Integrated Molecular Analysis of Sugar Metabolism of Sulfolobus Solfataricus

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Molecular Analysis of Sugar Metabolism of Sulfolobus Solfataricus Integrated molecular analysis of Sugar Metabolism of Sulfolobus solfataricus Stan J.J. Brouns Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Promotoren prof. dr. Willem M. de Vos hoogleraar in de Microbiologie Wageningen Universiteit prof. dr. John van der Oost persoonlijk hoogleraar Microbiologie en Biochemie Wageningen Universiteit Leden van de prof. dr. Ton J.W.G. Visser promotie bijzonder hoogleraar Microspectroscopie in de Biochemie commissie Wageningen Universiteit prof. dr. Arnold J.M. Driessen hoogleraar Moleculaire Microbiologie Rijksuniversiteit Groningen dr. Loren L. Looger Howard Hughes Medical Institute Ashburn (VA), Verenigde Staten dr. Thijs Kaper Genencor International Palo Alto (CA), Verenigde Staten Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus Stan J.J. Brouns Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, prof. dr. M.J. Kropff, in het openbaar te verdedigen op dinsdag 2 oktober 2007 des namiddags te half twee in de Aula Cover Boiling water: the habitat of a hyperthermophile (photo: S.J.J. Brouns) Printing Gildeprint (Enschede) Sponsoring Hellma Benelux, bioMérieux Brouns, S.J.J. - Integrated molecular analysis of sugar metabolism of Sulfolobus solfataricus in Dutch Geïntegreerde moleculaire analyse van het suikermetabolisme van Sulfolobus solfataricus PhD Thesis Wageningen University, Wageningen, Netherlands (2007) 176 p. - with summary in Dutch ISBN 978-90-8504-713-1 Voor mijn ouders en Marloes DANkwooRD Met trots ligt ligt hier nu een boekje. Natuurlijk kon het niet totstandkomen zonder de hulp van anderen. In dit stukje wil ik die mensen bedanken. Allereerst mijn promotor John. Ik ben blij dat ik 6 jaar in je groep heb mogen werken; eerst als student, toen als AIO en nu als postdoc. Je nieuwe ideeën, onbegrensd positivisme, ex- cellente netwerkkwaliteiten en vertrouwen in iedere AIO bieden een de basis voor je succesvolle onderzoeksgroep en geven genoeg ruimte voor de persoonlijke ontwikkeling. Ik denk dat we menig idee succesvol hebben uitgewerkt. Ik kan me niet voorstellen dat ik met mijn volgende baas weer zo’n goede band kan opbouwen als met jou. Bedankt! Ook wil ik mijn promotor Willem bedanken voor inzichten, steun en supervisie op de achtergrond. Ondanks het feit dat je tientallen AIO’s onder je hoede hebt, weet je toch altijd weer tijd te vinden om iedereen van advies te voorzien. Paranimfen Harmen en Thijs E., ik wil jullie bedanken voor jullie optreden op mijn grote dag. Mede door jullie ging ik altijd met plezier naar mijn werk. Het geintjes uithalen bij elkaar en het eindeloos discussiëren bij de koffie ga ik zeker missen. Alle congressen waren wetenschappelijke vakanties en soms vol met avontuur, zoals de legendarische overnachting op de Strompoli.... Jasper Akerboom, waar zijn we samen niet geweest is eigenlijk de vraag. Onze Berlijn trips waren ongeëvenaard. Het boekje had er heel anders uitgezien als de eiwitkristallen niet tegen 100 dB aan geluid en trillingen hadden gekund, die ontstond nadat we een stuk uitlaat op de snelweg waren verloren. Door mijn langere verblijf bij BacGen heb ik twee generaties AIO’s en Postdocs kunnen mee- maken, waarvan sommigen elkaar niet eens meer kennen. Ik wil de oude garde (Corné V., Jo- han, Leon, Ana, Don, en Arjen) bedanken voor de gezelligheid en goede sfeer binnen de groep. Thijs K., leuk dat je naast de begeleider van mijn afstudeervak, nu ook opponent bent in mijn promotiecommissie. Waarschijnlijk doe ik veel dingen in het lab onbewust nog steeds “op jouw manier”. Telkens wanneer iemand vertrok dacht iedereen dat de sfeer wel een stuk minder zou worden. Dat bleek echter niet zo, slechts de gemiddelde leeftijd werd minder. Jasper W., ik wil je bedanken voor je bijdrage aan dit boekje. Jouw stage naar Zweden heeft een kentering teweeg gebracht in mijn promotieonderzoek. Hao, thanks for all your hard work. This book would not have been the same without you! Serve en Ans, jullie vaste waarde in de groep is van groot belang voor de groep en bedankt voor de gezelligheid op de werkkamer. Wim, Nees, Jannie en Francis, zonder jullie zou het lab niet draaien. Bedankt voor jullie hulp en soepele manier van omgang, iets wat Microbiologie zo kenmerkt. Ook wil ik de nieuwe