Local Anaesthetics: the Essentials Eur J Anaesthesiol 2014 (Invited Review, in Press)

Total Page:16

File Type:pdf, Size:1020Kb

Local Anaesthetics: the Essentials Eur J Anaesthesiol 2014 (Invited Review, in Press) UvA-DARE (Digital Academic Repository) Local anesthetics: New insights into risks and benefits Lirk, P. Publication date 2014 Link to publication Citation for published version (APA): Lirk, P. (2014). Local anesthetics: New insights into risks and benefits. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:01 Oct 2021 Local anesthetics – an introduction Chapter 1.2 Local anesthetics: an introduction Based on Lirk P, Picardi S, Hollmann MW Local anaesthetics: the essentials Eur J Anaesthesiol 2014 (invited review, in press) 17 Chapter 1.2 This introductory section is based on an invited Review for the European Journal of Anaesthesiology, and seeks to address 10 essential questions regarding the clinical use of local anaesthetics. Local anaesthetics are a heterogeneous group of compounds which block voltage-gated sodium channels. Each drug is characterized by distinctive physicochemical properties. Sodium channel block is caused by conformational change and the creation of a positive charge in the channel lumen. Different local anaesthetics can reach the LA binding site from the cytoplasmic compartment (“classic hydrophilic pathway”), directly via the lipid membrane (“hydrophobic pathway”), or can enter via large-pore channels (“alternative hydrophilic pathway”). Next to sodium channel blockade, LA exert beneficial effects on pain, stabilize the inflammatory response and the haemostatic system. Inflamed tissue is harder, but not impossible, to anesthetize. Increasing dose or adding a vasoconstrictor, can lead to successful blockade. Systemic toxicity of LA is potentially fatal. When preventative measures are taken, the incidence of cardiac arrest is low. Intralipid has been proposed for resuscitation of systemic LA overdose, and enthusiastically adopted worldwide, even though the mechanism of action is incompletely understood. Intralipid is not an antidote against LA and cannot replace meticulous conduct of regional anaesthesia. All LA are toxic, dependent on dose. The question whether local anaesthetics protect against perioperative tumour progression cannot be answered at this moment, and results from clinical (retrospective) studies are equivocal. Future areas of interest will be design of new subtype-specific sodium channel blockers. At the same time, older LA such as 2-chloroprocaine are reintroduced into the clinical setting. Multimodal perineural analgesia and liposomal bupivacaine may replace catheter techniques in some indications. 18 Local anesthetics – an introduction Local anaesthetics (LA) are widely used for regional anaesthesia and pain therapy. This review seeks to address 10 essential topics regarding LA use in daily practice. General physicochemical properties Local anaesthetics are a heterogeneous group of compounds which block voltage-gated sodium channels. Structurally, LA consist of a hydrophobic aromatic group, an amide group, and the connecting intermediary chain. This means that they possess both hydrophobic and –philic properties. According to the type of intermediary chain, LA can be divided into ester-type and amide-type compounds. According to duration of action, LA can be divided into short-acting (e.g., chloroprocaine), intermediate-acting (e.g., mepivacaine, lidocaine), and long-acting (e.g., bupivacaine, ropivacaine) compounds. The metabolism of esters is by plasma cholinesterases and tissue esterases, whereas amides are primarily metabolized hepatically through the mixed-function oxidase system. 1 Conversely, defects in the metabolizing steps lead to higher systemic concentrations of LA. Concerning allergic potential, currently used LA are widely considered to be among the safest perioperative drugs. 2 All currently used LA are chiral, which means they feature an asymmetric carbon atom and two potential spatial molecular configurations, called enantiomers. The only exception to this rule is lidocaine, which is achiral. 3 The clinical relevance of chirality is that in comparison to racemic mixtures containing both enantiomers, pure enantiomers may offer pharmacologic advantages such as enhanced blockade and decreased toxicity. 4 However, the differences in clinical use when comparing equipotent doses are modest, such that both conventional drugs as bupivacaine, as well as the newer isoforms continue to be in widespread use. 5 LA have distinct physicochemical properties which determine their mode of action, most notably pKa value, lipophilicity, protein binding, and intrinsic vasoactivity. The main characteristics of clinically used drugs are summarized in Table 1. Importantly, the free systemic fraction of LA, not bound by plasma proteins, is the principal determinant of systemic adverse effects. The rate of 19 Chapter 1.2 absorption into the systemic circulation depends upon the site of injection. For example, equal plasma concentrations of lidocaine are attained when 300 mg are given intercostally, or 500 mg epidurally, or 1000 mg subcutaneously. 