Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas

Total Page:16

File Type:pdf, Size:1020Kb

Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas The University of Southern Mississippi The Aquila Digital Community Faculty Publications 4-14-2021 Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes In Rhizosphere Pseudomonas Olga V. Mavrodi University of Southern Mississippi Janiece R. McWilliams University of Southern Mississippi Jacob O. Peter University of Southern Mississippi Anna Berim Washington State University Karl A. Hassan University of Newcastle FSeeollow next this page and for additional additional works authors at: https:/ /aquila.usm.edu/fac_pubs Part of the Microbiology Commons Recommended Citation Mavrodi, O. V., McWilliams, J. R., Peter, J. O., Berim, A., Hassan, K. A., Elbourne, L. D., LeTourneau, M. K., Gang, D. R., Paulsen, I. T., Weller, D. M., Thomashow, L. S., Flynt, A. S., Mavrodi, D. V. (2021). Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes In Rhizosphere Pseudomonas. Frontiers In Microbiology, 12. Available at: https://aquila.usm.edu/fac_pubs/18474 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Faculty Publications by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. Authors Olga V. Mavrodi, Janiece R. McWilliams, Jacob O. Peter, Anna Berim, Karl A. Hassan, Liam D.H. Elbourne, Melissa K. LeTourneau, David R. Gang, Ian T. Paulsen, David M. Weller, Linda S. Thomashow, Alex S. Flynt, and Dmitri V. Mavrodi This article is available at The Aquila Digital Community: https://aquila.usm.edu/fac_pubs/18474 fmicb-12-651282 April 8, 2021 Time: 20:20 # 1 ORIGINAL RESEARCH published: 14 April 2021 doi: 10.3389/fmicb.2021.651282 Root Exudates Alter the Expression of Diverse Metabolic, Transport, Regulatory, and Stress Response Genes in Rhizosphere Pseudomonas Edited by: Olga V. Mavrodi1†, Janiece R. McWilliams1†, Jacob O. Peter1, Anna Berim2, Barbara Pivato, Karl A. Hassan3, Liam D. H. Elbourne4, Melissa K. LeTourneau5, David R. Gang2, Institut National de Recherche pour Ian T. Paulsen4, David M. Weller5, Linda S. Thomashow5, Alex S. Flynt1* and l’agriculture, l’alimentation et Dmitri V. Mavrodi1* l’environnement (INRAE), France 1 Reviewed by: School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, 2 3 Cara Helene Haney, United States, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States, School 4 The University of British Columbia, of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia, Department of Molecular 5 Canada Sciences, Macquarie University, Sydney, NSW, Australia, USDA Agricultural Research Service, Wheat Health, Genetics Xingang Zhou, and Quality Research Unit, Pullman, WA, United States Northeast Agricultural University, China Plants live in association with microorganisms that positively influence plant *Correspondence: development, vigor, and fitness in response to pathogens and abiotic stressors. Dmitri V. Mavrodi [email protected] The bulk of the plant microbiome is concentrated belowground at the plant root- Alex S. Flynt soil interface. Plant roots secrete carbon-rich rhizodeposits containing primary and alex.fl[email protected] secondary low molecular weight metabolites, lysates, and mucilages. These exudates †These authors have contributed equally to this work provide nutrients for soil microorganisms and modulate their affinity to host plants, but molecular details of this process are largely unresolved. We addressed this gap by Specialty section: focusing on the molecular dialog between eight well-characterized beneficial strains This article was submitted to Microbe and Virus Interactions with of the Pseudomonas fluorescens group and Brachypodium distachyon, a model for Plants, economically important food, feed, forage, and biomass crops of the grass family. We a section of the journal collected and analyzed root exudates of B. distachyon and demonstrated the presence Frontiers in Microbiology of multiple carbohydrates, amino acids, organic acids, and phenolic compounds. The Received: 09 January 2021 Accepted: 08 March 2021 subsequent screening of bacteria by Biolog Phenotype MicroArrays revealed that many Published: 14 April 2021 of these metabolites provide carbon and energy for the Pseudomonas strains. RNA- Citation: seq profiling of bacterial cultures amended with root exudates revealed changes in the Mavrodi OV, McWilliams JR, Peter JO, Berim A, Hassan KA, expression of genes encoding numerous catabolic and anabolic enzymes, transporters, Elbourne LDH, LeTourneau MK, transcriptional regulators, stress response, and conserved hypothetical proteins. Almost Gang DR, Paulsen IT, Weller DM, half of the differentially expressed genes mapped to the variable part of the strains’ Thomashow LS, Flynt AS and Mavrodi DV (2021) Root Exudates pangenome, reflecting the importance of the variable gene content in the adaptation of Alter the Expression of Diverse P. fluorescens to the rhizosphere lifestyle. Our results collectively reveal the diversity Metabolic, Transport, Regulatory, and Stress Response Genes of cellular pathways and physiological responses underlying the establishment of in Rhizosphere Pseudomonas. mutualistic interactions between these beneficial rhizobacteria and their plant hosts. Front. Microbiol. 