garde bedanken voor hun positieve bijdrage aan de goede sfeer in het lab. Ronnie, Krisztina, Susanne, Odette, Marcel, Mark, Colin, Marco, Pawel, Marke, Corné v.d. K., Lei, veel succes de komende jaren. Bart en Fabian, ik hoop dat jullie het mysterie rond MBF1 kunnen ophelderen. Matthijs, het was zeer prettig samenwerken aan ons’ hot-topic en ik vind het jammer dat daar een eind aan gaat komen. Edze en Stieneke het allerbeste in Bologna! Ik ben mijn studenten dankbaar voor de inzet die zij tijdens hun afstudeervak getoond hebben en ben trots dat de namen van een aantal van jullie op publicaties terecht zijn gekomen. Ester, Marco, Ivor, Nicole, Hanneke, Petra en Marjon, het ga jullie goed. De geïntegreerde manier van onderzoek was alleen mogelijk door samen te werken met andere onderzoeksgroepen in Nederland, Groot-Brittannië, Zweden, Duitsland, Frankrijk en de Ve- renigde Staten. Beste Bram, jouw naam staat op drie van de negen hoofdstukken wat aangeeft dat je een grote rol van betekenis hebt gespeeld in het onderzoek. Onze complementaire expertise heeft duidelijk een win-win situatie gecreëerd waardoor we het suikermetabolisme op een meer systems biology manier in beeld konden brengen. Bedankt voor alles. Phil, thanks for making it possible. Beste Thomas, toen ik naar huis fietste nadat je me de donut structuur had opgestuurd, besefte ik hoe bijzonder het is om als één van de eersten ooit een compleet nieuwe eiwitstructuur onder ogen te krijgen. Ook al is hoofdstuk vijf het enige niet-gepubliceerde verhaal van dit boekje, ik denk dat het een grote toegevoegde waarde heeft voor het geheel. We kunnen er trots op zijn en ik wil je bedanken voor je grote bijdrage. Daar moeten we op 2 oktober bij onze eerste ontmoeting, maar eens het glas op heffen! Beste Robert, na de Protein Engineering course in 2003 is er toch een mooi samen- werkingsverband ontstaan tussen Wageningen en Utrecht wat heeft geresulteerd in een aantal fraaie publicaties. Bedankt voor je bijdrage op het gebied van de natieve massaspectrometrie. Hortense, thanks for your contribution. Laurent, although we never met, you have been a great help from the moment I con- tacted you. We could never have achieved the results described in chapter 3 and 5 without your knowledge of organic chemistry and biochemistry. Merci beaucoup! Rolf, Magnus, Peter and Anders, the arrays have played a vital role in the discovery of the degradation pathway for pentoses, and have created a number of interesting spin-off projects described in this thesis. I am thankful that you have been willing to collaborate with us, espe- cially at such an early stage of DNA microarray development. Ken, I appreciate it that you taught me all the tricks with Sulfolobus, which have helped me tremendously during my PhD. Besides work I think we had great times as well. Mark, thanks for having me in your lab. It was an unforgettable time. I’m glad that it has been the start of a good collaboration between Wageningen and Bozeman. Blake, good to hear that your staying in the CRISPR field. When are we going to play some more fussball and drink Margarita’s? Azide, thanks mate. Your name is on three chapters. Apart from raising the level of sci- entific impact of the work enormously, the X-ray trips to Berlin and Oxford were great fun as well. Tot slot wil ik mijn ouders, Imke en naaste familie bedanken voor hun motiverende woorden, morele steun en interesse die zij altijd getoond hebben, ook al was het helaas niet altijd mogelijk om jullie precies uit te leggen wat ik in het lab deed. Lieve Marloes, van dichtbij heb je kunnen meemaken hoe het onderzoek van een AIO gepaard gaat met successen en teleurstellingen. Door jouw onvoorwaardelijke steun werden slechte da- gen gerelativeerd en goede dagen gevierd. Hopelijk kunnen we nog lang veel voor elkaar blijven betekenen. Stan oktober 2007 TablE OF coNTENts Aim and outline of this thesis 1 Chapter 1 Introduction 5 Chapter 2 Reconstruction of central carbon metabolism in Sulfolobus 15 solfataricus using a two-dimensional gel electrophoresis map, stable isotope labeling and DNA microarray analysis Chapter 3 Identification of the missing links in prokaryotic pentose oxidation 31 pathways: evidence for enzyme recruitment Chapter 4 Crystal structure and biochemical properties of the D-arabinose 49 dehydrogenase from Sulfolobus solfataricus Chapter 5 Structural insight into substrate binding and