6 A multifactorial approach to choosing safe doses on an individualized basis per patient has been advocated, for which the reader is referred to the comprehensive review by Rosenberg and colleagues. 6 In plasma, LA are bound to albumine, an abundant protein with weak affinity for LA, and, more importantly, alpha-1-acidic glycoprotein (AAG), less abundant but potent in binding LA. 7 Since AAG is an acute phase protein, synthesis increases postoperatively and after trauma, decreasing free local anaesthetic, and protecting against systemic toxicity. For example, Veering et al. demonstrated that continuous postoperative infusion of epidural bupivacaine leads to increasing levels of total local anaesthetic in the systemic circulation, but at the same time, increasing AAG levels postoperatively bind bupivacaine, resulting in stable levels of systemic free drug. 8 Synthesis of AAG does not mature until one year of age, such that neonates are theoretically at higher risk of elevated free LA plasma levels. 7 Experimental evidence suggests that in pregnancy, protein binding of the more lipophilic bupivacaine is decreased, similarly increasing risk of systemic toxicity. 9 Conclusion: Local anaesthetics are a heterogeneous group of compounds which block voltage-gated sodium channels. Each drug is characterized by distinctive physicochemical properties. The free plasmatic share determines systemic toxicity. The primary target: voltage-gated sodium channels Local anaesthetics (LA) are primarily characterized by their ability to block voltage-gated sodium channels (VGSC), transmembrane proteins consisting of one main alpha-subunit, linked to one or more beta-subunits. 10 Crystallographic images of sodium channels have become available, improving insight into function and blockade. 11 The alpha subunit of the VGSC constitutes the functional ion channel, and harbours the binding site for LAs. 12 This subunit consists of four domains numbered DI-DIV, each consisting of 6 segments numbered S1-S6 (Figure 1). 10 13 In 20 Local anesthetics – an introduction contrast, the beta subunits of the VGSC modulate kinetics and voltage dependence of activation and inactivation. 12 The S4 segments are considered the “voltage sensor”, while specific amino acid sequences between segments S5 and S6 mediate the channel’s specificity for sodium. 14 The binding sites of LA are the S6 segments of domains I, III and IV. 12 Figure 2 gives a schema of the VGSC in cross-section, with (from the outside) the extracellular pore, the selectivity filter, the central cavity, and the innermost activation gate. LA preferably bind to activated and resting channels, because in these states, the activation gate is open, a property described as use-dependent block. 12 Under experimental conditions, binding of the LA to the receptor leads to reversible and concentration-dependent reduction of peak sodium current 10 by modulating the dynamic conformation of the voltage sensing segments S4 across domains of VGSC, 15 and by the creation of a positive charge within the channel’s lumen, directly impeding sodium flux. 16 Importantly, the family of VGSC consists of at least 10 different subtypes, depending on the gene for the alpha subunit. Dysfunction or mutation has been linked to several pathophysiological states, such as inherited erythromelalgia (syndrome of pain and erythema), 17 paroxysmal extreme pain disorder, 18 congenital insensitivity to pain, 18 cardiac arrhythmias, 19 and epilepsy. 20 Lastly, drugs other than local anaesthetics can effectively block the neuronal sodium channel. Interestingly, two members of the opiate family, pethidine and buprenorphine, have clinically relevant local anaesthetic properties. 21,22 Conclusion: Sodium
Recommended publications
  • A Randomised, Non-Inferiority Study of Chloroprocaine 2% and Ropivacaine
    www.nature.com/scientificreports OPEN A randomised, non‑inferiority study of chloroprocaine 2% and ropivacaine 0.75% in ultrasound‑guided axillary block Irene Sulyok1, Claudio Camponovo2, Oliver Zotti1, Werner Haslik3, Markus Köstenberger4, Rudolf Likar4, Chiara Leuratti5, Elisabetta Donati6 & Oliver Kimberger1,7* Chloroprocaine is a short‑acting local anaesthetic with a rapid onset of action and an anaesthesia duration up to 60 min. In this pivotal study success rates, onset and remission of motor and sensory block and safety of chloroprocaine 2% was compared to ropivacaine 0.75% for short‑duration distal upper limb surgery with successful block rates as primary outcome. The study was designed as a prospective, randomised, multi‑centre, active‑controlled, double‑blind, parallel‑group, non‑inferiority study, performed in 4 European hospitals with 211 patients scheduled for short duration distal upper limb surgery under axillary plexus block anaesthesia. Patients received either ultrasound guided axillary block with 20 ml chloroprocaine 2%, or with 20 ml ropivacaine 0.75%. Successful block was defned as block without any supplementation in the frst 45 min calculated from the time of readiness for surgery. 