12:651282. doi: 10.3389/fmicb.2021.651282 Keywords: Pseudomonas, Brachypodium, rhizosphere, root exudates, transcriptome Frontiers in Microbiology | www.frontiersin.org 1 April 2021 | Volume 12 | Article 651282 fmicb-12-651282 April 8, 2021 Time: 20:20 # 2 Mavrodi et al. The Effect of Root Exudates on the Pseudomonas Transcriptome INTRODUCTION root exudates strongly affect the expression of diverse plant growth promotion and biocontrol genes (Vacheron et al., 2013). Plants are meta-organisms or holobionts that rely in part on Over the past decade, the genomes of numerous rhizosphere their microbiome for specific functions and traits. The ability strains have been sequenced and analyzed, but functional of the plant microbiome to influence plant development, vigor, genomics studies of rhizosphere competence lag behind the health, and fitness in response to abiotic stressors associated availability of sequence data. with global climate change is documented by numerous studies This study explored the molecular dialog between the (Lugtenberg and Kamilova, 2009). There is mounting evidence model host plant Brachypodium distachyon and several well- that plants actively recruit beneficial microbiomes, but many characterized rhizosphere strains of the Pseudomonas fluorescens aspects of this process are still very much a black box (Reinhold- group. Brachypodium is a small annual grass originating in semi- Hurek et al., 2015). The foundation for the differential affinity arid regions of the Middle East that has emerged as a prime model of rhizobacteria toward host plants is built upon complex for economically important food, feed, forage, and biomass crops chemical cross talk between microorganisms and plant roots. of the grass family (Bevan et al., 2010; Schwartz et al., 2010; Up to 40% of photosynthetically fixed carbon is released by Brkljacic et al., 2011; Hong et al., 2011; Tyler et al., 2014). The plant roots in the form of exudates and secretions, lysates, and biology, extensive collection of resources, and research tools mucilages (Curl and Truelove, 1986; Lynch, 1990; Whipps, 1990; make B. distachyon an attractive model to investigate interactions Badri and Vivanco, 2009). The release of these compounds is between plants and root-associated microbes. Pseudomonads actively controlled in response to environmental stimuli, and the are ubiquitous Gram-negative g-proteobacteria that colonize composition of root exudates varies greatly according to plant eukaryotic hosts and include both commensals and economically species and physiological condition (Lynch, 1990; Nguyen, 2003; important pathogens of plants and animals (Moore et al., Phillips et al., 2004; De-la-Pena et al., 2008). The presence and 2006; Schroth et al., 2006; Yahr and Parsek, 2006). The genus composition of exudates strongly impact soil microorganisms, Pseudomonas currently comprises > 100 named species that have which is consistent with the idea that plants actively select and been separated based on multilocus sequence analysis into 14 shape their root microbiota (Zolla et al., 2013). species groups (Garrido-Sanz et al., 2016; Hesse et al., 2018). Primary root exudates include simple and complex sugars, The P. fluorescens group is the most diverse regarding both amino acids, polypeptides and proteins, organic, aliphatic and the genetic distances within it, the number of species and the fatty acids, sterols, and phenolics (Nguyen, 2003; Badri and large pangenome that makes up > 50% of the pangenome Vivanco, 2009; Badri et al., 2009). These compounds serve as of the genus as a whole (Loper et al., 2012). The group also carbon and energy sources for rhizobacteria, and the presence encompasses an unusually high proportion of strains that inhabit of the intact corresponding catabolic pathways is essential the plant rhizosphere and possess plant growth promoting and for competitive colonization of roots and disease suppression biocontrol properties. Naylor et al. (2017) profiled bacterial (Lugtenberg et al., 2001; Kamilova et al., 2005; Lugtenberg and communities associated with root tissues and rhizosphere
Recommended publications
  • Integrated Molecular Analysis of Sugar Metabolism of Sulfolobus Solfataricus
    Integrated molecular analysis of Sugar Metabolism of Sulfolobus solfataricus Stan J.J. Brouns Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Promotoren prof. dr. Willem M. de Vos hoogleraar in de Microbiologie Wageningen Universiteit prof. dr. John van der Oost persoonlijk hoogleraar Microbiologie en Biochemie Wageningen Universiteit Leden van de prof. dr. Ton J.W.G. Visser promotie bijzonder hoogleraar Microspectroscopie in de Biochemie commissie Wageningen Universiteit prof. dr. Arnold J.M. Driessen hoogleraar Moleculaire Microbiologie Rijksuniversiteit Groningen dr. Loren L. Looger Howard Hughes Medical Institute Ashburn (VA), Verenigde Staten dr. Thijs Kaper Genencor International Palo Alto (CA), Verenigde Staten Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 2 oktober 2007 des namiddags te half twee in de Aula Cover Boiling water: the habitat of a hyperthermophile (photo: S.J.J. Brouns) Printing Gildeprint (Enschede) Sponsoring Hellma Benelux, bioMérieux Brouns, S.J.J. - Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus in Dutch Geïntegreerde moleculaire analyse van het suikermetabolisme van Sulfolobus solfataricus PhD Thesis Wageningen University, Wageningen, Netherlands (2007) 176 p. - with summary in Dutch ISBN 978-90-8504-713-1 Voor mijn ouders en Marloes DANkwooRD Met trots ligt ligt hier nu een boekje. Natuurlijk kon het niet totstandkomen zonder de hulp van anderen. In dit stukje wil ik die mensen bedanken.