catalysis of a novel 63 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily Chapter 6 Identification of a novela -galactosidase from the hyperthermophilic 81 archaeon Sulfolobus solfataricus Chapter 7 DNA family shuffling of hyperthermostable b-glycosidases 95 Chapter 8 Engineering a selectable marker for hyperthermophiles 111 Chapter 9 Summary and concluding remarks 129 References 133 Appendix I: Color figures 151 Appendix II: Co-author affiliations 161 Nederlandse samenvatting 162 Educational statement of graduate school VLAG 164 Curriculum vitae 165 List of publications 166 Aim and outline of this thesis 1 Aim and outline of this thesis his thesis presents the results of an integrated molecular analysis of the sugar metabolism of Tthe hyperthermophilic archaeon Sulfolobus solfataricus. The primary aim of this work has been to obtain functional insight into several aspects of sugar metabolism of S. solfataricus using a wide range of techniques. These aspects include the discovery of new sugar degrading enzymes, the elucidation of unknown metabolic pathways, and the functional and structural characteriza- tion of the enzymes involved in these new metabolic routes.
Recommended publications
  • Functional Characterization of Carbohydrate-Active Enzymes from Marine Bacteria
    Functional characterization of carbohydrate-active enzymes from marine bacteria I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Greifswald vorgelegt von Marcus Bäumgen Greifswald, 28.02.2020 Dekan: Prof. Dr. Werner Weitschies 1. Gutachter: Prof. Dr. Uwe T. Bornscheuer 2. Gutachter: Prof. Dr. Harry Brumer Tag der Promotion: 24.06.2020 II III Wissenschaft ist das Werkzeug, welches es uns ermöglicht, das große Puzzel der Natur und des Lebens zu lösen. IV Auch wenn wir den Weg des Wissens und der Weisheit niemals bis zum Ende beschreiten können, so ist doch jeder Schritt, den wir tun, ein Schritt in eine bessere Welt. V Content Abbreviations ..................................................................................................................... IX 1. Introduction ..................................................................................................................... 1 1.1 The marine carbon cycle .............................................................................................. 1 1.1.1 Algal blooms .......................................................................................................... 1 1.1.2 The marine carbohydrates ulvan and xylan ........................................................... 2 1.1.3 Marine polysaccharide utilization ........................................................................... 4 1.2 Carbohydrate-active enzymes
    [Show full text]
  • Metatranscriptomic Analysis of Community Structure And
    School of Environmental Sciences Metatranscriptomic analysis of community structure and metabolism of the rhizosphere microbiome by Thomas Richard Turner Submitted in partial fulfilment of the requirement for the degree of Doctor of Philosophy, September 2013 This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that use of any information derived there from must be in accordance with current UK Copyright Law. In addition, any quotation or extract must include full attribution. i Declaration I declare that this is an account of my own research and has not been submitted for a degree at any other university. The use of material from other sources has been properly and fully acknowledged, where appropriate. Thomas Richard Turner ii Acknowledgements I would like to thank my supervisors, Phil Poole and Alastair Grant, for their continued support and guidance over the past four years. I’m grateful to all members of my lab, both past and present, for advice and friendship. Graham Hood, I don’t know how we put up with each other, but I don’t think I could have done this without you. Cheers Salt! KK, thank you for all your help in the lab, and for Uma’s biryanis! Andrzej Tkatcz, thanks for the useful discussions about our projects. Alison East, thank you for all your support, particularly ensuring Graham and I did not kill each other. I’m grateful to Allan Downie and Colin Murrell for advice. For sequencing support, I’d like to thank TGAC, particularly Darren Heavens, Sophie Janacek, Kirsten McKlay and Melanie Febrer, as well as John Walshaw, Mark Alston and David Swarbreck for bioinformatic support.