90.8% patients achieved a successful block with chloroprocaine 2% and 92.9% patients with Ropivacaine 0.75%, thus non‑inferiority was demonstrated (10% non inferiority margin; 95% CI − 0.097, 0.039; p = 0.02). Time to onset of block was not signifcantly diferent between the groups. Median time to motor and sensory block regression was signifcantly shorter as was time to home discharge (164 [155–170] min for chloroprocaine versus 380 [209–450] for the ropivacaine group, p < 0.001).
    [Show full text]
  • 4% Citanest® Plain Dental (Prilocaine Hydrochloride Injection, USP) for Local Anesthesia in Dentistry
    4% Citanest® Plain Dental (Prilocaine Hydrochloride Injection, USP) For Local Anesthesia in Dentistry Rx only DESCRIPTION 4% Citanest Plain Dental (prilocaine HCI Injection, USP), is a sterile, non-pyrogenic isotonic solution that contains a local anesthetic agent and is administered parenterally by injection. See INDICATIONS AND USAGE for specific uses. The quantitative composition is shown in Table 1. 4% Citanest Plain Dental contains prilocaine HCl, which is chemically designated as propanamide, N-(2- methyl-phenyl) -2- (propylamino)-, monohydrochloride and has the following structural formula: Parenteral drug products should be inspected visually for particulate matter and discoloration prior to administration. The specific quantitative composition is shown in Table 1. TABLE 1. COMPOSITION Product Identification Formula (mg/mL) Prilocaine HCl pH 4% Citanest® Plain Dental 40.0 6.0 to 7.0 Note: Sodium hydroxide or hydrochloric acid may be used to adjust the pH of 4% Citanest Plain Dental Injection. CLINICAL PHARMACOLOGY Mechanism of Action: Prilocaine stabilizes the neuronal membrane by inhibiting the ionic fluxes required for the initiation and conduction of impulses, thereby effecting local anesthetic action. Onset and Duration of Action: When used for infiltration injection in dental patients, the time of onset of anesthesia averages less than 2 minutes with an average duration of soft tissue anesthesia of approximately 2 hours. Based on electrical stimulation studies, 4% Citanest Plain Dental Injection provides a duration of pulpal anesthesia of approximately 10 minutes in maxillary infiltration injections. In clinical studies, this has been found to provide complete anesthesia for procedures lasting an average of 20 minutes. When used for inferior alveolar nerve block, the time of onset of 4% Citanest Plain Dental Injection averages less than three minutes with an average duration of soft tissue anesthesia of approximately 2 ½hours.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • The Effect of Different Doses of Chloroprocaine on Saddle Anesthesia in Perianal Surgery1
    10 – ORIGINAL ARTICLE CLINICAL INVESTIGATION The effect of different doses of chloroprocaine on saddle anesthesia in perianal surgery1 Ying ZhangI, Yang BaoII, Linggeng LiIII, Dongping ShiIV IMaster, Department of Anesthesiology, Shanghai Jiading Central Hospital, Shanghai, China. Conception and design of the study; acquisition, analysis and interpretation of data; manuscript writing, final approval. IIMaster, Department of Anesthesiology, Shanghai Jiading Central Hospital, Shanghai, China. Conception and design of the study, analysis and interpretation of data, critical revision. IIIMaster, Department of Anesthesiology, Shanghai Jiading Central Hospital, Shanghai, China. Histopathological examinations, critical revision. IVMaster, Department of Anesthesiology, Shanghai Jiading Central Hospital, Shanghai, China. Acquisition and interpretation of data, final approval. ABSTRACT PURPOSE: To investigate a saddle anesthesia with different doses of chloroprocaine in perianal surgery. METHODS: Total 60 Patients aged 18–75 years (Anesthesiologists grade I or II) scheduled to receive perianal surgery. Patients using saddle anesthesia were randomized to group A, group B and group C with the same concentration (0.5%) chloroprocaine with different doses 1.0 mL, 0.8 mL and 0.6 mL, respectively. Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR) and the sensory and motor block were recorded to evaluate the anesthesia effect of chloroprocaine in each group. RESULTS: The duration of sensory block of group C is shorter than those of group A and B. The maximum degree of motor block is observed (group C: 0 level, group A: III level; and group B: I level) after 15 minutes. Besides, there was a better anesthetic effect in group B than group A and group C, such as walking after saddle anesthesia.
