EDITOR: Victor Fet, Marshall University, ‘[email protected]’ ASSOCIATE EDITOR: Michael E. Soleglad, ‘[email protected]’ TECHNICAL EDITOR: František Kovařík, ‘[email protected]’ Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology).Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome. Derivatio Nominis The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae). Euscorpius is located at: https://mds.marshall.edu/euscorpius/ Archive of issues 1-270 see also at: http://www.science.marshall.edu/fet/Euscorpius (Marshall University, Huntington, West Virginia 25755-2510, USA) ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS: Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives: • Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled) • Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/.
    [Show full text]
  • Annual Meeting 2002
    Newsletter 51 74 Newsletter 51 75 The Palaeontological Association 46th Annual Meeting 15th–18th December 2002 University of Cambridge ABSTRACTS Newsletter 51 76 ANNUAL MEETING ANNUAL MEETING Newsletter 51 77 Holocene reef structure and growth at Mavra Litharia, southern coast of Gulf of Corinth, Oral presentations Greece: a simple reef with a complex message Steve Kershaw and Li Guo Oral presentations will take place in the Physiology Lecture Theatre and, for the parallel sessions at 11:00–1:00, in the Tilley Lecture Theatre. Each presentation will run for a New perspectives in palaeoscolecidans maximum of 15 minutes, including questions. Those presentations marked with an asterisk Oliver Lehnert and Petr Kraft (*) are being considered for the President’s Award (best oral presentation by a member of the MONDAY 11:00—Non-marine Palaeontology A (parallel) Palaeontological Association under the age of thirty). Guts and Gizzard Stones, Unusual Preservation in Scottish Middle Devonian Fishes Timetable for oral presentations R.G. Davidson and N.H. Trewin *The use of ichnofossils as a tool for high-resolution palaeoenvironmental analysis in a MONDAY 9:00 lower Old Red Sandstone sequence (late Silurian Ringerike Group, Oslo Region, Norway) Neil Davies Affinity of the earliest bilaterian embryos The harvestman fossil record Xiping Dong and Philip Donoghue Jason A. Dunlop Calamari catastrophe A New Trigonotarbid Arachnid from the Early Devonian Windyfield Chert, Rhynie, Philip Wilby, John Hudson, Roy Clements and Neville Hollingworth Aberdeenshire, Scotland Tantalizing fragments of the earliest land plants Steve R. Fayers and Nigel H. Trewin Charles H. Wellman *Molecular preservation of upper Miocene fossil leaves from the Ardeche, France: Use of Morphometrics to Identify Character States implications for kerogen formation Norman MacLeod S.
    [Show full text]
  • The Coevolution Between Telson Morphology and Venom Glands in Scorpions (Arachnida)
    REVIEW OPEN ACCESS ISSN 1678-9199 www.jvat.org The coevolution between telson morphology and venom glands in scorpions (Arachnida) 1* Wilson R. Lourenço 1Muséum national d’Histoire naturelle, Sorbonne Universités, Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR7205-CNRS, MNHN, UPMC, EPHE, Paris, France. Abstract As in previous contributions to the JVATiTD, the aim of this note is to bring some general information on a particular aspect of the scorpion biology. An attempt is made to explain the possible coevolution of telson morphology and venom glands, which took place during several hundred million years and in particular since scorpions migrated from aquatic to terrestrial environments. Three components can be directly associated with predation and defensive behaviours: (1) morphology of the chelae and structure of the chelae fingers granulations; (2) morphology of the metasoma and in particular of the telson; (3) evolution of tegumentary glands in the telson toward different types Keywords: of venom glands. Since a number of recent contributions already treated some of these Scorpion aspects, I will limit my comments to the possible evolution of the telson in relation to Telson morphology the evolution of venom glands. As in previous contributions, the content of this article is basically addressed to non-specialists on scorpions whose research embraces scorpions Venom glands in several fields such as venom toxins and public health. Coevolution Introduction however, is not precise since scorpions certainly underwent major biochemical, physiological, behavioural and ecological It is well accepted by most authors that scorpions are among adaptations that have combined to ensure their continued success the most ancient and conservative arthropods both in origin over the past 450 million years and in particular their adaptation and body morphology [1,2,3].
    [Show full text]
  • Pdf 893.74 K
    Mesobuthus eupeus morphometric in Fars province Original article A Morphometric Study of Mesobuthus eupeus (Scorpionida: Buthidae) in Fars Province, Southern Iran Mohammad Ebrahimi1, MSc; Abstract Marziyeh Hamyali Ainvan2, Background: Scorpions are a group of poisonous invertebrates 1 MSc; Mohsen Kalantari , PhD; that are widely distributed in the Middle East countries including 1 Kourosh Azizi , PhD Iran. They cause serious injuries and death to humans and domestic animals in Fars province. These arthropods are settled in subtropical regions of the province. Methods: In this study, a total of 35 out of 430 Mesobuthus eupeus, including 15 males and 20 females, were selected, and then their major morphometric characteristics including the whole body length, pedipalp length, length and width of carapace, leg segments, abdomen, and tail segments, as well as the size of the poison gland, pectinal organ length, and pectinal tooth count were measured using a Collis-Vernier caliper scale. Results: The measurements of different body parts were bigger 1Research Center for Health in females than in males, except that pectinal tooth count in males Sciences, Institute of Health, (26.93mm±.88) was greater than that in females (22.20±1.00). Department of Medical Entomology The number of simple eyes on each side did not differ between and Vector Control, Shiraz University of Medical Sciences, Shiraz, Iran; males and females. Other features showed to be higher for 2Department of Epidemiology, females than males. Ilam University of Medical Sciences, Conclusion: The results of the main morphometric features Ilam, Iran showed that the mean scores of the characters, except for the Correspondence: pectinal tooth count, in female M.
    [Show full text]
  • A Morphometric Study of Mesobuthus Eupeus (Scorpionida: Buthidae) in Fars Province, Southern Iran
    Mesobuthus eupeus morphometric in Fars province Original article A Morphometric Study of Mesobuthus eupeus (Scorpionida: Buthidae) in Fars Province, Southern Iran Mohammad Ebrahimi1, MSc; Abstract Marziyeh Hamyali Ainvan2, Background: Scorpions are a group of poisonous invertebrates 1 MSc; Mohsen Kalantari , PhD; that are widely distributed in the Middle East countries including 1 Kourosh Azizi , PhD Iran. They cause serious injuries and death to humans and domestic animals in Fars province. These arthropods are settled in subtropical regions of the province. Methods: In this study, a total of 35 out of 430 Mesobuthus eupeus, including 15 males and 20 females, were selected, and then their major morphometric characteristics including the whole body length, pedipalp length, length and width of carapace, leg segments, abdomen, and tail segments, as well as the size of the poison gland, pectinal organ length, and pectinal tooth count were measured using a Collis-Vernier caliper scale. Results: The measurements of different body parts were bigger 1Research Center for Health in females than in males, except that pectinal tooth count in males Sciences, Institute of Health, (26.93mm±.88) was greater than that in females (22.20±1.00). Department of Medical Entomology The number of simple eyes on each side did not differ between and Vector Control, Shiraz University of Medical Sciences, Shiraz, Iran; males and females. Other features showed to be higher for 2Department of Epidemiology, females than males. Ilam University of Medical Sciences, Conclusion: The results of the main morphometric features Ilam, Iran showed that the mean scores of the characters, except for the Correspondence: pectinal tooth count, in female M.
    [Show full text]
  • Arachnides 88
    ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky,
    [Show full text]