    [Show full text]
  • Gluconate Dehydratase
    Europäisches Patentamt *EP001496113A1* (19) European Patent Office Office européen des brevets (11) EP 1 496 113 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C12N 9/88, C12N 15/55, 12.01.2005 Bulletin 2005/02 C12N 15/63, C12P 7/58 (21) Application number: 04254114.4 (22) Date of filing: 08.07.2004 (84) Designated Contracting States: • Ishibashi, Hiroki, c/o Mitsui Chemicals Inc. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Omuta-shi, Fukuoka 836-8610 (JP) HU IE IT LI LU MC NL PL PT RO SE SI SK TR • Fukuiri, Yasushi, c/o Mitsui Chemicals Inc. Designated Extension States: Omuta-shi, Fukuoka 836-8610 (JP) AL HR LT LV MK • Sakuma, Atsushi, c/o Mitsui Chemicals Inc. Omuta-shi, Fukuoka 836-8610 (JP) (30) Priority: 10.07.2003 JP 2003194680 • Komatsu, Hironori, c/o Mitsui Chemicals Inc. Sodegaura-shi, Chiba 299-0265 (JP) (71) Applicant: MITSUI CHEMICALS, INC. • Ando, Tomoyuki, c/o Mitsui Chemicals Inc. Tokyo (JP) Sodegaura-shi, Chiba 299-0265 (JP) • Togashi, Kazuhiko, c/o Mitsui Chemicals Inc. (72) Inventors: Sodegaura-shi, Chiba 299-0265 (JP) • Miyake, Hitoki, c/o Mitsui Chemicals Inc. • Umetani, Hideki, c/o Mitsui Chemicals Inc. Mobara-shi, Chiba, 297-0017 (JP) Sodegaura-shi, Chiba 299-0265 (JP) • Yamaki, Toshifumi, c/o Mitsui Chemicals Inc. Mobara-shi, Chiba, 297-0017 (JP) (74) Representative: Paget, Hugh Charles Edward et al • Oikawa, Toshihiro, c/o Mitsui Chemicals Inc. Mewburn Ellis LLP Mobara-shi, Chiba, 297-0017 (JP) York House • Nakamura, Takeshi, New Energy and Industrial 23 Kingsway Kawasaki-shi, Kanagawa 212-8554 (JP) London WC2B 6HP (GB) (54) Gluconate dehydratase (57) A novel gluconate dehydratase derived from gluconate dehydratase or a transformed cell containing Achromobacter xylosoxidans and a gene encoding the the gene with an aldonic acid, the corresponding 2-keto- gluconate dehydratase are provided.
    [Show full text]
  • Resolution of Carbon Metabolism and Sulfur-Oxidation Pathways of Metallosphaera Cuprina Ar-4 Via Comparative Proteomics
    JOURNAL OF PROTEOMICS 109 (2014) 276– 289 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jprot Resolution of carbon metabolism and sulfur-oxidation pathways of Metallosphaera cuprina Ar-4 via comparative proteomics Cheng-Ying Jianga, Li-Jun Liua, Xu Guoa, Xiao-Yan Youa, Shuang-Jiang Liua,c,⁎, Ansgar Poetschb,⁎⁎ aState Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China bPlant Biochemistry, Ruhr University Bochum, Bochum, Germany cEnvrionmental Microbiology and Biotechnology Research Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China ARTICLE INFO ABSTRACT Article history: Metallosphaera cuprina is able to grow either heterotrophically on organics or autotrophically Received 16 March 2014 on CO2 with reduced sulfur compounds as electron donor. These traits endowed the species Accepted 6 July 2014 desirable for application in biomining. In order to obtain a global overview of physiological Available online 14 July 2014 adaptations on the proteome level, proteomes of cytoplasmic and membrane fractions from cells grown autotrophically on CO2 plus sulfur or heterotrophically on yeast extract Keywords: were compared. 169 proteins were found to change their abundance depending on growth Quantitative proteomics condition. The proteins with increased abundance under autotrophic growth displayed Bioleaching candidate enzymes/proteins of M. cuprina for fixing CO2 through the previously identified Autotrophy 3-hydroxypropionate/4-hydroxybutyrate cycle and for oxidizing elemental sulfur as energy Heterotrophy source. The main enzymes/proteins involved in semi- and non-phosphorylating Entner– Industrial microbiology Doudoroff (ED) pathway and TCA cycle were less abundant under autotrophic growth. Also Extremophile some transporter proteins and proteins of amino acid metabolism changed their abundances, suggesting pivotal roles for growth under the respective conditions.