    [Show full text]
  • Local Anesthetics
    Local Anesthetics Introduction and History Cocaine is a naturally occurring compound indigenous to the Andes Mountains, West Indies, and Java. It was the first anesthetic to be discovered and is the only naturally occurring local anesthetic; all others are synthetically derived. Cocaine was introduced into Europe in the 1800s following its isolation from coca beans. Sigmund Freud, the noted Austrian psychoanalyst, used cocaine on his patients and became addicted through self-experimentation. In the latter half of the 1800s, interest in the drug became widespread, and many of cocaine's pharmacologic actions and adverse effects were elucidated during this time. In the 1880s, Koller introduced cocaine to the field of ophthalmology, and Hall introduced it to dentistry Overwiev Local anesthetics (LAs) are drugs that block the sensation of pain in the region where they are administered. LAs act by reversibly blocking the sodium channels of nerve fibers, thereby inhibiting the conduction of nerve impulses. Nerve fibers which carry pain sensation have the smallest diameter and are the first to be blocked by LAs. Loss of motor function and sensation of touch and pressure follow, depending on the duration of action and dose of the LA used. LAs can be infiltrated into skin/subcutaneous tissues to achieve local anesthesia or into the epidural/subarachnoid space to achieve regional anesthesia (e.g., spinal anesthesia, epidural anesthesia, etc.). Some LAs (lidocaine, prilocaine, tetracaine) are effective on topical application and are used before minor invasive procedures (venipuncture, bladder catheterization, endoscopy/laryngoscopy). LAs are divided into two groups based on their chemical structure. The amide group (lidocaine, prilocaine, mepivacaine, etc.) is safer and, hence, more commonly used in clinical practice.
    [Show full text]
  • The Effects of Lidocaine and Mefenamic Acid on Post-Episiotomy
    Shiraz E-Med J. 2016 March; 17(3):e36286. doi: 10.17795/semj36286. Published online 2016 March 27. Research Article The Effects of Lidocaine and Mefenamic Acid on Post-Episiotomy Pain: A Comparative Study Masoumeh Delaram,1,* Lobat Jafar Zadeh,2 and Sahand Shams3 1Faculty of Nursing and Midwifery, Shahrekord University of Medical Sciences, Shahrekord, IR Iran 2Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, IR Iran 3Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, IR Iran *Corresponding author: Masoumeh Delaram, Faculty of Nursing and Midwifery, Shahrekord University of Medical Sciences, Shahrekord, IR Iran. Tel: +98-3813335648, Fax: +98-3813346714, E-mail: [email protected] Received 2016 January 13; Revised 2016 February 29; Accepted 2016 March 04. Abstract Background: Most women suffer pain following an episiotomy and oral non-steroidal anti-inflammatory drugs are commonly used for pain relief. Due to the gastrointestinal side effects of oral drugs, it seems that women are more accepting of topical medications for pain relief. Objectives: Therefore, the aim of this study was to compare the effects of lidocaine and mefenamic acid on post-episiotomy pain. Patients and Methods: This clinical trial was carried out in 2011. It involved sixty women with singleton pregnancy who were given an episiotomy at 38 to 42 weeks of gestation. The participants were randomly divided into two groups. One group received 2% lido- caine cream (n = 30), while the other group received 250 mg of mefenamic acid (n = 30). The data were collected via a questionnaire and a visual analog scale. Pain intensity was compared from the first complaint by the mother and at 6, 12, and 24 hours after the delivery in both groups.