    [Show full text]
  • Metatranscriptomic Analysis of Community Structure And
    School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support.
    [Show full text]
  • Novel Non-Phosphorylative Pathway of Pentose Metabolism from Bacteria
    www.nature.com/scientificreports OPEN Novel non-phosphorylative pathway of pentose metabolism from bacteria Received: 22 March 2018 Seiya Watanabe1,2,3, Fumiyasu Fukumori4, Hisashi Nishiwaki1,2, Yasuhiro Sakurai5, Accepted: 30 September 2018 Kunihiko Tajima5 & Yasuo Watanabe1,2 Published: xx xx xxxx Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodorof pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identifed on the genome of Herbaspirillum huttiense IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, difered from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea. Te breakdown of D-glucose is central for energy and biosynthetic metabolism throughout all domains of life. Te most common glycolytic routes in bacteria are the Embden-Meyerhof-Parnas, the Entner-Doudorof (ED), and the oxidative pentose phosphate pathways. Te distinguishing diference between the two former glyco- lytic pathways lies in the nature of the 6-carbon metabolic intermediates that serve as substrates for aldol cleav- age.
    [Show full text]
  • Publications 2013 Onwards Where Structural Biology Finland (Finstruct) and Instruct Centre Finland Services and Expertise Have Been Utilized
    FINStruct and Instruct Centre Finland Publications February 3, 2021 Publications 2013 onwards where Structural Biology Finland (FINStruct) and Instruct Centre Finland services and expertise have been utilized 2021 1. Eesmaa A, Yu L-Y, Göös H, Nõges K, Kovaleva V, Hellman M, Zimmermann R, Jung M, Permi P, Varjosalo M, Lindholm P, Saarma M. 2021. The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J. Biol. Chem, in press. 2. Flatt, J.W., Domanska, A., Seppälä, A.L., Butcher, S.J. 2021. Identification of a conserved virion- stabilizing network inside the interprotomer pocket of enteroviruses. Comms Biol. accepted 3. Georgakis N, Poudel N, Vlachakis D, Papageorgiou AC, Labrou NE. 2021. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. Plant Physiol Biochem 158:342-352. 4. Mustonen V, Muruganandam G, Loris R, Kursula P, Ruskamo S. 2021. Crystal and solution structure of NDRG1, a membrane-binding protein linked to myelination and tumour suppression. FEBS J. 2020. Epub ahead of print. 5. Myllykoski M, Sutinen A, Koski MK, Kallio JP, Raasakka A, Myllyharju J, Wierenga RK, Koivunen P. 2021. Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains. J Biol Chem. Epub ahead of print. 6. Papageorgiou AC, Poudel N, Matsson J. 2021. Protein analysis with X-ray crystallography. Methods Mol. Biol. 2178:377-404. 7. Platis M, Vlachakis D, Foudah AI, Muharram MM, Alqarni MH, Papageorgiou AC, Labrou NE. 2021. The interaction of Schistosoma japonicum glutathione transferase with Cibacron blue 3GA and its fragments.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • From Enzyme Cascades Towards Physiology and Application
    Sugar metabolism: from enzyme cascades towards physiology and application Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - vorgelegt von Lu Shen Molekulare Enzymtechnologie und Biochemie Biofilm Centre Fachbereich Chemie der Universität Duisburg-Essen 2019 Die vorliegende Arbeit wurde im Zeitraum von Dezember 2013 bis April 2019 bei Prof. Dr. Bettina Siebers im Arbeitskreis für Molekulare Enzymtechnologie und Biochemie (Biofim Centre) der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 05.11.2019 Gutachter: Prof. Dr. Bettina Siebers Prof. Dr. Peter Bayer Vorsitzender: Prof. Dr. Thomas Schrader Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/70847 URN: urn:nbn:de:hbz:464-20201027-101056-7 Dieses Werk kann unter einer Creative Commons Namensnennung 4.0 Lizenz (CC BY 4.0) genutzt werden. Content 1 Introduction ...................................................................................................................... 1 1.1 Archaea ......................................................................................................................... 1 1.2 Sulfolobus spp. .............................................................................................................. 3 1.3 Hexose metabolism in Sulfolobus spp. .......................................................................... 4 1.3.1 The bifunctional
    [Show full text]