    [Show full text]
  • Extracting Chemical Reactions from Biological Literature
    Extracting Chemical Reactions from Biological Literature Jeffrey Tsui Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2014-109 http://www.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-109.html May 16, 2014 Copyright © 2014, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Extracting Chemical Reactions from Biological Literature Jeffrey Tsui Master of Science in Computer Science University of California, Berkeley Advisor: Ras Bodik Abstract Table of Contents Synthetic biologists must comb through vast amounts of 1. Introduction academic literature to design biological systems. The 2. Related Works majority of this data is unstructured and difficult to query 3. Extracting Reactions using Patterns because they are manually annotated. Existing databases 3.1 Pattern Representation such as PubMed already contain over 20 million citations 3.2 Extraction Process and are growing at a rate of 500,000 new citations every 3.2 Sentence Parsing year. Our solution is to automatically extract chemical 4. Creating a Training Set reactions from biological text and canonicalize them so that they can be easily indexed and queried. This paper 4.1 Reaction Labeling describes a natural language processing system that 4.2 Assumptions and Limitations generates patterns from labeled training data and uses them 5.
    [Show full text]
  • The Iron-Sulfur Clusters of Dehydratases Are Primary Intracellular Targets of Copper Toxicity
    The iron-sulfur clusters of dehydratases are primary intracellular targets of copper toxicity Lee Macomber and James A. Imlay1 Department of Microbiology, University of Illinois, Urbana, IL 61801 Edited by Irwin Fridovich, Duke University Medical Center, Durham, NC, and approved March 31, 2009 (received for review December 16, 2008) Excess copper is poisonous to all forms of life, and copper over- suppressed, but no DNA damage was detected (17). Further loading is responsible for several human pathologic processes. The inspection suggested that intracellular metabolites, including primary mechanisms of toxicity are unknown. In this study, mu- glutathione, might chelate copper so that it fails to associate with tants of Escherichia coli that lack copper homeostatic systems DNA and/or undergo cycles of oxidation and reduction (17). (copA cueO cus) were used to identify intracellular targets and to How, then, does copper ‘‘toxify’’ cells? The present study used test the hypothesis that toxicity involves the action of reactive copA cueO cus mutants to identify primary routes of intracellular oxygen species. Low micromolar levels of copper were sufficient to damage. It also exploited the ability of E. coli to grow anaero- inhibit the growth of both WT and mutant strains. The addition of bically, so that the role of oxygen in copper toxicity could be branched-chain amino acids restored growth, indicating that cop- directly evaluated. per blocks their biosynthesis. Indeed, copper treatment rapidly inactivated isopropylmalate dehydratase, an iron-sulfur cluster Results enzyme in this pathway. Other enzymes in this iron-sulfur dehy- Copper Is Highly Toxic Under Environmentally Relevant Conditions. dratase family were similarly affected.
    [Show full text]
  • Novel Non-Phosphorylative Pathway of Pentose Metabolism from Bacteria
    www.nature.com/scientificreports OPEN Novel non-phosphorylative pathway of pentose metabolism from bacteria Received: 22 March 2018 Seiya Watanabe1,2,3, Fumiyasu Fukumori4, Hisashi Nishiwaki1,2, Yasuhiro Sakurai5, Accepted: 30 September 2018 Kunihiko Tajima5 & Yasuo Watanabe1,2 Published: xx xx xxxx Pentoses, including D-xylose, L-arabinose, and D-arabinose, are generally phosphorylated to D-xylulose 5-phosphate in bacteria and fungi. However, in non-phosphorylative pathways analogous to the Entner-Dodorof pathway in bacteria and archaea, such pentoses can be converted to pyruvate and glycolaldehyde (Route I) or α-ketoglutarate (Route II) via a 2-keto-3-deoxypentonate (KDP) intermediate. Putative gene clusters related to these metabolic pathways were identifed on the genome of Herbaspirillum huttiense IAM 15032 using a bioinformatic analysis. The biochemical characterization of C785_RS13685, one of the components encoded to D-arabinonate dehydratase, difered from the known acid-sugar dehydratases. The biochemical characterization of the remaining components and a genetic expression analysis revealed that D- and L-KDP were converted not only to α-ketoglutarate, but also pyruvate and glycolate through the participation of dehydrogenase and hydrolase (Route III). Further analyses revealed that the Route II pathway of D-arabinose metabolism was not evolutionally related to the analogous pathway from archaea. Te breakdown of D-glucose is central for energy and biosynthetic metabolism throughout all domains of life. Te most common glycolytic routes in bacteria are the Embden-Meyerhof-Parnas, the Entner-Doudorof (ED), and the oxidative pentose phosphate pathways. Te distinguishing diference between the two former glyco- lytic pathways lies in the nature of the 6-carbon metabolic intermediates that serve as substrates for aldol cleav- age.