    [Show full text]
  • Document Detail
    DENTSPLY INTERNATIONAL Document Detail 1 Type: 0090-MSDS Document No.: 0090-SDS-008[00] Title: 4% Citanest Plain Dental - US and CA Comment Status: CURRENT Effective Date: 12-Jan-2018 Approvals Role Sign-off By Sign-off Date Pharma Marketing Approver Joe Santos 12-Jan-2018 2:40 pm GMT Pharma Regulatory Affairs Approver Deb Crouse 10-Jan-2018 6:43 pm GMT Pharma Regulatory Affairs Approver Lakeisha R Williams 10-Jan-2018 4:21 pm GMT Pharma Marketing Approver Richard Tootchen 10-Jan-2018 6:57 pm GMT Pharma Quality Assurance Approver Candace Walker 10-Jan-2018 4:05 pm GMT DPD Research and Development Tom Simonton 10-Jan-2018 8:48 pm GMT DPD Document Control Lucy Brenneman 12-Jan-2018 7:47 pm GMT Pharma Document Control Beth Bodnar 12-Jan-2018 4:18 pm GMT SOP DOC.022-F01 Rev.1 Safety Data Sheet Safety Data Sheet conforms to Regulation (EC) 1907/2006, Regulation (EC) 1272/2008 and Regulation (EC) 2015/830, Date Issued: 01November 2017 US 29CFR1910.1200, Canada Hazardous Products Document Number: SDS-008 Regulation. Date Revised: New SDS Revision Number: 00 1. IDENTIFICATION OF THE SUBSTANCE/MIXTURE AND OF THE COMPANY/UNDERTAKING 1.1 Product Identifier: Trade Name (as labeled): 4% Citanest® Plain DENTAL (prilocaine HCl Injection, USP) Part/Item Numbers: 46616 71115 1.2 Relevant Identified Uses of the Substance or Mixture and Uses Advised Against: Recommended Use: Local anesthetic solution for use in peripheral nerve blocks Restrictions on Use: For Professional Use Only 1.3 Details of the Supplier of the Safety Data Sheet: Manufacturer/Supplier Name: DENTSPLY Pharmaceutical Manufacturer/Supplier Address: 1301 Smile Way York, PA 17404 Manufacturer/Supplier Telephone Number: 800-989-8826 or 717-767-8502 (Product Information) Email address: [email protected] 1.4 Emergency Telephone Number: Transportation Emergency Contact Number: 800-424-9300 Chemtrec 2.
    [Show full text]
  • Comparison of Articaine and Prilocaine Anestiesia by Infiltration in Maxillary and Mandibular Archles Daniel A
    Anesth Prog 37:230-237 1990 SCIENTIFIC REPORTS Comparison of Articaine and Prilocaine Anestiesia by Infiltration in Maxillary and Mandibular Archles Daniel A. Haas, DDS, PhD, David G. Harper, DDS, Michael A. Saso, DDS, and Earle R. Young, DDS, MSc Department of Anaesthesia, Faculty of Dentistry, University of Toronto Claims that labial infiltration of the local anesthetic It is commonly accepted that in order to achieve local articaine HCl (Ultracaine DS"M) results in anesthesia for procedures on teeth or buccal soft tissue anesthesia of mandibular pulpal as well as in the maxillary arch, administration of local anesthetics maxillary and mandibular lingual soft tissue have by buccal infiltration, also known as a paraperiosteal field never been scientifically substantiated. The aim of block, is routinely successful. Palatal soft tissue anesthesia this investigation was to evaluate these claims, by requires a separate palatal injection, a technique that is comparing articaine to a standard anesthetic, often painful for the patient. Any local anesthetic that prilocaine HCI (Citanest ForteTM). To investigate would permit use of buccal infiltration to gain palatal anes- this, a double blind, randomized study was thesia would be of great advantage in dentistry. For proce- conducted in healthy adult volunteers. In each dures in the mandibular arch, in adults, the thickness of volunteer, the ability to induce maxillary and buccal cortical bone precludes buccal infiltration ap- mandibular anesthesia following labial infiltration proaches producing pulpal or lingual soft tissue anesthe- with articaine was compared to prilocaine given sia, necessitating administration of local anesthetic by contralaterally. Anesthesia was determined by nerve block techniques.