  • The Crystal Structure of D-Xylonate Dehydratase Reveals Functional Features of Enzymes from the Ilv/ED Dehydratase Family
    www.nature.com/scientificreports OPEN The crystal structure of D-xylonate dehydratase reveals functional features of enzymes from the Ilv/ED Received: 18 October 2017 Accepted: 22 December 2017 dehydratase family Published: xx xx xxxx Mohammad Mubinur Rahman1, Martina Andberg2, Anu Koivula2, Juha Rouvinen1 & Nina Hakulinen 1 The Ilv/ED dehydratase protein family includes dihydroxy acid-, gluconate-, 6-phosphogluconate- and pentonate dehydratases. The members of this family are involved in various biosynthetic and carbohydrate metabolic pathways. Here, we describe the frst crystal structure of D-xylonate dehydratase from Caulobacter crescentus (CcXyDHT) at 2.7 Å resolution and compare it with other available enzyme structures from the IlvD/EDD protein family. The quaternary structure of CcXyDHT is a tetramer, and each monomer is composed of two domains in which the N-terminal domain forms a binding site for a [2Fe-2S] cluster and a Mg2+ ion. The active site is located at the monomer-monomer interface and contains residues from both the N-terminal recognition helix and the C-terminus of the dimeric counterpart. The active site also contains a conserved Ser490, which probably acts as a base in catalysis. Importantly, the cysteines that participate in the binding and formation of the [2Fe-2S] cluster are not all conserved within the Ilv/ED dehydratase family, which suggests that some members of the IlvD/EDD family may bind diferent types of [Fe-S] clusters. Tere is increasing interest in developing economical and sustainable bioprocesses to convert biomass into valua- ble organic compounds. Metabolic engineering and synthetic biology have enabled the development of optimized microbial strains for the production of target compounds by taking advantage of known pathways and enzymes.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • Genetically Encoded Biosensors for Branched-Chain Amino Acid Metabolism to Monitor
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.08.982801; this version posted March 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Genetically encoded biosensors for branched-chain amino acid metabolism to monitor 2 mitochondrial and cytosolic production of isobutanol and isopentanol in yeast 3 Yanfei Zhang 1, Sarah K. Hammer 1, Cesar Carrasco-Lopez 1, Sergio A. Garcia Echauri 1, and José 4 L. Avalos * 1, 2, 3 5 6 1 Department of Chemical and Biological Engineering; 2 Andlinger Center for Energy and the 7 Environment; 3 Department of Molecular Biology, Princeton University, Princeton, NJ 8 9 10 11 12 *Corresponding author: José L. Avalos 13 Department of Chemical and Biological Engineering, 14 Princeton University, 15 101 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA 16 Phone office: +1 (609) 258-9881 17 Phone lab: +1 (609) 258-0542 18 Fax: +1 (609) 258-1247 19 Email: [email protected] 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.08.982801; this version posted March 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 22 Abstract 23 Branched-chain amino acid (BCAA) metabolism can be harnessed to produce many valuable 24 chemicals.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • Exploring Yeast As a Cell Factory for the Production of Carboxylic Acids and Derivatives
    Exploring Yeast as a Cell Factory for the Production of Carboxylic Acids and Derivatives Portugal-Nunes, Diogo 2017 Document Version: Publisher's PDF, also known as Version of record Link to publication Citation for published version (APA): Portugal-Nunes, D. (2017). Exploring Yeast as a Cell Factory for the Production of Carboxylic Acids and Derivatives. Department of Chemistry, Lund University. Total number of authors: 1 Creative Commons License: Unspecified General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Exploring Yeast as a Cell Factory for the Production of Carboxylic Acids and Derivatives APPLIED MICROBIOLOGY | FACULTY OF ENGINEERING | LUND UNIVERSITY DIOGO PORTUGAL-NUNES Exploring Yeast as a Cell Factory for the Production of Carboxylic Acids and Derivatives Diogo Portugal-Nunes DOCTORAL DISSERTATION which, by due permission of the Faculty of Engineering, Lund University, Sweden, will be publicly defended on 16th June 2017 at 10:00 in Lecture Hall B, Kemicentrum, Naturvetarvägen 12-18, Lund, for the degree of Doctor of Philosophy.
    [Show full text]