    [Show full text]
  • Publications 2013 Onwards Where Structural Biology Finland (Finstruct) and Instruct Centre Finland Services and Expertise Have Been Utilized
    FINStruct and Instruct Centre Finland Publications February 3, 2021 Publications 2013 onwards where Structural Biology Finland (FINStruct) and Instruct Centre Finland services and expertise have been utilized 2021 1. Eesmaa A, Yu L-Y, Göös H, Nõges K, Kovaleva V, Hellman M, Zimmermann R, Jung M, Permi P, Varjosalo M, Lindholm P, Saarma M. 2021. The cytoprotective protein MANF promotes neuronal survival independently from its role as a GRP78 cofactor. J. Biol. Chem, in press. 2. Flatt, J.W., Domanska, A., Seppälä, A.L., Butcher, S.J. 2021. Identification of a conserved virion- stabilizing network inside the interprotomer pocket of enteroviruses. Comms Biol. accepted 3. Georgakis N, Poudel N, Vlachakis D, Papageorgiou AC, Labrou NE. 2021. Phi class glutathione transferases as molecular targets towards multiple-herbicide resistance: Inhibition analysis and pharmacophore design. Plant Physiol Biochem 158:342-352. 4. Mustonen V, Muruganandam G, Loris R, Kursula P, Ruskamo S. 2021. Crystal and solution structure of NDRG1, a membrane-binding protein linked to myelination and tumour suppression. FEBS J. 2020. Epub ahead of print. 5. Myllykoski M, Sutinen A, Koski MK, Kallio JP, Raasakka A, Myllyharju J, Wierenga RK, Koivunen P. 2021. Structure of transmembrane prolyl 4-hydroxylase reveals unique organization of EF and dioxygenase domains. J Biol Chem. Epub ahead of print. 6. Papageorgiou AC, Poudel N, Matsson J. 2021. Protein analysis with X-ray crystallography. Methods Mol. Biol. 2178:377-404. 7. Platis M, Vlachakis D, Foudah AI, Muharram MM, Alqarni MH, Papageorgiou AC, Labrou NE. 2021. The interaction of Schistosoma japonicum glutathione transferase with Cibacron blue 3GA and its fragments.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Picrophilus Torridus and Its Implications for Life Around Ph 0
    Genome sequence of Picrophilus torridus and its implications for life around pH 0 O. Fu¨ tterer*, A. Angelov*, H. Liesegang*, G. Gottschalk*, C. Schleper†, B. Schepers‡, C. Dock‡, G. Antranikian‡, and W. Liebl*§ *Institut of Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, D-37075 Goettingen, Germany; †Institut of Microbiology and Genetics, Technical University Darmstadt, Schnittspahnstrasse 10, 64287 D-Darmstadt, Germany; and ‡Technical Microbiology, Technical University Hamburg–Harburg, Kasernenstrasse 12, 21073 D-Hamburg, Germany Edited by Dieter So¨ll, Yale University, New Haven, CT, and approved April 20, 2004 (received for review February 26, 2004) The euryarchaea Picrophilus torridus and Picrophilus oshimae are (4–6). After analysis of a number of archaeal and bacterial ge- able to grow around pH 0 at up to 65°C, thus they represent the nomes, it has been argued that microorganisms that live together most thermoacidophilic organisms known. Several features that swap genes at a higher frequency (7, 8). With the genome sequence may contribute to the thermoacidophilic survival strategy of P. of P. torridus, five complete genomes of thermoacidophilic organ- torridus were deduced from analysis of its 1.55-megabase genome. isms are available, which allows a more complex investigation of the P. torridus has the smallest genome among nonparasitic aerobic evolution of organisms sharing the extreme growth conditions of a microorganisms growing on organic substrates and simulta- unique niche in the light of horizontal gene transfer. neously the highest coding density among thermoacidophiles. An exceptionally high ratio of secondary over ATP-consuming primary Methods transport systems demonstrates that the high proton concentra- Sequencing Strategy.