    [Show full text]
  • Local Anesthetics – Substances with Multiple Application in Medicine
    ISSN 2411-958X (Print) European Journal of January-April 2016 ISSN 2411-4138 (Online) Interdisciplinary Studies Volume 2, Issue 1 Local Anesthetics – Substances with Multiple Application in Medicine Rodica SÎRBU Ovidius University of Constanta, Faculty of Pharmacy, Campus Corp B, University Alley No. 1, Constanta, Romania Emin CADAR UMF Carol Davila Bucharest, Faculty of Pharmacy, Str. Traian Vuia No. 6, Sector 2, Bucharest, Romania Cezar Laurențiu TOMESCU Ovidius University of Constanta, Faculty of Medicine, Campus Corp B, University Alley No. 1, Constanta, Romania Cristina-Luiza ERIMIA Corresponding author, [email protected] Ovidius University of Constanta, Faculty of Pharmacy, Campus Corp B, University Alley No. 1, Constanta, Romania Stelian PARIS Ovidius University of Constanta, Faculty of Pharmacy, Campus Corp B, University Alley No. 1, Constanta, Romania Aneta TOMESCU Ovidius University of Constanta, Faculty of Medicine, Campus Corp B, University Alley No. 1, Constanta, Romania Abstract Local anesthetics are substances which, by local action groups on the runners, cause loss of reversible a painful sensation, delimited corresponding to the application. They allow small surgery, short in duration and the endoscopic maneuvers. May be useful in soothe teething pain of short duration and in the locking of the nervous disorders in medical care. Local anesthesia is a process useful for the carrying out of surgery and of endoscopic maneuvers, to soothe teething pain in certain conditions, for depriving the temporary structures peripheral nervous control. Reversible locking of the transmission nociceptive, the set of the vegetative and with a local anesthetic at the level of the innervations peripheral nerve, roots and runners, a trunk nervous, around the components of a ganglion or coolant is cefalorahidian practice anesthesia loco-regional.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • Hypersensitivity to Local Anaesthetics – 6 Facts and 7 Myths
    HYPERSENSITIVITY TO LOCAL ANAESTHETICS – 6 FACTS AND 7 MYTHS Joanna Lukawska, MRCP The pharmacological differences between LAs make M Rosario Caballero, PhD certain LAs more favourable than others for specific procedures, i.e. lignocaine is widely used for subcuta- Sophia Tsabouri, MD, PhD neous injection, and bupivacaine is preferred for Pierre Dugué, FRCP, MD, APH epidural or gum injections. Drug Allergy Clinic, Guy’s & St Thomas’ Hospitals, NHS Foundation Trust, London, UK Amino-ester LA chemical structure ABSTRACT Local anaesthetics (LAs) are commonly used drugs. In spite of their widespread use, true hypersensitiv- ity appears to be very infrequent. In fact most of the adverse reactions are due to pharmacological, toxic or vasovagal effects of LAs. Our review of the literature has shown that true allergy to LA is in fact exceptional. Skin tests for LA allergy, including skin-prick tests (SPT) and intrader- Aromatic Ester Amine group mal (ID) tests, have poor sensitivity and specificity. group True LA allergy, when appropriate, has to be con- firmed by challenge. Provocation challenge is safe and well tolerated. Since the discovery of the anaesthetic effect of cocaine in 1884, local anaesthetics (LAs) have been widely used. It has been estimated that 6 million peo- ple are injected with LAs each day around the world. In spite of their widespread use, true hypersensitivity appears to be infrequent. However the perception of allergy to LA among the general public is high. In our Aromatic Amide Amine drug allergy clinic, referrals for LA allergy are in the group group same range as penicillin or aspirin allergy referrals.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]