    [Show full text]
  • POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii
    POLSKIE TOWARZYSTWO BIOCHEMICZNE Postępy Biochemii http://rcin.org.pl WSKAZÓWKI DLA AUTORÓW Kwartalnik „Postępy Biochemii” publikuje artykuły monograficzne omawiające wąskie tematy, oraz artykuły przeglądowe referujące szersze zagadnienia z biochemii i nauk pokrewnych. Artykuły pierwszego typu winny w sposób syntetyczny omawiać wybrany temat na podstawie możliwie pełnego piśmiennictwa z kilku ostatnich lat, a artykuły drugiego typu na podstawie piśmiennictwa z ostatnich dwu lat. Objętość takich artykułów nie powinna przekraczać 25 stron maszynopisu (nie licząc ilustracji i piśmiennictwa). Kwartalnik publikuje także artykuły typu minireviews, do 10 stron maszynopisu, z dziedziny zainteresowań autora, opracowane na podstawie najnow­ szego piśmiennictwa, wystarczającego dla zilustrowania problemu. Ponadto kwartalnik publikuje krótkie noty, do 5 stron maszynopisu, informujące o nowych, interesujących osiągnięciach biochemii i nauk pokrewnych, oraz noty przybliżające historię badań w zakresie różnych dziedzin biochemii. Przekazanie artykułu do Redakcji jest równoznaczne z oświadczeniem, że nadesłana praca nie była i nie będzie publikowana w innym czasopiśmie, jeżeli zostanie ogłoszona w „Postępach Biochemii”. Autorzy artykułu odpowiadają za prawidłowość i ścisłość podanych informacji. Autorów obowiązuje korekta autorska. Koszty zmian tekstu w korekcie (poza poprawieniem błędów drukarskich) ponoszą autorzy. Artykuły honoruje się według obowiązujących stawek. Autorzy otrzymują bezpłatnie 25 odbitek swego artykułu; zamówienia na dodatkowe odbitki (płatne) należy zgłosić pisemnie odsyłając pracę po korekcie autorskiej. Redakcja prosi autorów o przestrzeganie następujących wskazówek: Forma maszynopisu: maszynopis pracy i wszelkie załączniki należy nadsyłać w dwu egzem­ plarzach. Maszynopis powinien być napisany jednostronnie, z podwójną interlinią, z marginesem ok. 4 cm po lewej i ok. 1 cm po prawej stronie; nie może zawierać więcej niż 60 znaków w jednym wierszu nie więcej niż 30 wierszy na stronie zgodnie z Normą Polską.
    [Show full text]
  • From Enzyme Cascades Towards Physiology and Application
    Sugar metabolism: from enzyme cascades towards physiology and application Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften - Dr. rer. nat. - vorgelegt von Lu Shen Molekulare Enzymtechnologie und Biochemie Biofilm Centre Fachbereich Chemie der Universität Duisburg-Essen 2019 Die vorliegende Arbeit wurde im Zeitraum von Dezember 2013 bis April 2019 bei Prof. Dr. Bettina Siebers im Arbeitskreis für Molekulare Enzymtechnologie und Biochemie (Biofim Centre) der Universität Duisburg-Essen durchgeführt. Tag der Disputation: 05.11.2019 Gutachter: Prof. Dr. Bettina Siebers Prof. Dr. Peter Bayer Vorsitzender: Prof. Dr. Thomas Schrader Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/70847 URN: urn:nbn:de:hbz:464-20201027-101056-7 Dieses Werk kann unter einer Creative Commons Namensnennung 4.0 Lizenz (CC BY 4.0) genutzt werden. Content 1 Introduction ...................................................................................................................... 1 1.1 Archaea ......................................................................................................................... 1 1.2 Sulfolobus spp. .............................................................................................................. 3 1.3 Hexose metabolism in Sulfolobus spp. .......................................................................... 4 1.3.1 The bifunctional
    [Show full text]